Search results for: arbitrary signal generator
1582 Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections
Authors: Arpita Saha, Apoorv Jain, Satish Chandra, Indrajit Ghosh
Abstract:
Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle.Keywords: delay, saturation flow, signalised intersection, vehicle composition
Procedia PDF Downloads 4691581 Virtualization of Biomass Colonization: Potential of Application in Precision Medicine
Authors: Maria Valeria De Bonis, Gianpaolo Ruocco
Abstract:
Nowadays, computational modeling is paving new design and verification ways in a number of industrial sectors. The technology is ripe to challenge some case in the Bioengineering and Medicine frameworks: for example, looking at the strategical and ethical importance of oncology research, efforts should be made to yield new and powerful resources to tumor knowledge and understanding. With these driving motivations, we approach this gigantic problem by using some standard engineering tools such as the mathematics behind the biomass transfer. We present here some bacterial colonization studies in complex structures. As strong analogies hold with some tumor proliferation, we extend our study to a benchmark case of solid tumor. By means of a commercial software, we model biomass and energy evolution in arbitrary media. The approach will be useful to cast virtualization cases of cancer growth in human organs, while augmented reality tools will be used to yield for a realistic aid to informed decision in treatment and surgery.Keywords: bacteria, simulation, tumor, precision medicine
Procedia PDF Downloads 3381580 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos
Abstract:
A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.Keywords: layered structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element
Procedia PDF Downloads 1691579 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement
Authors: Pogula Rakesh, T. Kishore Kumar
Abstract:
Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids, and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB, and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR), and SNR loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.Keywords: adaptive filter, adaptive noise canceller, mean squared error, noise reduction, NLMS, RLS, SNR, SNR loss
Procedia PDF Downloads 4861578 The Non-Linear Analysis of Brain Response to Visual Stimuli
Authors: H. Namazi, H. T. N. Kuan
Abstract:
Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to visual stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to visual stimuli but provide us with very good recommendations for clinical purposes.Keywords: visual stimuli, brain response, EEG signal, fractal dimension, hurst exponent, Jeffrey’s measure
Procedia PDF Downloads 5651577 Experimental Study on Temperature Splitting of a Counter-Flow Ranque-Hilsch Vortex Tube
Authors: Hany. A. Mohamed, M. Attalla, M. Salem, Hussein M. Mghrabie, E. Specht
Abstract:
An experiment al investigation is made to determine the effects of the nozzle dimensions and the inlet pressure on the heating and cooling performance of the counter flow Ranque–Hilsch vortex tube when air used as a working fluid. The all results were taking under inlet pressures were adjusted from 200 kPa to 600 kPa with 100 kPa increments. The conventional tangential generator with number of nuzzle of 6 was used and inner diameter of 7.5 mm. During the experiments, a vortex tube is used with an L/D ratio varied from 10 to 30. Finally, it is observed that the effect of the nuzzle aspect ratio on the energy separation changes according to the value of L/D.Keywords: Ranque-Hilsch, vortex tube, aspect ratio, energy separation
Procedia PDF Downloads 5281576 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 1751575 Cooperative Diversity Scheme Based on MIMO-OFDM in Small Cell Network
Authors: Dong-Hyun Ha, Young-Min Ko, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
In Heterogeneous network (HetNet) can provide high quality of a service in a wireless communication system by composition of small cell networks. The composition of small cell networks improves cell coverage and capacity to the mobile users.Recently, various techniques using small cell networks have been researched in the wireless communication system. In this paper, the cooperative scheme obtaining high reliability is proposed in the small cell networks. The proposed scheme suggests a cooperative small cell system and the new signal transmission technique in the proposed system model. The new signal transmission technique applies a cyclic delay diversity (CDD) scheme based on the multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system to obtain improved performance. The improved performance of the proposed scheme is confirmed by the simulation results.Keywords: adaptive transmission, cooperative communication, diversity gain, OFDM
Procedia PDF Downloads 5091574 Electrotechnology for Silicon Refining: Plasma Generator and Arc Furnace Installations and Theoretical Base
Authors: Ashot Navasardian, Mariam Vardanian, Vladik Vardanian
Abstract:
The photovoltaic and the semiconductor industries are in growth and it is necessary to supply a large amount of silicon to maintain this growth. Since silicon is still the best material for the manufacturing of solar cells and semiconductor components so the pure silicon like solar grade and semiconductor grade materials are demanded. There are two main routes for silicon production: metallurgical and chemical. In this article, we reviewed the electrotecnological installations and systems for semiconductor manufacturing. The main task is to design the installation which can produce SOG Silicon from river sand by one work unit.Keywords: metallurgical grade silicon, solar grade silicon, impurity, refining, plasma
Procedia PDF Downloads 4981573 New Concept for Real Time Selective Harmonics Elimination Based on Lagrange Interpolation Polynomials
Authors: B. Makhlouf, O. Bouchhida, M. Nibouche, K. Laidi
Abstract:
A variety of methods for selective harmonics elimination pulse width modulation have been developed, the most frequently used for real-time implementation based on look-up tables method. To address real-time requirements based in modified carrier signal is proposed in the presented work, with a general formulation to real-time harmonics control/elimination in switched inverters. Firstly, the proposed method has been demonstrated for a single value of the modulation index. However, in reality, this parameter is variable as a consequence of the voltage (amplitude) variability. In this context, a simple interpolation method for calculating the modified sine carrier signal is proposed. The method allows a continuous adjustment in both amplitude and frequency of the fundamental. To assess the performance of the proposed method, software simulations and hardware experiments have been carried out in the case of a single-phase inverter. Obtained results are very satisfactory.Keywords: harmonic elimination, Particle Swarm Optimisation (PSO), polynomial interpolation, pulse width modulation, real-time harmonics control, voltage inverter
Procedia PDF Downloads 5061572 Electrochemiluminescent Detection of DNA Damage Induced by Tetrachloro-1,4- Benzoquinone Using DNA Sensor
Authors: Tian-Fang Kang, Xue Sun
Abstract:
DNA damage induced by tetrachloro-1,4-benzoquinone (TCBQ), a reactive metabolite of pentachloro-phenol (PCP), was investigated using a glassy carbon electrode (GCE) modified with calf thymus double-stranded DNA (ds-DNA) in this work. DNA modified films were constructed by layer-by-layer adsorption of polycationic poly(diallyldimethyl- ammonium chloride) (PDDA) and negatively charged ds-DNA on the surface of a glassy carbon electrode. The DNA intercalator [Ru(bpy)2(dppz)]2+ (bpy=2, 2′-bipyridine, dppz0dipyrido [3, 2-a: 2′,3′-c] phenazine) was chosen as an electrochemical probe to detect DNA damage. After the sensor was incubated in 0.1 M pH 7.3 phosphate buffer solution (PBS) for 30min, the intact PDDA/DNA film produced a sensitive electrochemiluminescent (ECL) signal. However, after the sensor was incubated in 100 μM TCBQ or a mixed solution of 100 μM TCBQ and 2 mM H2O2, ECL signal decreased significantly. During the incubation of DNA in TCBQ or TCBQ-H2O2 solution, the double-helix of DNA was damaged, which resulted in the decrease of Ru-dppz bound to DNA. Additionally, the results were verified independently by fluorescence experiments. This paper provides a sensitive method to directly screen DNA damage induced by chemicals in the environment.Keywords: DNA damage, detection, electrochemiluminescence, sensor
Procedia PDF Downloads 4111571 Changing Arbitrary Data Transmission Period by Using Bluetooth Module on Gas Sensor Node of Arduino Board
Authors: Hiesik Kim, Yong-Beom Kim, Jaheon Gu
Abstract:
Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to rate up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group (SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with a different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as open source hardware, gas sensor, and Bluetooth module and algorithm controlling transmission rate is demonstrated. Experiment controlling transmission rate also is progressed by developing Android application receiving measured data, and controlling this rate is available at the experiment result. It is important that in the future, improvement for communication algorithm be needed because a few error occurs when data is transferred or received.Keywords: Arduino, Bluetooth, gas sensor, IoT, transmission
Procedia PDF Downloads 2811570 The Analysis of Brain Response to Auditory Stimuli through EEG Signals’ Non-Linear Analysis
Authors: H. Namazi, H. T. N. Kuan
Abstract:
Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to auditory stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to auditory stimuli but provide us with very good recommendations for clinical purposes.Keywords: auditory stimuli, brain response, EEG signal, fractal dimension, hurst exponent, Jeffrey’s measure
Procedia PDF Downloads 5361569 Bi-Axial Stress Effects on Barkhausen-Noise
Authors: G. Balogh, I. A. Szabó, P.Z. Kovács
Abstract:
Mechanical stress has a strong effect on the magnitude of the Barkhausen-noise in structural steels. Because the measurements are performed at the surface of the material, for a sample sheet, the full effect can be described by a biaxial stress field. The measured Barkhausen-noise is dependent on the orientation of the exciting magnetic field relative to the axis of the stress tensor. The sample inhomogenities including the residual stress also modifies the angular dependence of the measured Barkhausen-noise. We have developed a laboratory device with a cross like specimen for bi-axial bending. The measuring head allowed performing excitations in two orthogonal directions. We could excite the two directions independently or simultaneously with different amplitudes. The simultaneous excitation of the two coils could be performed in phase or with a 90 degree phase shift. In principle this allows to measure the Barkhausen-noise at an arbitrary direction without moving the head, or to measure the Barkhausen-noise induced by a rotating magnetic field if a linear superposition of the two fields can be assumed.Keywords: Barkhausen-noise, bi-axial stress, stress measuring, stress dependency
Procedia PDF Downloads 2991568 A Study of Using Different Printed Circuit Board Design Methods on Ethernet Signals
Authors: Bahattin Kanal, Nursel Akçam
Abstract:
Data transmission size and frequency requirements are increasing rapidly in electronic communication protocols. Increasing data transmission speeds have made the design of printed circuit boards much more important. It is important to carefully examine the requirements and make analyses before and after the design of the digital electronic circuit board. It delves into impedance matching techniques, signal trace routing considerations, and the impact of layer stacking on signal performance. The paper extensively explores techniques for minimizing crosstalk issues and interference, presenting a holistic perspective on design strategies to optimize the quality of high-speed signals. Through a comprehensive review of these design methodologies, this study aims to provide insights into achieving reliable and high-performance printed circuit board layouts for these signals. In this study, the effect of different design methods on Ethernet signals was examined from the type of S parameters. Siemens company HyperLynx software tool was used for the analyses.Keywords: HyperLynx, printed circuit board, s parameters, ethernet
Procedia PDF Downloads 411567 Coordination of Traffic Signals on Arterial Streets in Duhok City
Authors: Dilshad Ali Mohammed, Ziyad Nayef Shamsulddin Aldoski, Millet Salim Mohammed
Abstract:
The increase in levels of traffic congestion along urban signalized arterials needs efficient traffic management. The application of traffic signal coordination can improve the traffic operation and safety for a series of signalized intersection along the arterials. The objective of this study is to evaluate the benefits achievable through actuated traffic signal coordination and make a comparison in control delay against the same signalized intersection in case of being isolated. To accomplish this purpose, a series of eight signalized intersections located on two major arterials in Duhok City was chosen for conducting the study. Traffic data (traffic volumes, link and approach speeds, and passenger car equivalent) were collected at peak hours. Various methods had been used for collecting data such as video recording technique, moving vehicle method and manual methods. Geometric and signalization data were also collected for the purpose of the study. The coupling index had been calculated to check the coordination attainability, and then time space diagrams were constructed representing one-way coordination for the intersections on Barzani and Zakho Streets, and others represented two-way coordination for the intersections on Zakho Street with accepted progression bandwidth efficiency. The results of this study show great progression bandwidth of 54 seconds for east direction coordination and 17 seconds for west direction coordination on Barzani Street under suggested controlled speed of 60 kph agreeable with the present data. For Zakho Street, the progression bandwidth is 19 seconds for east direction coordination and 18 seconds for west direction coordination under suggested controlled speed of 40 kph. The results show that traffic signal coordination had led to high reduction in intersection control delays on both arterials.Keywords: bandwidth, congestion, coordination, traffic, signals, streets
Procedia PDF Downloads 3121566 Electric Power Generation by Thermoelectric Cells and Parabolic Solar Concentrators
Authors: A. Kianifar, M. Afzali, I. Pishbin
Abstract:
In this paper, design details, theoretical analysis and thermal performance analysis of a solar energy concentrator suited to combined heat and thermoelectric power generation are presented. The thermoelectric device is attached to the absorber plate to convert concentrated solar energy directly into electric energy at the focus of the concentrator. A cooling channel (water cooled heat sink) is fitted to the cold side of the thermoelectric device to remove the waste heat and maintain a high temperature gradient across the device to improve conversion efficiency.Keywords: concentrator thermoelectric generator, CTEG, solar energy, thermoelectric cells
Procedia PDF Downloads 3091565 The Effect of Ambient Temperature on the Performance of the Simple and Modified Cycle Gas Turbine Plants
Authors: Ogbe E. E., Ossia. C. V., Saturday. E. G., Ezekwe M. C.
Abstract:
The disparity in power output between a simple and a modified gas turbine plant is noticeable when the gas turbine functions under local environmental conditions that deviate from the standard ISO specifications. Extensive research and literature have demonstrated a well-known direct correlation between ambient temperature and the power output of a gas turbine plant. In this study, the Omotosho gas turbine plant was modified into three different configurations. The reason for the modification is to improve its performance and reduce the fuel consumption and emission rate. Aspen Hysys software was used to simulate both the simple (Omotosho) and the three modified gas turbine plants. The input parameters considered include ambient temperature, air mass flow rate, fuel mass flow rate, water mass flow rate, turbine inlet temperature, compressor efficiency, and turbine efficiency, while the output parameters considered are thermal efficiency, specific fuel consumption, heat rate, emission rate, compressor power, turbine power and power output. The three modified gas turbine power plants incorporate an inlet air cooling system and a heat recovery steam generator. The variations between the modifications are due to additional components or enhancements alongside the inlet air cooling system and heat recovery steam generator incorporated; the first modification has an additional turbine, the second modification has an additional combustion chamber, and the third modification has an additional turbine and combustion chamber. This paper clearly shows ambient temperature effects on both the simple and three modified gas turbine plants. for every 10-degree kelvin increase in ambient temperature, there is an approximate reduction of 3977 kW, 4795 kW, 4681 kW, and 4793 kW of the power output for the simple gas turbine, first, second, and third modifications, respectively. Also, for every 10-degree kelvin increase in temperature, there is a thermal efficiency decrease of 1.22%, 1.45%, 1.43%, and 1.44% for the simple gas turbine, first, second, and third modifications respectively. Low ambient temperature will help save fuel; looking at the high price of fuel presently in Nigeria for every 10 degrees kelvin increase in temperature, there is a specific fuel consumption increase of 0.0074 kg/kWh, 0.0051 kg/kWh, 0.0061 kg/kWh, and 0.0057 kg/kWh for the simple gas turbine, first, second, and third modifications respectively. These findings will aid in accurately evaluating local power generating plants, particularly in hotter regions, for installing gas turbine inlet air cooling (GTIAC) systems.Keywords: Aspen HYSYS software, Brayton Cycle, modified gas turbine, power plant, simple gas turbine, thermal efficiency.
Procedia PDF Downloads 391564 Beam Methods Applications to the Design of Curved Pulsed Beams
Authors: Timor Melamed
Abstract:
In this study, it consider two methods for synthesizing a pulsed curved beam along a generic beam-axis trajectory. In the first approach, the evaluate the space-time aperture field distribution that radiates the beam along a predefined trajectory by constructing a time-dependent caustic surface around the beam-axis skeleton. it derive the aperture field delay to form a caustic of rays along the beam axis and extend this method to other points over the aperture. In the second approach, the harness the proven capabilities of beam methods to address the challenge of designing curved intensity profiles in three-dimensional free space. By leveraging advanced beam propagation techniques, we create and manipulate complex intensity patterns along arbitrary curved trajectories, offering new possibilities for precision control in various wave-based applications. Numerical examples are presented to demonstrate the robust capabilities of both methods.Keywords: pulsed Airy beams, pulsed beams, pulsed curved beams, transient fields
Procedia PDF Downloads 301563 Design of Labview Based DAQ System
Authors: Omar A. A. Shaebi, Matouk M. Elamari, Salaheddin Allid
Abstract:
The Information Computing System of Monitoring (ICSM) for the Research Reactor of Tajoura Nuclear Research Centre (TNRC) stopped working since early 1991. According to the regulations, the computer is necessary to operate the reactor up to its maximum power (10 MW). The fund is secured via IAEA to develop a modern computer based data acquisition system to replace the old computer. This paper presents the development of the Labview based data acquisition system to allow automated measurements using National Instruments Hardware and its labview software. The developed system consists of SCXI 1001 chassis, the chassis house four SCXI 1100 modules each can maintain 32 variables. The chassis is interfaced with the PC using NI PCI-6023 DAQ Card. Labview, developed by National Instruments, is used to run and operate the DAQ System. Labview is graphical programming environment suited for high level design. It allows integrating different signal processing components or subsystems within a graphical framework. The results showed system capabilities in monitoring variables, acquiring and saving data. Plus the capability of the labview to control the DAQ.Keywords: data acquisition, labview, signal conditioning, national instruments
Procedia PDF Downloads 4971562 Impact of Geomagnetic Storm on Ionosphere
Authors: Affan Ahmed
Abstract:
This research investigates the impact of the geomagnetic storm occurring from April 22 to April 26, 2023, on the Earth’s ionosphere, with a focus on analyzing specific ionospheric parameters to understand the storm's effects on ionospheric stability and GNSS signal propagation. Geomagnetic storms, caused by intensified solar wind-magnetosphere interactions, can significantly disturb ionospheric conditions, impacting electron density, Total Electron Content (TEC), and thermospheric composition. Such disturbances are particularly relevant to satellite-based navigation and communication systems, as fluctuations in ionospheric parameters can degrade signal integrity and reliability. In this study, data were obtained from multiple sources, including OMNIWeb for parameters like Dst, Kp, Bz, Electric Field, and solar wind pressure, GUVI for O/N₂ ratio maps, and TEC data from low-, mid-, and high-latitude stations available on the IONOLAB website. Additional Equatorial Electrojet (EEJ) and geomagnetic data were acquired from INTERMAGNET. The methodology involved comparing storm-affected data from April 22 to April 26 with quiet days in April 2023, using statistical and wavelet analysis to assess variations in parameters like TEC, O/N₂ ratio, and geomagnetic indices. The results show pronounced fluctuations in TEC and other ionospheric parameters during the main phase of the storm, with spatial variations observed across latitudes, highlighting the global response of the ionosphere to geomagnetic disturbances. The findings underline the storm’s significant impact on ionospheric composition, particularly in mid- and high-latitude regions, which correlates with increased GNSS signal interference in these areas. This study contributes to understanding the ionosphere’s response to geomagnetic activity, emphasizing the need for robust models to predict and mitigate space weather effects on GNSS-dependent technologies.Keywords: geomagnetic storms, ionospheric disturbances, space weather effects, magnetosphere-ionosphere coupling
Procedia PDF Downloads 151561 Stability Analysis and Controller Design of Further Development of Miniaturized Mössbauer Spectrometer II for Space Applications with Focus on the Extended Lyapunov Method – Part I –
Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz
Abstract:
In the context of planetary exploration, the MIMOS II (miniaturized Mössbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the Mössbauer spectroscopy is newly developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, a new method for the stability consideration of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.Keywords: Mössbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, trans-impedance amplifier, extended Lyapunov method
Procedia PDF Downloads 1041560 Brain Computer Interface Implementation for Affective Computing Sensing: Classifiers Comparison
Authors: Ramón Aparicio-García, Gustavo Juárez Gracia, Jesús Álvarez Cedillo
Abstract:
A research line of the computer science that involve the study of the Human-Computer Interaction (HCI), which search to recognize and interpret the user intent by the storage and the subsequent analysis of the electrical signals of the brain, for using them in the control of electronic devices. On the other hand, the affective computing research applies the human emotions in the HCI process helping to reduce the user frustration. This paper shows the results obtained during the hardware and software development of a Brain Computer Interface (BCI) capable of recognizing the human emotions through the association of the brain electrical activity patterns. The hardware involves the sensing stage and analogical-digital conversion. The interface software involves algorithms for pre-processing of the signal in time and frequency analysis and the classification of patterns associated with the electrical brain activity. The methods used for the analysis and classification of the signal have been tested separately, by using a database that is accessible to the public, besides to a comparison among classifiers in order to know the best performing.Keywords: affective computing, interface, brain, intelligent interaction
Procedia PDF Downloads 3941559 Predictive Maintenance of Electrical Induction Motors Using Machine Learning
Authors: Muhammad Bilal, Adil Ahmed
Abstract:
This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures
Procedia PDF Downloads 1221558 Development of an NIR Sorting Machine, an Experimental Study in Detecting Internal Disorder and Quality of Apple Fruitpple Fruit
Authors: Eid Alharbi, Yaser Miaji
Abstract:
The quality level for fresh fruits is very important for the fruit industries. In presents study, an automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.Keywords: mechatronics, NIR, fruit quality, spectroscopic technology, mechatronic design
Procedia PDF Downloads 3951557 A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation
Authors: S. J. Arif
Abstract:
In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation.Keywords: digital encoder for frequency measurement, frequency deviation measurement, measurement and control systems, power systems
Procedia PDF Downloads 3801556 Influence of Geomagnetic Storms on Ionospheric Parameters
Authors: Affan Ahmed
Abstract:
This research investigates the Influence of geomagnetic storm occurring from April 22 to April 26, 2023, on the Earth’s ionosphere, with a focus on analyzing specific ionospheric parameters to understand the storm's effects on ionospheric stability and GNSS signal propagation. Geomagnetic storms, caused by intensified solar wind-magnetosphere interactions, can significantly disturb ionospheric conditions, impacting electron density, Total Electron Content (TEC), and thermospheric composition. Such disturbances are particularly relevant to satellite-based navigation and communication systems, as fluctuations in ionospheric parameters can degrade signal integrity and reliability. In this study, data were obtained from multiple sources, including OMNIWeb for parameters like Dst, Kp, Bz, Electric Field, and solar wind pressure, GUVI for O/N₂ ratio maps, and TEC data from low-, mid-, and high-latitude stations available on the IONOLAB website. Additional Equatorial Electrojet (EEJ) and geomagnetic data were acquired from INTERMAGNET. The methodology involved comparing storm-affected data from April 22 to April 26 with quiet days in April 2023, using statistical and wavelet analysis to assess variations in parameters like TEC, O/N₂ ratio, and geomagnetic indices. The results show pronounced fluctuations in TEC and other ionospheric parameters during the main phase of the storm, with spatial variations observed across latitudes, highlighting the global response of the ionosphere to geomagnetic disturbances. The findings underline the storm’s significant impact on ionospheric composition, particularly in mid- and high-latitude regions, which correlates with increased GNSS signal interference in these areas. This study contributes to understanding the ionosphere’s response to geomagnetic activity, emphasizing the need for robust models to predict and mitigate space weather effects on GNSS-dependent technologies.Keywords: geomagnetic storms, ionospheric disturbances, space weather effects, magnetosphere-ionopheric coupling
Procedia PDF Downloads 161555 Computational Characterization of Electronic Charge Transfer in Interfacial Phospholipid-Water Layers
Authors: Samira Baghbanbari, A. B. P. Lever, Payam S. Shabestari, Donald Weaver
Abstract:
Existing signal transmission models, although undoubtedly useful, have proven insufficient to explain the full complexity of information transfer within the central nervous system. The development of transformative models will necessitate a more comprehensive understanding of neuronal lipid membrane electrophysiology. Pursuant to this goal, the role of highly organized interfacial phospholipid-water layers emerges as a promising case study. A series of phospholipids in neural-glial gap junction interfaces as well as cholesterol molecules have been computationally modelled using high-performance density functional theory (DFT) calculations. Subsequent 'charge decomposition analysis' calculations have revealed a net transfer of charge from phospholipid orbitals through the organized interfacial water layer before ultimately finding its way to cholesterol acceptor molecules. The specific pathway of charge transfer from phospholipid via water layers towards cholesterol has been mapped in detail. Cholesterol is an essential membrane component that is overrepresented in neuronal membranes as compared to other mammalian cells; given this relative abundance, its apparent role as an electronic acceptor may prove to be a relevant factor in further signal transmission studies of the central nervous system. The timescales over which this electronic charge transfer occurs have also been evaluated by utilizing a system design that systematically increases the number of water molecules separating lipids and cholesterol. Memory loss through hydrogen-bonded networks in water can occur at femtosecond timescales, whereas existing action potential-based models are limited to micro or nanosecond scales. As such, the development of future models that attempt to explain faster timescale signal transmission in the central nervous system may benefit from our work, which provides additional information regarding fast timescale energy transfer mechanisms occurring through interfacial water. The study possesses a dataset that includes six distinct phospholipids and a collection of cholesterol. Ten optimized geometric characteristics (features) were employed to conduct binary classification through an artificial neural network (ANN), differentiating cholesterol from the various phospholipids. This stems from our understanding that all lipids within the first group function as electronic charge donors, while cholesterol serves as an electronic charge acceptor.Keywords: charge transfer, signal transmission, phospholipids, water layers, ANN
Procedia PDF Downloads 811554 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices
Authors: S. Srinivasan, E. Cretu
Abstract:
The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape
Procedia PDF Downloads 1421553 Economic Evaluation of Degradation by Corrosion of an On-Grid Battery Energy Storage System: A Case Study in Algeria Territory
Authors: Fouzia Brihmat
Abstract:
Economic planning models, which are used to build microgrids and distributed energy resources, are the current norm for expressing such confidence (DER). These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation. The trade-off is that the model is more accurate, but it took longer to compute. As a consequence, the model is more precise, but the computation takes longer. We initially utilized the Optimizer to run the model without MultiYear in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower COE of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated. The technological optimization of the same system has been finished and is being reviewed in a recent paper study.Keywords: battery, corrosion, diesel, economic planning optimization, hybrid energy system, lead-acid battery, multi-year planning, microgrid, price forecast, PV, total net present cost
Procedia PDF Downloads 91