Search results for: dimensional accuracy (DA)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5662

Search results for: dimensional accuracy (DA)

4912 Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate

Authors: Abhishek Soni, A. Kumaraswamy, M. S. Mahesh

Abstract:

Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper.

Keywords: AISI 4340 steel, ballistic impact simulation, bullet penetration, non-linear FEM

Procedia PDF Downloads 208
4911 Terrestrial Laser Scans to Assess Aerial LiDAR Data

Authors: J. F. Reinoso-Gordo, F. J. Ariza-López, A. Mozas-Calvache, J. L. García-Balboa, S. Eddargani

Abstract:

The DEMs quality may depend on several factors such as data source, capture method, processing type used to derive them, or the cell size of the DEM. The two most important capture methods to produce regional-sized DEMs are photogrammetry and LiDAR; DEMs covering entire countries have been obtained with these methods. The quality of these DEMs has traditionally been evaluated by the national cartographic agencies through punctual sampling that focused on its vertical component. For this type of evaluation there are standards such as NMAS and ASPRS Positional Accuracy Standards for Digital Geospatial Data. However, it seems more appropriate to carry out this evaluation by means of a method that takes into account the superficial nature of the DEM and, therefore, its sampling is superficial and not punctual. This work is part of the Research Project "Functional Quality of Digital Elevation Models in Engineering" where it is necessary to control the quality of a DEM whose data source is an experimental LiDAR flight with a density of 14 points per square meter to which we call Point Cloud Product (PCpro). In the present work it is described the capture data on the ground and the postprocessing tasks until getting the point cloud that will be used as reference (PCref) to evaluate the PCpro quality. Each PCref consists of a patch 50x50 m size coming from a registration of 4 different scan stations. The area studied was the Spanish region of Navarra that covers an area of 10,391 km2; 30 patches homogeneously distributed were necessary to sample the entire surface. The patches have been captured using a Leica BLK360 terrestrial laser scanner mounted on a pole that reached heights of up to 7 meters; the position of the scanner was inverted so that the characteristic shadow circle does not exist when the scanner is in direct position. To ensure that the accuracy of the PCref is greater than that of the PCpro, the georeferencing of the PCref has been carried out with real-time GNSS, and its accuracy positioning was better than 4 cm; this accuracy is much better than the altimetric mean square error estimated for the PCpro (<15 cm); The kind of DEM of interest is the corresponding to the bare earth, so that it was necessary to apply a filter to eliminate vegetation and auxiliary elements such as poles, tripods, etc. After the postprocessing tasks the PCref is ready to be compared with the PCpro using different techniques: cloud to cloud or after a resampling process DEM to DEM.

Keywords: data quality, DEM, LiDAR, terrestrial laser scanner, accuracy

Procedia PDF Downloads 101
4910 Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity

Authors: Sai Maniveer Adapa, Sai Guptha Perla, Adithya Reddy P.

Abstract:

Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection.

Keywords: thyroid tumor diagnosis, ultrasound images, deep learning, machine learning, convolutional auto-encoder, support vector machine

Procedia PDF Downloads 58
4909 Automatic Reporting System for Transcriptome Indel Identification and Annotation Based on Snapshot of Next-Generation Sequencing Reads Alignment

Authors: Shuo Mu, Guangzhi Jiang, Jinsa Chen

Abstract:

The analysis of Indel for RNA sequencing of clinical samples is easily affected by sequencing experiment errors and software selection. In order to improve the efficiency and accuracy of analysis, we developed an automatic reporting system for Indel recognition and annotation based on image snapshot of transcriptome reads alignment. This system includes sequence local-assembly and realignment, target point snapshot, and image-based recognition processes. We integrated high-confidence Indel dataset from several known databases as a training set to improve the accuracy of image processing and added a bioinformatical processing module to annotate and filter Indel artifacts. Subsequently, the system will automatically generate data, including data quality levels and images results report. Sanger sequencing verification of the reference Indel mutation of cell line NA12878 showed that the process can achieve 83% sensitivity and 96% specificity. Analysis of the collected clinical samples showed that the interpretation accuracy of the process was equivalent to that of manual inspection, and the processing efficiency showed a significant improvement. This work shows the feasibility of accurate Indel analysis of clinical next-generation sequencing (NGS) transcriptome. This result may be useful for RNA study for clinical samples with microsatellite instability in immunotherapy in the future.

Keywords: automatic reporting, indel, next-generation sequencing, NGS, transcriptome

Procedia PDF Downloads 191
4908 Effect of Cantilever Sheet Pile Wall to Adjacent Buildings

Authors: Ahmed A. Mohamed Aly

Abstract:

Ground movements induced from excavations is a major cause of deformation and damage to the adjacent buildings and utilities. With the increasing rate of construction work in urban area, this problem is growing more significant and has become the cause of numerous legal disputes. This problem is investigated numerically in the present study using finite element method. Five-story reinforced concrete building rests on raft foundation is idealized as two dimensional model. The building is considered to be constructed adjacent to excavation affected by an adjacent excavation in medium sand. Excavation is supported using sheet pile wall. Two dimensional plane strain program PLAXIS is used in this study. 15 nodes triangular element is used to idealize soil with Mohr-Coulomb model. Five nodes isoperimetric beam element is used to idealize sheet pile and building. Interface element is used to represent the contact between beam element and soil. Two parameters were studied, the first is the foundation depth and the second is the building distance from the excavation. Nodal displacements and elements straining actions were obtained and studied from the analyzed finite element model results.

Keywords: excavation, relative distance, effective stresses, lateral deformation, relative depth

Procedia PDF Downloads 138
4907 A Case Study of Bee Algorithm for Ready Mixed Concrete Problem

Authors: Wuthichai Wongthatsanekorn, Nuntana Matheekrieangkrai

Abstract:

This research proposes Bee Algorithm (BA) to optimize Ready Mixed Concrete (RMC) truck scheduling problem from single batch plant to multiple construction sites. This problem is considered as an NP-hard constrained combinatorial optimization problem. This paper provides the details of the RMC dispatching process and its related constraints. BA was then developed to minimize total waiting time of RMC trucks while satisfying all constraints. The performance of BA is then evaluated on two benchmark problems (3 and 5construction sites) according to previous researchers. The simulation results of BA are compared in term of efficiency and accuracy with Genetic Algorithm (GA) and all problems show that BA approach outperforms GA in term of efficiency and accuracy to obtain optimal solution. Hence, BA approach could be practically implemented to obtain the best schedule.

Keywords: bee colony optimization, ready mixed concrete problem, ruck scheduling, multiple construction sites

Procedia PDF Downloads 385
4906 A Monopole Intravascular Antenna with Three Parasitic Elements Optimized for Higher Tesla MRI Systems

Authors: Mohammad Mohammadzadeh, Alireza Ghasempour

Abstract:

In this paper, a new design of monopole antenna has been proposed that increases the contrast of intravascular magnetic resonance images through increasing the homogeneity of the intrinsic signal-to-noise ratio (ISNR) distribution around the antenna. The antenna is made of a coaxial cable with three parasitic elements. Lengths and positions of the elements are optimized by the improved genetic algorithm (IGA) for 1.5, 3, 4.7, and 7Tesla MRI systems based on a defined cost function. Simulations were also conducted to verify the performance of the designed antenna. Our simulation results show that each time IGA is executed different values for the parasitic elements are obtained so that the cost functions of those antennas are high. According to the obtained results, IGA can also find the best values for the parasitic elements (regarding cost function) in the next executions. Additionally, two dimensional and one-dimensional maps of ISNR were drawn for the proposed antenna and compared to the previously published monopole antenna with one parasitic element at the frequency of 64MHz inside a saline phantom. Results verified that in spite of ISNR decreasing, there is a considerable improvement in the homogeneity of ISNR distribution of the proposed antenna so that their multiplication increases.

Keywords: intravascular MR antenna, monopole antenna, parasitic elements, signal-to-noise ratio (SNR), genetic algorithm

Procedia PDF Downloads 299
4905 Prediction and Reduction of Cracking Issue in Precision Forging of Engine Valves Using Finite Element Method

Authors: Xi Yang, Bulent Chavdar, Alan Vonseggern, Taylan Altan

Abstract:

Fracture in hot precision forging of engine valves was investigated in this paper. The entire valve forging procedure was described and the possible cause of the fracture was proposed. Finite Element simulation was conducted for the forging process, with commercial Finite Element code DEFORMTM. The effects of material properties, the effect of strain rate and temperature were considered in the FE simulation. Two fracture criteria were discussed and compared, based on the accuracy and reliability of the FE simulation results. The selected criterion predicted the fracture location and shows the trend of damage increasing with good accuracy, which matches the experimental observation. Additional modification of the punch shapes was proposed to further reduce the tendency of fracture in forging. Finite Element comparison shows a great potential of such application in the mass production.

Keywords: hotforging, engine valve, fracture, tooling

Procedia PDF Downloads 280
4904 Discrimination of Bio-Analytes by Using Two-Dimensional Nano Sensor Array

Authors: P. Behera, K. K. Singh, D. K. Saini, M. De

Abstract:

Implementation of 2D materials in the detection of bio analytes is highly advantageous in the field of sensing because of its high surface to volume ratio. We have designed our sensor array with different cationic two-dimensional MoS₂, where surface modification was achieved by cationic thiol ligands with different functionality. Green fluorescent protein (GFP) was chosen as signal transducers for its biocompatibility and anionic nature, which can bind to the cationic MoS₂ surface easily, followed by fluorescence quenching. The addition of bio-analyte to the sensor can decomplex the cationic MoS₂ and GFP conjugates, followed by the regeneration of GFP fluorescence. The fluorescence response pattern belongs to various analytes collected and transformed to linear discriminant analysis (LDA) for classification. At first, 15 different proteins having wide range of molecular weight and isoelectric points were successfully discriminated at 50 nM with detection limit of 1 nM. The sensor system was also executed in biofluids such as serum, where 10 different proteins at 2.5 μM were well separated. After successful discrimination of protein analytes, the sensor array was implemented for bacteria sensing. Six different bacteria were successfully classified at OD = 0.05 with a detection limit corresponding to OD = 0.005. The optimized sensor array was able to classify uropathogens from non-uropathogens in urine medium. Further, the technique was applied for discrimination of bacteria possessing resistance to different types and amounts of drugs. We found out the mechanism of sensing through optical and electrodynamic studies, which indicates the interaction between bacteria with the sensor system was mainly due to electrostatic force of interactions, but the separation of native bacteria from their drug resistant variant was due to Van der Waals forces. There are two ways bacteria can be detected, i.e., through bacterial cells and lysates. The bacterial lysates contain intracellular information and also safe to analysis as it does not contain live cells. Lysates of different drug resistant bacteria were patterned effectively from the native strain. From unknown sample analysis, we found that discrimination of bacterial cells is more sensitive than that of lysates. But the analyst can prefer bacterial lysates over live cells for safer analysis.

Keywords: array-based sensing, drug resistant bacteria, linear discriminant analysis, two-dimensional MoS₂

Procedia PDF Downloads 144
4903 An Ensemble-based Method for Vehicle Color Recognition

Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi

Abstract:

The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.

Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network

Procedia PDF Downloads 85
4902 Accuracy of Small Field of View CBCT in Determining Endodontic Working Length

Authors: N. L. S. Ahmad, Y. L. Thong, P. Nambiar

Abstract:

An in vitro study was carried out to evaluate the feasibility of small field of view (FOV) cone beam computed tomography (CBCT) in determining endodontic working length. The objectives were to determine the accuracy of CBCT in measuring the estimated preoperative working lengths (EPWL), endodontic working lengths (EWL) and file lengths. Access cavities were prepared in 27 molars. For each root canal, the baseline electronic working length was determined using an EAL (Raypex 5). The teeth were then divided into overextended, non-modified and underextended groups and the lengths were adjusted accordingly. Imaging and measurements were made using the respective software of the RVG (Kodak RVG 6100) and CBCT units (Kodak 9000 3D). Root apices were then shaved and the apical constrictions viewed under magnification to measure the control working lengths. The paired t-test showed a statistically significant difference between CBCT EPWL and control length but the difference was too small to be clinically significant. From the Bland Altman analysis, the CBCT method had the widest range of 95% limits of agreement, reflecting its greater potential of error. In measuring file lengths, RVG had a bigger window of 95% limits of agreement compared to CBCT. Conclusions: (1) The clinically insignificant underestimation of the preoperative working length using small FOV CBCT showed that it is acceptable for use in the estimation of preoperative working length. (2) Small FOV CBCT may be used in working length determination but it is not as accurate as the currently practiced method of using the EAL. (3) It is also more accurate than RVG in measuring file lengths.

Keywords: accuracy, CBCT, endodontics, measurement

Procedia PDF Downloads 308
4901 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors

Authors: Ayyaz Hussain, Tariq Sadad

Abstract:

Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.

Keywords: breast cancer, DCNN, KNN, mammography

Procedia PDF Downloads 136
4900 Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation

Authors: Abdolvahab Ehsani Rad, Mohd Shafry Mohd Rahim, Alireza Norouzi

Abstract:

Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result.

Keywords: integral production, level set method, morphological operation, segmentation

Procedia PDF Downloads 317
4899 Reinforcement Learning for Classification of Low-Resolution Satellite Images

Authors: Khadija Bouzaachane, El Mahdi El Guarmah

Abstract:

The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.

Keywords: classification, deep learning, reinforcement learning, satellite imagery

Procedia PDF Downloads 213
4898 Numerical Analysis of Real-Scale Polymer Electrolyte Fuel Cells with Cathode Metal Foam Design

Authors: Jaeseung Lee, Muhammad Faizan Chinannai, Mohamed Hassan Gundu, Hyunchul Ju

Abstract:

In this paper, we numerically investigated the effect of metal foams on a real scale 242.57cm2 (19.1 cm × 12.7 cm) polymer electrolyte membrane fuel cell (PEFCs) using a three-dimensional two-phase PEFC model to substantiate design approach for PEFCs using metal foam as the flow distributor. The simulations were conducted under the practical low humidity hydrogen, and air gases conditions in order to observe the detailed operation result in the PEFCs using the serpentine flow channel in the anode and metal foam design in the cathode. The three-dimensional contours of flow distribution in the channel, current density distribution in the membrane and hydrogen and oxygen concentration distribution are provided. The simulation results revealed that the use of highly porous and permeable metal foam can be beneficial to achieve a more uniform current density distribution and better hydration in the membrane under low inlet humidity conditions. This study offers basic directions to design channel for optimal water management of PEFCs.

Keywords: polymer electrolyte fuel cells, metal foam, real-scale, numerical model

Procedia PDF Downloads 240
4897 Estimation and Restoration of Ill-Posed Parameters for Underwater Motion Blurred Images

Authors: M. Vimal Raj, S. Sakthivel Murugan

Abstract:

Underwater images degrade their quality due to atmospheric conditions. One of the major problems in an underwater image is motion blur caused by the imaging device or the movement of the object. In order to rectify that in post-imaging, parameters of the blurred image are to be estimated. So, the point spread function is estimated by the properties, using the spectrum of the image. To improve the estimation accuracy of the parameters, Optimized Polynomial Lagrange Interpolation (OPLI) method is implemented after the angle and length measurement of motion-blurred images. Initially, the data were collected from real-time environments in Chennai and processed. The proposed OPLI method shows better accuracy than the existing classical Cepstral, Hough, and Radon transform estimation methods for underwater images.

Keywords: image restoration, motion blur, parameter estimation, radon transform, underwater

Procedia PDF Downloads 176
4896 Two Dimensional Finite Element Model to Study Calcium Dynamics in Fibroblast Cell with Excess Buffer Approximation Involving ER Flux and SERCA Pump

Authors: Mansha Kotwani

Abstract:

The specific spatio-temporal calcium concentration patterns are required by the fibroblasts to maintain its structure and functions. Thus, calcium concentration is regulated in cell at different levels in various activities of the cell. The variations in cytosolic calcium concentration largely depend on the buffers present in cytosol and influx of calcium into cytosol from ER through IP3Rs or Raynodine receptors followed by reuptake of calcium into ER through sarcoplasmic/endoplasmic reticulum ATPs (SERCA) pump. In order to understand the mechanisms of wound repair, tissue remodeling and growth performed by fibroblasts, it is of crucial importance to understand the mechanisms of calcium concentration regulation in fibroblasts. In this paper, a model has been developed to study calcium distribution in NRK fibroblast in the presence of buffers and ER flux with SERCA pump. The model has been developed for two dimensional unsteady state case. Appropriate initial and boundary conditions have been framed along with physiology of the cell. Finite element technique has been employed to obtain the solution. The numerical results have been used to study the effect of buffers, ER flux and source amplitude on calcium distribution in fibroblast cell.

Keywords: buffers, IP3R, ER flux, SERCA pump, source amplitude

Procedia PDF Downloads 243
4895 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study

Authors: Ana Serafimovic, Karthik Devarajan

Abstract:

Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.

Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence

Procedia PDF Downloads 246
4894 Three-Dimensional Carbon Foam Based Asymmetric Assembly of Metal Oxides Electrodes for High-Performance Solid-State Micro-Supercapacitor

Authors: Sumana Kumar, Abha Misra

Abstract:

Micro-supercapacitors hold great attention as one of the promising energy storage devices satisfying the increasing quest for miniaturized and portable devices. Despite having impressive power density, superior cyclic lifetime, and high charge-discharge rates, micro-supercapacitors still suffer from low energy density, which limits their practical application. The energy density (E=1/2CV²) can be increased either by increasing specific capacitance (C) or voltage range (V). Asymmetric micro-supercapacitors have attracted great attention by using two different electrode materials to expand the voltage window and thus increase the energy density. Currently, versatile fabrication technologies such as inkjet printing, lithography, laser scribing, etc., are used to directly or indirectly pattern the electrode material; these techniques still suffer from scalable production and cost inefficiency. Here, we demonstrate the scalable production of a three-dimensional (3D) carbon foam (CF) based asymmetric micro-supercapacitor by spray printing technique on an array of interdigital electrodes. The solid-state asymmetric micro-supercapacitor comprised of CF-MnO positive electrode and CF-Fe₂O₃ negative electrode achieves a high areal capacitance of 18.4 mF/cm² (2326.8 mF/cm³) at 5 mV/s and a wider potential window of 1.4 V. Consequently, a superior energy density of 5 µWh/cm² is obtained, and high cyclic stability is confirmed with retention of the initial capacitance by 86.1% after 10000 electrochemical cycles. The optimized decoration of pseudocapacitive metal oxides in the 3D carbon network helps in high electrochemical utilization of materials where the 3D interconnected network of carbon provides overall electrical conductivity and structural integrity. The research provides a simple and scalable spray printing method to fabricate an asymmetric micro-supercapacitor using a custom-made mask that can be integrated on a large scale.

Keywords: asymmetric micro-supercapacitors, high energy-density, hybrid materials, three-dimensional carbon-foam

Procedia PDF Downloads 115
4893 An Investigation of Direct and Indirect Geo-Referencing Techniques on the Accuracy of Points in Photogrammetry

Authors: F. Yildiz, S. Y. Oturanc

Abstract:

Advances technology in the field of photogrammetry replaces analog cameras with reflection on aircraft GPS/IMU system with a digital aerial camera. In this system, when determining the position of the camera with the GPS, camera rotations are also determined by the IMU systems. All around the world, digital aerial cameras have been used for the photogrammetry applications in the last ten years. In this way, in terms of the work done in photogrammetry it is possible to use time effectively, costs to be reduced to a minimum level, the opportunity to make fast and accurate. Geo-referencing techniques that are the cornerstone of the GPS / INS systems, photogrammetric triangulation of images required for balancing (interior and exterior orientation) brings flexibility to the process. Also geo-referencing process; needed in the application of photogrammetry targets to help to reduce the number of ground control points. In this study, the use of direct and indirect geo-referencing techniques on the accuracy of the points was investigated in the production of photogrammetric mapping.

Keywords: photogrammetry, GPS/IMU systems, geo-referecing, digital aerial camera

Procedia PDF Downloads 411
4892 Temperature Distribution for Asphalt Concrete-Concrete Composite Pavement

Authors: Tetsya Sok, Seong Jae Hong, Young Kyu Kim, Seung Woo Lee

Abstract:

The temperature distribution for asphalt concrete (AC)-Concrete composite pavement is one of main influencing factor that affects to performance life of pavement. The temperature gradient in concrete slab underneath the AC layer results the critical curling stress and lead to causes de-bonding of AC-Concrete interface. These stresses, when enhanced by repetitive axial loadings, also contribute to the fatigue damage and eventual crack development within the slab. Moreover, the temperature change within concrete slab extremely causes the slab contracts and expands that significantly induces reflective cracking in AC layer. In this paper, the numerical prediction of pavement temperature was investigated using one-dimensional finite different method (FDM) in fully explicit scheme. The numerical predicted model provides a fundamental and clear understanding of heat energy balance including incoming and outgoing thermal energies in addition to dissipated heat in the system. By using the reliable meteorological data for daily air temperature, solar radiation, wind speech and variable pavement surface properties, the predicted pavement temperature profile was validated with the field measured data. Additionally, the effects of AC thickness and daily air temperature on the temperature profile in underlying concrete were also investigated. Based on obtained results, the numerical predicted temperature of AC-Concrete composite pavement using FDM provided a good accuracy compared to field measured data and thicker AC layer significantly insulates the temperature distribution in underlying concrete slab.

Keywords: asphalt concrete, finite different method (FDM), curling effect, heat transfer, solar radiation

Procedia PDF Downloads 270
4891 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 46
4890 Wideband Performance Analysis of C-FDTD Based Algorithms in the Discretization Impoverishment of a Curved Surface

Authors: Lucas L. L. Fortes, Sandro T. M. Gonçalves

Abstract:

In this work, it is analyzed the wideband performance with the mesh discretization impoverishment of the Conformal Finite Difference Time-Domain (C-FDTD) approaches developed by Raj Mittra, Supriyo Dey and Wenhua Yu for the Finite Difference Time-Domain (FDTD) method. These approaches are a simple and efficient way to optimize the scattering simulation of curved surfaces for Dielectric and Perfect Electric Conducting (PEC) structures in the FDTD method, since curved surfaces require dense meshes to reduce the error introduced due to the surface staircasing. Defined, on this work, as D-FDTD-Diel and D-FDTD-PEC, these approaches are well-known in the literature, but the improvement upon their application is not quantified broadly regarding wide frequency bands and poorly discretized meshes. Both approaches bring improvement of the accuracy of the simulation without requiring dense meshes, also making it possible to explore poorly discretized meshes which bring a reduction in simulation time and the computational expense while retaining a desired accuracy. However, their applications present limitations regarding the mesh impoverishment and the frequency range desired. Therefore, the goal of this work is to explore the approaches regarding both the wideband and mesh impoverishment performance to bring a wider insight over these aspects in FDTD applications. The D-FDTD-Diel approach consists in modifying the electric field update in the cells intersected by the dielectric surface, taking into account the amount of dielectric material within the mesh cells edges. By taking into account the intersections, the D-FDTD-Diel provides accuracy improvement at the cost of computational preprocessing, which is a fair trade-off, since the update modification is quite simple. Likewise, the D-FDTD-PEC approach consists in modifying the magnetic field update, taking into account the PEC curved surface intersections within the mesh cells and, considering a PEC structure in vacuum, the air portion that fills the intersected cells when updating the magnetic fields values. Also likewise to D-FDTD-Diel, the D-FDTD-PEC provides a better accuracy at the cost of computational preprocessing, although with a drawback of having to meet stability criterion requirements. The algorithms are formulated and applied to a PEC and a dielectric spherical scattering surface with meshes presenting different levels of discretization, with Polytetrafluoroethylene (PTFE) as the dielectric, being a very common material in coaxial cables and connectors for radiofrequency (RF) and wideband application. The accuracy of the algorithms is quantified, showing the approaches wideband performance drop along with the mesh impoverishment. The benefits in computational efficiency, simulation time and accuracy are also shown and discussed, according to the frequency range desired, showing that poorly discretized mesh FDTD simulations can be exploited more efficiently, retaining the desired accuracy. The results obtained provided a broader insight over the limitations in the application of the C-FDTD approaches in poorly discretized and wide frequency band simulations for Dielectric and PEC curved surfaces, which are not clearly defined or detailed in the literature and are, therefore, a novelty. These approaches are also expected to be applied in the modeling of curved RF components for wideband and high-speed communication devices in future works.

Keywords: accuracy, computational efficiency, finite difference time-domain, mesh impoverishment

Procedia PDF Downloads 134
4889 Beyond the Beep: Optimizing Flight Controller Performance for Reliable Ultrasonic Sensing

Authors: Raunak Munjal, Mohammad Akif Ali, Prithiv Raj

Abstract:

This study investigates the relative effectiveness of various flight controllers for drone obstacle avoidance. To assess ultrasonic sensors' performance in real-time obstacle detection, they are integrated with ESP32 and Arduino Nano controllers. The study determines which controller is most effective for this particular application by analyzing important parameters such as accuracy (mean absolute error), standard deviation, and mean distance range. Furthermore, the study explores the possibility of incorporating state-driven algorithms into the Arduino Nano configuration to potentially improve obstacle detection performance. The results offer significant perspectives for enhancing sensor integration, choosing the best flight controller for obstacle avoidance, and maybe enhancing drones' general environmental navigation ability.

Keywords: ultrasonic distance measurement, accuracy and consistency, flight controller comparisons, ESP32 vs arduino nano

Procedia PDF Downloads 58
4888 Comparison of the Classification of Cystic Renal Lesions Using the Bosniak Classification System with Contrast Enhanced Ultrasound and Magnetic Resonance Imaging to Computed Tomography: A Prospective Study

Authors: Dechen Tshering Vogel, Johannes T. Heverhagen, Bernard Kiss, Spyridon Arampatzis

Abstract:

In addition to computed tomography (CT), contrast enhanced ultrasound (CEUS), and magnetic resonance imaging (MRI) are being increasingly used for imaging of renal lesions. The aim of this prospective study was to compare the classification of complex cystic renal lesions using the Bosniak classification with CEUS and MRI to CT. Forty-eight patients with 65 cystic renal lesions were included in this study. All participants signed written informed consent. The agreement between the Bosniak classifications of complex renal lesions ( ≥ BII-F) on CEUS and MRI were compared to that of CT and were tested using Cohen’s Kappa. Sensitivity, specificity, positive and negative predictive values (PPV/NPV) and the accuracy of CEUS and MRI compared to CT in the detection of complex renal lesions were calculated. Twenty-nine (45%) out of 65 cystic renal lesions were classified as complex using CT. The agreement between CEUS and CT in the classification of complex cysts was fair (agreement 50.8%, Kappa 0.31), and was excellent between MRI and CT (agreement 93.9%, Kappa 0.88). Compared to CT, MRI had a sensitivity of 96.6%, specificity of 91.7%, a PPV of 54.7%, and an NPV of 54.7% with an accuracy of 63.1%. The corresponding values for CEUS were sensitivity 100.0%, specificity 33.3%, PPV 90.3%, and NPV 97.1% with an accuracy 93.8%. The classification of complex renal cysts based on MRI and CT scans correlated well, and MRI can be used instead of CT for this purpose. CEUS can exclude complex lesions, but due to higher sensitivity, cystic lesions tend to be upgraded. However, it is useful for initial imaging, for follow up of lesions and in those patients with contraindications to CT and MRI.

Keywords: Bosniak classification, computed tomography, contrast enhanced ultrasound, cystic renal lesions, magnetic resonance imaging

Procedia PDF Downloads 144
4887 Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study

Authors: Abdelrahman Taha, Niloofar Malekghaini, Hamed Ebrahimian, Ramin Motamed

Abstract:

This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response.

Keywords: direct approach, impedance function, soil-structure interaction, substructure approach

Procedia PDF Downloads 118
4886 Sensor Monitoring of the Concentrations of Different Gases Present in Synthesis of Ammonia Based on Multi-Scale Entropy and Multivariate Statistics

Authors: S. Aouabdi, M. Taibi

Abstract:

The supervision of chemical processes is the subject of increased development because of the increasing demands on reliability and safety. An important aspect of the safe operation of chemical process is the earlier detection of (process faults or other special events) and the location and removal of the factors causing such events, than is possible by conventional limit and trend checks. With the aid of process models, estimation and decision methods it is possible to also monitor hundreds of variables in a single operating unit, and these variables may be recorded hundreds or thousands of times per day. In the absence of appropriate processing method, only limited information can be extracted from these data. Hence, a tool is required that can project the high-dimensional process space into a low-dimensional space amenable to direct visualization, and that can also identify key variables and important features of the data. Our contribution based on powerful techniques for development of a new monitoring method based on multi-scale entropy MSE in order to characterize the behaviour of the concentrations of different gases present in synthesis and soft sensor based on PCA is applied to estimate these variables.

Keywords: ammonia synthesis, concentrations of different gases, soft sensor, multi-scale entropy, multivarite statistics

Procedia PDF Downloads 336
4885 Cost-Effective, Accuracy Preserving Scalar Characterization for mmWave Transceivers

Authors: Mohammad Salah Abdullatif, Salam Hajjar, Paul Khanna

Abstract:

The development of instrument grade mmWave transceivers comes with many challenges. A general rule of thumb is that the performance of the instrument must be higher than the performance of the unit under test in terms of accuracy and stability. The calibration and characterizing of mmWave transceivers are important pillars for testing commercial products. Using a Vector Network Analyzer (VNA) with a mixer option has proven a high performance as an approach to calibrate mmWave transceivers. However, this approach comes with a high cost. In this work, a reduced-cost method to calibrate mmWave transceivers is proposed. A comparison between the proposed method and the VNA technology is provided. A demonstration of significant challenges is discussed, and an approach to meet the requirements is proposed.

Keywords: mmWave transceiver, scalar characterization, coupler connection, magic tee connection, calibration, VNA, vector network analyzer

Procedia PDF Downloads 107
4884 Numerical Investigation of the Effect of Sidewalls on Low-Speed Finite Width Cavity Flows

Authors: Foo Kok, Varun Thangamani

Abstract:

Rectangular cavities with a full-span or finite-width configuration have been the basis of much previous research on cavity flows. However, much less attention has been given to the influence of sidewalls, in particular, on low-speed cavity flows. In this study, the flow characteristics of two separate low-speed finite-width cavities with a Reynolds number of 𝑅𝑒𝐷 = 10⁴ are examined using large eddy simulations. Two different lateral boundary conditions are used to investigate the influence of sidewalls on the self-sustaining oscillations and the three-dimensional flow fields inside the cavities. The results show that the full-span finite width cavities are less sensitive to the sidewall effect at a low length-to-width ratio 𝐿/𝐷. The increase in 𝐿/𝐷 leads to a departure from two-dimensional instability and results in the loss of spanwise homogeneity. The analysis of the spanwise flow structures shows that these effects correspond closely to the declination of the centrifugal force from the primary recirculation zone. Such effects are also reflected in the distinct modulation of the secondary vortices in the primary recirculation zone, which suggests that the instabilities observed in the full-span finite-width cavity flows are predominantly dependent on the secondary motion from the primary recirculation zone.

Keywords: LES, cavity flows, unsteady shear layer, instability modes, secondary flow

Procedia PDF Downloads 65
4883 Numerical Study of Trailing Edge Serrations on a Wells Turbine

Authors: Abdullah S. AlKhalifa, Mohammad Nasim Uddin, Michael Atkinson

Abstract:

The primary objective of this investigation is to explore the aerodynamic impact of adding trailing edge serrations to a Wells turbine. The baseline turbine consists of eight blades with NACA 0015 airfoils. The blade chord length was 0.125 m, and the span was 0.100 m. Two modified NACA 0015 serrated configurations were studied: 1) full-span and 2) partial span serrations covering the trailing edge from hub to tip. Numerical simulations were carried out by solving the three-dimensional, incompressible steady-state Reynolds Averaged Navier-Stokes (RANS) equations using the k-ω SST turbulence model in ANSYS™ (CFX). The aerodynamic performance of the modified Wells turbine to the baseline was made by comparing non-dimensional parameters of torque coefficient, pressure drop coefficient, and turbine efficiency. A comparison of the surface limiting streamlines was performed to analyze the flow topology of the turbine blades. The trailing edge serrations generated a substantial change in surface pressure and effectively reduced the separated flow region, thus improving efficiency in most cases. As a result, the average efficiency increased across the range of simulated flow coefficients.

Keywords: renewable energy, trailing edge serrations, Wells turbine, partial serration

Procedia PDF Downloads 101