Search results for: disease prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5884

Search results for: disease prediction

5134 Changes in Serum Hepcidin Levels in Children with Inflammatory Bowel Disease during Anti-Inflammatory Treatment

Authors: Eva Karaskova, Jana Volejnikova, Dusan Holub, Maria Velganova-Veghova, Michaela Spenerova, Dagmar Pospisilova

Abstract:

Background: Hepcidin is the central regulator of iron metabolism. Its production is mainly affected by an iron deficiency and the presence of inflammatory activity in the body. The aim of this study was to compare serum hepcidin levels in paediatric patients with newly diagnosed inflammatory bowel disease and hepcidin levels during maintenance therapy, correlate changes of serum hepcidin levels with selected markers of iron metabolism and inflammation and type of provided treatment. Methods: Children with newly diagnosed Crohn's disease (CD) and ulcerative colitis (UC) were included in this prospective study. Blood and stool samples were collected before treatment (baseline). Serum hepcidin, hemoglobin levels, platelet counts, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), interleukin-6 (IL 6), ferritin, iron, soluble transferrin receptors, and fecal calprotectin were assessed. The same parameters were measured and compared with the baseline levels in the follow-up period, during maintenance therapy (average of 39 months after diagnosis). Results: Patients with CD (n=30) had higher serum hepcidin levels (expressed as a median and interquartile range) at diagnosis than subjects with UC (n=13). These levels significantly decreased during the follow-up (from 36.5 (11.5-79.6) ng/ml to 2.1 (0.9-6.7) ng/ml). Contrarily, no significant serum hepcidin level changes were observed in UC (from 5.4 (3.4-16.6) ng/ml to 4.8 (0.9-8.1) ng/ml). While in children with CD hepcidin level dynamics correlated with disease activity and inflammatory markers (ESR, CRP), an only correlation with serum iron levels was observed in patients with UC. Conclusion: Children with CD had higher serum hepcidin levels at diagnosis compared to subjects with UC. Decrease of serum hepcidin in the CD group during anti-inflammatory therapy has been observed, whereas low hepcidin levels in children with UC have remained unchanged. Acknowledgment: This study was supported by grant MH CZ–DRO (FNOl, 00098892).

Keywords: children, Crohn's disease, ulcerative colitis, anaemia, hepcidin

Procedia PDF Downloads 123
5133 Parameter Estimation of Additive Genetic and Unique Environment (AE) Model on Diabetes Mellitus Type 2 Using Bayesian Method

Authors: Andi Darmawan, Dewi Retno Sari Saputro, Purnami Widyaningsih

Abstract:

Diabetes mellitus (DM) is a chronic disease in human that occurred if pancreas cannot produce enough of insulin hormone or the body uses ineffectively insulin hormone which causes increasing level of glucose in the blood, or it was called hyperglycemia. In Indonesia, DM is a serious disease on health because it can cause blindness, kidney disease, diabetic feet (gangrene), and stroke. The type of DM criteria can also be divided based on the main causes; they are DM type 1, type 2, and gestational. Diabetes type 1 or previously known as insulin-independent diabetes is due to a lack of production of insulin hormone. Diabetes type 2 or previously known as non-insulin dependent diabetes is due to ineffective use of insulin while gestational diabetes is a hyperglycemia that found during pregnancy. The most one type commonly found in patient is DM type 2. The main factors of this disease are genetic (A) and life style (E). Those disease with 2 factors can be constructed with additive genetic and unique environment (AE) model. In this article was discussed parameter estimation of AE model using Bayesian method and the inheritance character simulation on parent-offspring. On the AE model, there are response variable, predictor variables, and parameters were capable of representing the number of population on research. The population can be measured through a taken random sample. The response and predictor variables can be determined by sample while the parameters are unknown, so it was required to estimate the parameters based on the sample. Estimation of AE model parameters was obtained based on a joint posterior distribution. The simulation was conducted to get the value of genetic variance and life style variance. The results of simulation are 0.3600 for genetic variance and 0.0899 for life style variance. Therefore, the variance of genetic factor in DM type 2 is greater than life style.

Keywords: AE model, Bayesian method, diabetes mellitus type 2, genetic, life style

Procedia PDF Downloads 284
5132 Sorghum Grains Grading for Food, Feed, and Fuel Using NIR Spectroscopy

Authors: Irsa Ejaz, Siyang He, Wei Li, Naiyue Hu, Chaochen Tang, Songbo Li, Meng Li, Boubacar Diallo, Guanghui Xie, Kang Yu

Abstract:

Background: Near-infrared spectroscopy (NIR) is a non-destructive, fast, and low-cost method to measure the grain quality of different cereals. Previously reported NIR model calibrations using the whole grain spectra had moderate accuracy. Improved predictions are achievable by using the spectra of whole grains, when compared with the use of spectra collected from the flour samples. However, the feasibility for determining the critical biochemicals, related to the classifications for food, feed, and fuel products are not adequately investigated. Objectives: To evaluate the feasibility of using NIRS and the influence of four sample types (whole grains, flours, hulled grain flours, and hull-less grain flours) on the prediction of chemical components to improve the grain sorting efficiency for human food, animal feed, and biofuel. Methods: NIR was applied in this study to determine the eight biochemicals in four types of sorghum samples: hulled grain flours, hull-less grain flours, whole grains, and grain flours. A total of 20 hybrids of sorghum grains were selected from the two locations in China. Followed by NIR spectral and wet-chemically measured biochemical data, partial least squares regression (PLSR) was used to construct the prediction models. Results: The results showed that sorghum grain morphology and sample format affected the prediction of biochemicals. Using NIR data of grain flours generally improved the prediction compared with the use of NIR data of whole grains. In addition, using the spectra of whole grains enabled comparable predictions, which are recommended when a non-destructive and rapid analysis is required. Compared with the hulled grain flours, hull-less grain flours allowed for improved predictions for tannin, cellulose, and hemicellulose using NIR data. Conclusion: The established PLSR models could enable food, feed, and fuel producers to efficiently evaluate a large number of samples by predicting the required biochemical components in sorghum grains without destruction.

Keywords: FT-NIR, sorghum grains, biochemical composition, food, feed, fuel, PLSR

Procedia PDF Downloads 69
5131 Knowledge about Dementia: Why Should Family Caregivers Know that Dementia is a Terminal Disease?

Authors: Elzbieta Sikorska-Simmons

Abstract:

Dementia is a progressive terminal disease. Despite this recognition, research shows that most family caregivers do not know it, and it is unclear how this knowledge affects the quality of patient care. The aim of this qualitative study of 20 family caregivers for patients with advanced dementia is to examine how the caregiver's knowledge about dementia affects the quality of patient care in the context of healthcare decision-making, advanced care planning, and access to adequate support systems. Knowledge about dementia implies family caregivers' understanding of dementia trajectories, common symptoms/complications, and alternative treatment options (e.g., comfort feeding versus tube feeding). Data were collected in semi-structured interviews with 20 family caregivers. The interviews were conducted in person by the author and designed to elicit rich descriptions of family caregivers' experiences with healthcare decision-making and the management of common symptoms/complications of end-stage dementia as patient healthcare proxies. The study findings suggest that caregivers who recognize that dementia is a terminal disease are less likely to opt for life-extending treatments during the advanced stages. They are also more likely to seek palliative/hospice care, and consequently, they are better able to avoid unnecessary hospitalizations or medical procedures. For example, those who know that dementia is a terminal disease tend to opt for "comfort feeding" rather than "tube feeding" in managing the swallowing difficulties that accompany advanced dementia. In the context of advance care planning, family caregivers who know that dementia is a terminal disease tend to have more meaningful advance directives (e.g., Power of Attorney and Do Not Resuscitate orders). They are better prepared to anticipate common problems and pursue treatments that foster the best quality of patient life and care. Greater knowledge about advanced dementia helps them make more informed decisions that focus on enhancing the quality of patient life rather than just survival. In addition, those who know that dementia is a terminal disease are more likely to establish adequate support systems to help them cope with the complex demands of caregiving. For example, they are more likely to seek dementia-oriented primary care programs that offer house visits or respite services. Based on the study findings, knowledge about dementia as a terminal disease is critical in the optimal management of patient care needs and the establishment of adequate support systems. More research is needed to better understand what caregivers need to know to better prepare them for the complex demands of dementia caregiving.

Keywords: dementia education, family caregiver, management of dementia, quality of care

Procedia PDF Downloads 100
5130 Analytical Study of Data Mining Techniques for Software Quality Assurance

Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar

Abstract:

Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.

Keywords: data mining, defect prediction, missing requirements, software quality

Procedia PDF Downloads 467
5129 Study on the Knowledge, Attitude and Practice (KAP) of Patients with Hypertension in Aseer Hospital, Asir Region, Saudi Arabia

Authors: Ayesha Siddiqua

Abstract:

Background: Hypertension is a silent killer disease and a common risk factor for considerable morbidity and mortality. Its effects can be seen on the organs like Heart; Brain; Kidneys. In Saudi Arabia, hypertension affects a sizeable enough proportion of the population, with a prevalence of 27.9% in urban and 22.4 in rural population. Despite these features, the magnitude and epidemiological characteristics of this disease have been rarely studied in Saudi Arabia. To fill this gap, we conducted a survey in Abha to study the KAP of hypertension. KAP study shows what people know about certain things, their feelings and behavior towards the disease management. An improvement in the Knowledge and Attitudes towards disease management can reform the kinds of practices which are followed. Objectives: To assess the level of Knowledge, Attitude and Practice of patients who suffer from Hypertension. To improve the Quality of life of patients. Methods: A prospective cross-sectional survey was conducted on a sample size of 130 Hypertensive patients of both the genders enrolled by simple random sampling technique admitted in the Aseer Central Hospital of Abha during the period from October 2016 to December 2016. Results: Altogether 130 hypertensive patients were enrolled in this study with equal no. of Males and Females. Most of the respondents were aged between 18-40 years (45%). On assessing the KAP of the patients, we found that the Knowledge and Attitude score was good but the Practice scores were moderate in both the genders. Conclusion: Our study concludes that a significant proportion of hypertensive patients show less Practice towards the disease management which can lead to severe complications in time being and also result in damage of other vital organs. So there is a need of intense educational intervention for the patients which can be done by Patient counselling by the clinical pharmacist. Strategies to modify lifestyle which help in control of hypertension can include providing leaflets as well as direct educational programs.

Keywords: Attitude, hypertension, Knowledge, practices

Procedia PDF Downloads 350
5128 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis

Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante

Abstract:

The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.

Keywords: dynamic analysis, long short-term memory, prediction, sepsis

Procedia PDF Downloads 125
5127 Analysis of NMDA Receptor 2B Subunit Gene (GRIN2B) mRNA Expression in the Peripheral Blood Mononuclear Cells of Alzheimer's Disease Patients

Authors: Ali̇ Bayram, Semih Dalkilic, Remzi Yigiter

Abstract:

N-methyl-D-aspartate (NMDA) receptor is a subtype of glutamate receptor and plays a pivotal role in learning, memory, neuronal plasticity, neurotoxicity and synaptic mechanisms. Animal experiments were suggested that glutamate-induced excitotoxic injuriy and NMDA receptor blockage lead to amnesia and other neurodegenerative diseases including Alzheimer’s disease (AD), Huntington’s disease, amyotrophic lateral sclerosis. Aim of this study is to investigate association between NMDA receptor coding gene GRIN2B expression level and Alzheimer disease. The study was approved by the local ethics committees, and it was conducted according to the principles of the Declaration of Helsinki and guidelines for the Good Clinical Practice. Peripheral blood was collected 50 patients who diagnosed AD and 49 healthy control individuals. Total RNA was isolated with RNeasy midi kit (Qiagen) according to manufacturer’s instructions. After checked RNA quality and quantity with spectrophotometer, GRIN2B expression levels were detected by quantitative real time PCR (QRT-PCR). Statistical analyses were performed, variance between two groups were compared with Mann Whitney U test in GraphpadInstat algorithm with 95 % confidence interval and p < 0.05. After statistical analyses, we have determined that GRIN2B expression levels were down regulated in AD patients group with respect to control group. But expression level of this gene in each group was showed high variability. İn this study, we have determined that NMDA receptor coding gene GRIN2B expression level was down regulated in AD patients when compared with healthy control individuals. According to our results, we have speculated that GRIN2B expression level was associated with AD. But it is necessary to validate these results with bigger sample size.

Keywords: Alzheimer’s disease, N-methyl-d-aspartate receptor, NR2B, GRIN2B, mRNA expression, RT-PCR

Procedia PDF Downloads 394
5126 Skin Diseases in the Rural Areas in Nepal; Impact on Quality of Life

Authors: Dwarika P. Shrestha, Dipendra Gurung, Rushma Shrestha, Inger Rosdahl

Abstract:

Introduction: Skin diseases are one of the most common health problems in Nepal. The objectives of this study are to determine the prevalence of skin diseases and impact on quality of life in rural areas in Nepal. Materials and methods: A house-to-house survey was conducted, to obtain socio-demographic data and identify individuals with skin diseases, followed by health camps, where the villagers were examined. A pilot study was conducted in one village, which was then extended to 10 villages in 4 districts. To assess the impact on quality of life, the villagers were interviewed with Skin Disease Disability Index. This is a questionnaire developed and validated by the authors for use in Nepal. Results: In the pilot study, the overall prevalence of skin diseases was 20.1% (645/3207). In the additional 10 villages with 7348 (3651/3787 m/f) inhabitants, 1862 (721/1141 m/f, mean age 31.4 years) had one or more skin diseases. The overall prevalence of skin diseases was 25%. The most common skin disease categories were eczemas (13.7%, percentage among all inhabitants) pigment disorders (6.8%), fungal infections (4.9%), nevi (3.7%) and urticaria (2.9%). These five most common skin disease categories comprise 71% of all skin diseases seen in the study. The mean skin disease disability index score was 13.7, indicating very large impact on the quality of life. Conclusions: This population-based study shows that skin diseases are very common in the rural areas of Nepal and have significant impact on quality of life. Targeted intervention at the primary health care level should help to reduce the health burden due to skin diseases.

Keywords: prevalence and pattern of skin diseases, impact on quality of life, rural Nepal, interventions

Procedia PDF Downloads 489
5125 Analysis of Different Classification Techniques Using WEKA for Diabetic Disease

Authors: Usama Ahmed

Abstract:

Data mining is the process of analyze data which are used to predict helpful information. It is the field of research which solve various type of problem. In data mining, classification is an important technique to classify different kind of data. Diabetes is most common disease. This paper implements different classification technique using Waikato Environment for Knowledge Analysis (WEKA) on diabetes dataset and find which algorithm is suitable for working. The best classification algorithm based on diabetic data is Naïve Bayes. The accuracy of Naïve Bayes is 76.31% and take 0.06 seconds to build the model.

Keywords: data mining, classification, diabetes, WEKA

Procedia PDF Downloads 147
5124 Dutch Disease and Industrial Development: An Investigation of the Determinants of Manufacturing Sector Performance in Nigeria

Authors: Kayode Ilesanmi Ebenezer Bowale, Dominic Azuh, Busayo Aderounmu, Alfred Ilesanmi

Abstract:

There has been a debate among scholars and policymakers about the effects of oil exploration and production on industrial development. In Nigeria, there were many reforms resulting in an increase in crude oil production in the recent past. There is a controversy on the importance of oil production in the development of the manufacturing sector in Nigeria. Some scholars claim that oil has been a blessing to the development of the manufacturing sector, while others regard it as a curse. The objective of the study is to determine if empirical analysis supports the presence of Dutch Disease and de-industrialisation in the Nigerian manufacturing sector between 2019- 2022. The study employed data that were sourced from World Development Indicators, Nigeria Bureau of Statistics, and the Central Bank of Nigeria Statistical Bulletin on manufactured exports, manufacturing employment, agricultural employment, and service employment in line with the theory of Dutch Disease using the unit root test to establish their level of stationarity, Engel and Granger cointegration test to check their long-run relationship. Autoregressive. Distributed Lagged bound test was also used. The Vector Error Correction Model will be carried out to determine the speed of adjustment of the manufacturing export and resource movement effect. The results showed that the Nigerian manufacturing industry suffered from both direct and indirect de-industrialisation over the period. The findings also revealed that there was resource movement as labour moved away from the manufacturing sector to both the oil sector and the services sector. The study concluded that there was the presence of Dutch Disease in the manufacturing industry, and the problem of de-industrialisation led to the crowding out of manufacturing output. The study recommends that efforts should be made to diversify the Nigerian economy. Furthermore, a conducive business environment should be provided to encourage more involvement of the private sector in the agriculture and manufacturing sectors of the economy.

Keywords: Dutch disease, resource movement, manufacturing sector performance, Nigeria

Procedia PDF Downloads 79
5123 Surface Roughness Prediction Using Numerical Scheme and Adaptive Control

Authors: Michael K.O. Ayomoh, Khaled A. Abou-El-Hossein., Sameh F.M. Ghobashy

Abstract:

This paper proposes a numerical modelling scheme for surface roughness prediction. The approach is premised on the use of 3D difference analysis method enhanced with the use of feedback control loop where a set of adaptive weights are generated. The surface roughness values utilized in this paper were adapted from [1]. Their experiments were carried out using S55C high carbon steel. A comparison was further carried out between the proposed technique and those utilized in [1]. The experimental design has three cutting parameters namely: depth of cut, feed rate and cutting speed with twenty-seven experimental sample-space. The simulation trials conducted using Matlab software is of two sub-classes namely: prediction of the surface roughness readings for the non-boundary cutting combinations (NBCC) with the aid of the known surface roughness readings of the boundary cutting combinations (BCC). The following simulation involved the use of the predicted outputs from the NBCC to recover the surface roughness readings for the boundary cutting combinations (BCC). The simulation trial for the NBCC attained a state of total stability in the 7th iteration i.e. a point where the actual and desired roughness readings are equal such that error is minimized to zero by using a set of dynamic weights generated in every following simulation trial. A comparative study among the three methods showed that the proposed difference analysis technique with adaptive weight from feedback control, produced a much accurate output as against the abductive and regression analysis techniques presented in this.

Keywords: Difference Analysis, Surface Roughness; Mesh- Analysis, Feedback control, Adaptive weight, Boundary Element

Procedia PDF Downloads 621
5122 SARS-CoV-2: Prediction of Critical Charged Amino Acid Mutations

Authors: Atlal El-Assaad

Abstract:

Viruses change with time through mutations and result in new variants that may persist or disappear. A Mutation refers to an actual change in the virus genetic sequence, and a variant is a viral genome that may contain one or more mutations. Critical mutations may cause the virus to be more transmissible, with high disease severity, and more vulnerable to diagnostics, therapeutics, and vaccines. Thus, variants carrying such mutations may increase the risk to human health and are considered variants of concern (VOC). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - the contagious in humans, positive-sense single-stranded RNA virus that caused coronavirus disease 2019 (COVID-19) - has been studied thoroughly, and several variants were revealed across the world with their corresponding mutations. SARS-CoV-2 has four structural proteins, known as the S (spike), E (envelope), M (membrane), and N (nucleocapsid) proteins, but prior study and vaccines development focused on genetic mutations in the S protein due to its vital role in allowing the virus to attach and fuse with the membrane of a host cell. Specifically, subunit S1 catalyzes attachment, whereas subunit S2 mediates fusion. In this perspective, we studied all charged amino acid mutations of the SARS-CoV-2 viral spike protein S1 when bound to Antibody CC12.1 in a crystal structure and assessed the effect of different mutations. We generated all missense mutants of SARS-CoV-2 protein amino acids (AAs) within the SARS-CoV-2:CC12.1 complex model. To generate the family of mutants in each complex, we mutated every charged amino acid with all other charged amino acids (Lysine (K), Arginine (R), Glutamic Acid (E), and Aspartic Acid (D)) and studied the new binding of the complex after each mutation. We applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations to determine the effect of each mutation on binding. After analyzing our data, we identified charged amino acids keys for binding. Furthermore, we validated those findings against published experimental genetic data. Our results are the first to propose in silico potential life-threatening mutations of SARS-CoV-2 beyond the present mutations found in the five common variants found worldwide.

Keywords: SARS-CoV-2, variant, ionic amino acid, protein-protein interactions, missense mutation, AESOP

Procedia PDF Downloads 113
5121 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron

Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni

Abstract:

The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.

Keywords: bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow

Procedia PDF Downloads 344
5120 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans

Authors: Tomas Premoli, Sareh Rowlands

Abstract:

In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.

Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI

Procedia PDF Downloads 73
5119 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 149
5118 Proteomics Application in Disease Diagnosis and Reproduction İmprovement in Cow

Authors: Abdollah Sobhani, Hossein Vaseghi-Dodaran

Abstract:

Proteomics is defined as the study of the component of a cell, tissue and biological fluid. This technique has the potential to identify protein biomarkers of a disease states. In this study which was performed on bovine ovarian follicular cysts (BOFC), eight proteins are over expressed in BOFC that these proteins could be useful biomarkers for BOFC. The difference between serum proteome pattern cows affected by postpartum endometritis with healthy cows revealed that concentrations orosomucoid was decreased in endometritis. The comparison proteome of brucella abortus between laboratory adapted strains and clinical isolates could be useful to better understand this disease and vaccine development. Proteomics experiments identified new proteins and pathways that may be important in future hypothesis-driven studies of glucocorticoid-induced immunosuppression. Understanding the molecular mechanisms of effective parameters on male fertility is essential for obtaining high reproductive efficiency by decreasing cost and time. The investigations on proteome of high fertility spermatozoa indicated that expression of some proteins such as casein kinase 2 (CKII) prime poly peptide and tyrosine kinase in high fertility spermatozoa was higher compared to low fertility spermatozoa. Also, some evidence has indicated that variation in protein types and amounts in seminal fluid regulates fertility indexes in dairy bull. In conclusion, proteomics is a useful technique for discovering drugs, vaccine development, and diagnosis disease by biomarkers and improvement of reproduction efficiency.

Keywords: proteomics, reproduction, biomarker, immunity

Procedia PDF Downloads 412
5117 Design and Burnback Analysis of Three Dimensional Modified Star Grain

Authors: Almostafa Abdelaziz, Liang Guozhu, Anwer Elsayed

Abstract:

The determination of grain geometry is an important and critical step in the design of solid propellant rocket motor. In this study, the design process involved parametric geometry modeling in CAD, MATLAB coding of performance prediction and 2D star grain ignition experiment. The 2D star grain burnback achieved by creating new surface via each web increment and calculating geometrical properties at each step. The 2D star grain is further modified to burn as a tapered 3D star grain. Zero dimensional method used to calculate the internal ballistic performance. Experimental and theoretical results were compared in order to validate the performance prediction of the solid rocket motor. The results show that the usage of 3D grain geometry will decrease the pressure inside the combustion chamber and enhance the volumetric loading ratio.

Keywords: burnback analysis, rocket motor, star grain, three dimensional grains

Procedia PDF Downloads 243
5116 Correlative Study of Serum Interleukin-18 and Disease Activity, Functional Disability and Quality of Life in Rheumatoid Arthritis Patients

Authors: Hamdy Khamis Korayem, Manal Yehia Tayel, Abeer Shawky El Hadedy, Emmanuel Kamal Aziz Saba, Shimaa Badr Abdelnaby Badr

Abstract:

The aim of the current study was to demonstrate whether serum Interleukin-18 (IL-18) is increased in rheumatoid arthritis (RA) and its correlation with disease activity, functional disability and quality of life in RA patients. The study included 30 RA patients and 20 healthy normal control subjects. The RA patients were diagnosed according to the 2010 ACR/EULAR classification criteria for RA with the exclusion of those who had diabetes mellitus, endocrine disorders, associated rheumatologic diseases, viral hepatitis B or C and other diseases with increased serum IL-18 level. All patients were subjected to clinical evaluation of the musculoskeletal system. Disease activity was assessed by disease activity score 28 with 4 variables (DAS 28). Functional disability was assessed by health assessment questionnaire disability index (HAQ-DI). The quality of life was assessed by Short form-36 (SF-36) questionnaire. Radiological assessment of both hands and feet by Sharp/van der Heijde (SvH) scoring method. Laboratory parameters including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibody (ACPA) were assessed in patients and serum level of IL-18 in both patients and control subjects. There was no statistically significant difference between patient and control group as regards age and sex. Among patients, 29 % were females and the age range was between 25 to 55 years. Extra-articular manifestations were presented in 56.7% of the patients. The mean of DAS 28 score was 5.73±1.46 and that of HAQ-DI was 1.22±0.72 while that of SF-36 was 40.03±13.96. The level of serum IL-18 was significantly higher in patients than in the control subjects (P= 0.030). Serum IL-18 was correlated with ACPA among the patient group. There were no statistically significant correlations between serum IL-18 and DAS28, HAQ-DI, SF-36, total SvH score and the other laboratory results. In conclusion, IL-18 is significantly higher in RA patient than in healthy control subjects and positively correlated with ACPA level. IL-18 is associated with extra-articular manifestations. However, it is not correlated with other laboratory parameters, disease activity, functional disability, quality of life nor radiological severity.

Keywords: disease activity score, Interleukin-18, quality of life assessment, rheumatoid arthritis

Procedia PDF Downloads 325
5115 Assessment of the Efficacy of Oral Vaccination of Wild Canids and Stray Dogs against Rabies in Azerbaijan

Authors: E. N. Hasanov, K. Y. Yusifova, M. A. Ali

Abstract:

Rabies is a zoonotic disease that causes acute encephalitis in domestic and wild carnivores. The goal of our investigation was to analyze the data on oral vaccination of wild canids and stray dogs in Azerbaijan. Before the start of the vaccination campaign conducted by the International Dialogue for Environmental Action (IDEA) Animal Care Center (IACC), all rabies cases in Azerbaijan for the period of 2017-2020 were analyzed. So, 30 regions for oral immunization with the Rabadrop vaccine were selected. In total, 95.9 thousand doses of baits were scattered in 30 regions, 970 (0.97%) remained intact. In addition, a campaign to sterilize and vaccinate stray dogs and cats undoubtedly had a positive impact on reducing the dynamics of rabies incidence. During the period 2017-2020, 2339 dogs and 2962 cats were sterilized and vaccinated under this program. It can be noted that the risk of rabies infection can be reduced through special preventive measures against disease reservoirs, which include oral immunization of wild and stray animals.

Keywords: rabies, vaccination, oral immunization, wild canids, stray dogs, baits, disease reservoirs

Procedia PDF Downloads 193
5114 Association of Ankle Brachial Index with Diabetic Score Neuropathy Examination in Type 2 Diabetes Melitus Patients

Authors: A. K. Putri, A.Fitri, C. A. Batubara

Abstract:

Diabetes Mellitus (DM) is a chronic disease that could cause complications. The complication can be Peripheral Arterial Disease (PAD) or Diabetic Neuropathy (DN). Peripheral Arterial Disease is checked by Ankle Brachial Index (ABI), DN is checked by Diabetic Neuropathy Examination (DNE) score. To determine the association of ABI and DNE score in DM type 2. This study uses a cross-sectional design. The subjects were DM patients at the neurology and endocrinology polyclinic at Haji Adam Malik Hospital Medan and its network hospital and this study subjects were examined for ABI and DNE scores. The data were analysed using the Fisher Exact statistics test. Demographics characteristic showed most of subject are female (51,6%), age range ≥ 60 (45.2% ; average 57,6 ± 9,8 years ), and history of DM 5-10 years (45,2%). The most patient ABI characteristics were mild PAD (42%) and moderate PAD (29%). The most patient DNE Score characteristics were≥ 3 (51,6%). There’s a significant relationship between ABI and DNE score in DM type 2 (p =0.016). Conclusion: There is a significant association between ABI and DNE scores in DM type 2 patients

Keywords: diabetic neuropathy, diabetes mellitus, ankle-brachial index, diabetic neuropathy examination

Procedia PDF Downloads 112
5113 The Interaction between Blood-Brain Barrier and the Cerebral Lymphatics Proposes Therapeutic Method for Alzheimer’S Disease

Authors: M. Klimova, O. Semyachkina-Glushkovskaya, J. Kurts, E. Zinchenko, N. Navolokin, A. Shirokov, A. Dubrovsky, A. Abdurashitov, A. Terskov, A. Mamedova, I. Agranovich, T. Antonova, I. Blokhina

Abstract:

The direction for research of Alzheimer's disease is to find an effective non-invasive and non-pharmacological way of treatment. Here we tested our hypothesis that the opening of the blood-brain barrier (BBB) induces activation of lymphatic drainage and clearing functions that can be used as a method for non-invasive stimulation of clearance of beta-amyloid and therapy of Alzheimer’s disease (AD). To test our hypothesis, in this study on healthy male mice we analyzed the interaction between BBB opening by repeated loud music (100-10000 Hz, 100 dB, duration 2 h: 60 sec – sound; 60 sec - pause) and functional changes in the meningeal lymphatic vessels (MLVs). We demonstrate clearance of dextran 70 kDa (i.v. injection), fluorescent beta-amyloid (intrahippocampal injection) and gold nanorods (intracortical injection) via MLV that significantly increased after the opening of BBB. Our studies also demonstrate that the BBB opening was associated with the improvement of neurocognitive status in mice with AD. Thus, we uncover therapeutic effects of BBB opening by loud music, such as non-invasive stimulation of lymphatic clearance of beta-amyloid in mice with AD, accompanied by improvement of their neurocognitive status. Our data are consistent with other results suggesting the therapeutic effect of BBB opening by focused ultrasound without drugs for patients with AD. This research was supported by a grant from RSF 18-75-10033

Keywords: Alzheimer's disease, beta-amyloid, blood-brain barrier, meningeal lymphatic vessels, repeated loud music

Procedia PDF Downloads 142
5112 Comparison of Deep Brain Stimulation Targets in Parkinson's Disease: A Systematic Review

Authors: Hushyar Azari

Abstract:

Aim and background: Deep brain stimulation (DBS) is regarded as an important therapeutic choice for Parkinson's disease (PD). The two most common targets for DBS are the subthalamic nucleus (STN) and globus pallidus (GPi). This review was conducted to compare the clinical effectiveness of these two targets. Methods: A systematic literature search in electronic databases: Embase, Cochrane Library and PubMed were restricted to English language publications 2010 to 2021. Specified MeSH terms were searched in all databases. Studies which evaluated the Unified Parkinson's Disease Rating Scale (UPDRS) III were selected by meeting the following criteria: (1) compared both GPi and STN DBS; (2) had at least three months follow-up period; (3)at least five participants in each group; (4)conducted after 2010. Study quality assessment was performed using the Modified Jadad Scale. Results: 3577 potentially relevant articles were identified, of these, 3569 were excluded based on title and abstract, duplicate and unsuitable article removal. Eight articles satisfied the inclusion criteria and were scrutinized (458 PD patients). According to Modified Jadad Scale, the majority of included studies had low evidence quality which was a limitation of this review. 5 studies reported no statistically significant between-group difference for improvements in UPDRS ш scores. At the same time, there were some results in terms of pain, action tremor, rigidity, and urinary symptoms, which indicated that STN DBS might be a better choice. Regarding the adverse effects, GPi was superior. Conclusion: It is clear that other larger randomized clinical trials with longer follow-up periods and control groups are needed to decide which target is more efficient for deep brain stimulation in Parkinson’s disease and imposes fewer adverse effects on the patients. Meanwhile, STN seems more reasonable according to the results of this systematic review.

Keywords: brain stimulation, globus pallidus, Parkinson's disease, subthalamic nucleus

Procedia PDF Downloads 179
5111 The Role of Critical Thinking in Disease Diagnosis: A Comprehensive Review

Authors: Mohammad Al-Mousawi

Abstract:

This academic article explores the indispensable role of critical thinking in the process of diagnosing diseases. Employing a multidisciplinary approach, we delve into the cognitive skills and analytical mindset that clinicians, researchers, and healthcare professionals must employ to navigate the complexities of disease identification. By examining the integration of critical thinking within the realms of medical education, diagnostic decision-making, and technological advancements, this article aims to underscore the significance of cultivating and applying critical thinking skills in the ever-evolving landscape of healthcare.

Keywords: critical thinking, medical education, diagnostic decision-making, fostering critical thinking

Procedia PDF Downloads 74
5110 Brown-Spot Needle Blight: An Emerging Threat Causing Loblolly Pine Needle Defoliation in Alabama, USA

Authors: Debit Datta, Jeffrey J. Coleman, Scott A. Enebak, Lori G. Eckhardt

Abstract:

Loblolly pine (Pinus taeda) is a leading productive timber species in the southeastern USA. Over the past three years, an emerging threat is expressed by successive needle defoliation followed by stunted growth and tree mortality in loblolly pine plantations. Considering economic significance, it has now become a rising concern among landowners, forest managers, and forest health state cooperators. However, the symptoms of the disease were perplexed somewhat with root disease(s) and recurrently attributed to invasive Phytophthora species due to the similarity of disease nature and devastation. Therefore, the study investigated the potential causal agent of this disease and characterized the fungi associated with loblolly pine needle defoliation in the southeastern USA. Besides, 70 trees were selected at seven long-term monitoring plots at Chatom, Alabama, to monitor and record the annual disease incidence and severity. Based on colony morphology and ITS-rDNA sequence data, a total of 28 species of fungi representing 17 families have been recovered from diseased loblolly pine needles. The native brown-spot pathogen, Lecanosticta acicola, was the species most frequently recovered from unhealthy loblolly pine needles in combination with some other common needle cast and rust pathogen(s). Identification was confirmed using morphological similarity and amplification of translation elongation factor 1-alpha gene region of interest. Tagged trees were consistently found chlorotic and defoliated from 2019 to 2020. The current emergence of the brown-spot pathogen causing loblolly pine mortality necessitates the investigation of the role of changing climatic conditions, which might be associated with increased pathogen pressure to loblolly pines in the southeastern USA.

Keywords: brown-spot needle blight, loblolly pine, needle defoliation, plantation forestry

Procedia PDF Downloads 152
5109 Nontuberculous Mycobacterium Infection – Still An Important Disease Among People With Late HIV Diagnosis

Authors: Jakub Młoźniak, Adam Szymański, Gabriela Stondzik, Dagny Krankowska, Tomasz Mikuła

Abstract:

Nontuberculous mycobacteria (NTM) are bacterial species that cause diversely manifesting diseases mainly in immunocompromised patients. In people with HIV, NTM infection is an AIDS-defining disease and usually appears when the lymphocyte T CD4 count is below 50 cells/μl. The usage of antiretroviral therapy has decreased the prevalence of NTM among people with HIV, but the disease can still be observed especially among patients with late HIV diagnosis. Common presence in environment, human colonization, clinical similarity with tuberculosis and slow growth on culture makes NTM especially hard to diagnose. The study aimed to analyze the epidemiology and clinical course of NTM among patients with HIV. This study included patients with NTM and HIV admitted to our department between 2017 and 2023. Medical records of patients were analyzed and data on age, sex, median time from HIV diagnosis to identification of NTM infection, median CD4 count at NTM diagnosis, methods of determining NTM infection, type of species of mycobacteria identified, clinical symptoms and treatment course were gathered. Twenty-four patients (20 men, 4 women) with identified NTM were included in this study. Among them, 20 were HIV late presenters. The patients' median age was 40. The main symptoms which patients presented were fever, weight loss and cough. Pulmonary disease confirmed with positive cultures from sputum/bronchoalveolar lavage was present in 18 patients. M. avium was the most common species identified. M. marinum caused disseminated skin lesions in 1 patient. Out of all, 5 people were not treated for NTM caused by lack of symptoms and suspicion of colonization with mycobacterium. Concomitant tuberculosis was present in 6 patients. The median diagnostic time from HIV to NTM infections was 3.5 months. The median CD4 count at NTM identification was 69.5 cells/μl. Median NTM treatment time was 16 months but 7 patients haven’t finished their treatment yet. The most commonly used medications were ethambutol and clarithromycin. Among analyzed patients, 4 of them have died. NTM infections are still an important disease among patients who are HIV late presenters. This disease should be taken into consideration during the differential diagnosis of fever, weight loss and cough in people with HIV with lymphocyte T CD4 count <100 cells/μl. Presence of tuberculosis does not exclude nontuberculous mycobacterium coinfection.

Keywords: mycobacteriosis, HIV, late presenter, epidemiology

Procedia PDF Downloads 42
5108 Structure-Guided Optimization of Sulphonamide as Gamma–Secretase Inhibitors for the Treatment of Alzheimer’s Disease

Authors: Vaishali Patil, Neeraj Masand

Abstract:

In older people, Alzheimer’s disease (AD) is turning out to be a lethal disease. According to the amyloid hypothesis, aggregation of the amyloid β–protein (Aβ), particularly its 42-residue variant (Aβ42), plays direct role in the pathogenesis of AD. Aβ is generated through sequential cleavage of amyloid precursor protein (APP) by β–secretase (BACE) and γ–secretase (GS). Thus in the treatment of AD, γ-secretase modulators (GSMs) are potential disease-modifying as they selectively lower pathogenic Aβ42 levels by shifting the enzyme cleavage sites without inhibiting γ–secretase activity. This possibly avoids known adverse effects observed with complete inhibition of the enzyme complex. Virtual screening, via drug-like ADMET filter, QSAR and molecular docking analyses, has been utilized to identify novel γ–secretase modulators with sulphonamide nucleus. Based on QSAR analyses and docking score, some novel analogs have been synthesized. The results obtained by in silico studies have been validated by performing in vivo analysis. In the first step, behavioral assessment has been carried out using Scopolamine induced amnesia methodology. Later the same series has been evaluated for neuroprotective potential against the oxidative stress induced by Scopolamine. Biochemical estimation was performed to evaluate the changes in biochemical markers of Alzheimer’s disease such as lipid peroxidation (LPO), Glutathione reductase (GSH), and Catalase. The Scopolamine induced amnesia model has shown increased Acetylcholinesterase (AChE) levels and the inhibitory effect of test compounds in the brain AChE levels have been evaluated. In all the studies Donapezil (Dose: 50µg/kg) has been used as reference drug. The reduced AChE activity is shown by compounds 3f, 3c, and 3e. In the later stage, the most potent compounds have been evaluated for Aβ42 inhibitory profile. It can be hypothesized that this series of alkyl-aryl sulphonamides exhibit anti-AD activity by inhibition of Acetylcholinesterase (AChE) enzyme as well as inhibition of plaque formation on prolong dosage along with neuroprotection from oxidative stress.

Keywords: gamma-secretase inhibitors, Alzzheimer's disease, sulphonamides, QSAR

Procedia PDF Downloads 254
5107 Incidence of Dermatophilosis in Cattle in Bauchi State, Nigeria: A Review

Authors: Adamu Garba, Saidu Idi

Abstract:

This study was conducted to determine the prevalence of Dermatophilosis in cattle in Bauchi State and suggest possible control measures. Data were obtained from the State Ministry of Agriculture and Natural Resources, Veterinary Division and monthly reports from Local Government Area Veterinary Offices for a period of three years ranging from 1996-1998. The result revealed that the disease is more prevalent in the rainy season which coincides with preponderance of the predisposing factors. Of the total 17,252 infected cattle in the State, Western zone had the highest cases with 8,298 (50.0%), followed by Central zone with 5,211 (30.0%) and the least was in the Northern zone with 3,753 (20.0%) cases. Rainfall pattern within the zones could be responsible for the variation in the prevalence rate. Analysis of variance revealed that there is no significant difference in the prevalence of Dermatophilosis between the years (P<0.212) while there is significant difference within the zones (P<0.012). Correlation analysis carried out showed that there is positive relationship between rainfall and Dermatophilosis (r<0.909). Since the disease is more prevalent during the rainy season, efforts should be exerted on thorough preventive measures during the period to control the disease in the State, particularly in the Western zone.

Keywords: incidence, dermatophilosis, cattle, Bauchi State

Procedia PDF Downloads 523
5106 Efficacy of Bio-Control Agents against Colletotrichum falcatum Causing Red Rot Disease of Sugarcane

Authors: Geeta Sharma, Suma Chandra

Abstract:

Sugarcane is one of the major commercial crop playing roles in agriculture and industrial economy of India. Globally sugarcane is affected by approximately 240 diseases caused by various plant pathogenic organisms. Among them, red rot disease caused by the fungus Colletotrichum falcatum, is one of the most important diseases. In the present investigation, one fungal bioagent of Trichoderma harzianum, Pant Bioagent 1 and one bacterial bioagent Pseudomonas fluorescence, Pant Bioagent 2 (PBAT 1 and PBAT 2, respectively) were tested by dual culture method against the pathogen under laboratory conditions. The effectiveness of biocontrol agents was observed against four isolates of C. falcatum. In the case of PBAT1 maximum percent inhibition of pathogen was recorded in isolated Cf 0238 (61.05%), followed by Cf 09 (60.62%) whereas, minimum percent inhibition was recorded in Cf 3220 (48.55%) and in case of PBAT2 maximum mycelial growth inhibition percent was recorded in Cf 767 (50.50%) followed by Cf 088230(48.83%), whereas minimum percent inhibition was recorded in Cf 08 (40.16%) followed by Cf 0238 (41.83%). The present study showed that these biocontrol agents have the potential of controlling the pathogen and can further be used for the management of red rot disease in field.

Keywords: biocontrol agents, Colletotrichum falcatum, isolates, sugarcane

Procedia PDF Downloads 317
5105 Seroprevalence and Potential Risk Factors of Bovine Brucellosis under Diverse Production Systems in Central Punjab, Paksitan

Authors: A. Khan, I. Khan, M. Younus, S. E. Haque, U. Waheed, H. Neubauer, A. A. Anjum, S. A. Muhammad, A. Idrees T. Abbas, S. Raza, M. A. Ali, M. Farooq, M. Mahmood, A. Hussain, H. Danish, U. Tayyab, M. Zafar, M. Aslam.

Abstract:

Brucellosis is one of the major problems of milk producing animals in our country which deteriorate the health of livestock. It is a disease of zoonotic significance which is capable of producing disease in humans leading to infertility, orchitis, abortions, and synovitis. In this particular study, milk and serum samples of cattle and buffalo (n=402) were collected from different districts of Punjab including Narowal, Gujranwala and Gujrat. Milk samples were analyzed by Milk Ring Test (MRT), while serum samples were tested through Rose Bengal Plate agglutination Test (RBPT) and Indirect Enzyme Linked Immunosorbant Assay (i-ELISA). The sample tested with MRT were 9.5% positive, including cattle 9.6% and buffalo 9.3%. While using the RBPT test for the detection of serum samples and for screening purpose it was observed that 16.4% animals were seropositive, cattle were 18.8% and buffalo were 13.9% seropositive. The higher prevalence of brucellosis indicates the danger of the disease to human population. The serum samples positive by RBPT were further confirmed by the use of most specific and sensitive serological test known as i-ELISA. 11.4% animals were confirmed as seropositive by i-ELISA including cattle 13.5% seropositive and buffalo 9.3%. The results indicated high seroprevalence of brucellosis in cattle as compared to buffalos. Different risk factors were also studied to know the association between disease and their spread. Advanced age, larger herds, history of abortion and pregnancy of the animals is considered to be the important factors for the prevalence and spread of the hazardous zoonotic disease. It is a core issue of developing countries like Pakistan and has major public health impact.

Keywords: humans, bovines, infertility, orchitis, abortions, seroprevalence, brucellosis

Procedia PDF Downloads 484