Search results for: Tobit regression model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18777

Search results for: Tobit regression model

18027 Modelling and Maping Malnutrition Toddlers in Bojonegoro Regency with Mixed Geographically Weighted Regression Approach

Authors: Elvira Mustikawati P.H., Iis Dewi Ratih, Dita Amelia

Abstract:

Bojonegoro has proclaimed a policy of zero malnutrition. Therefore, as an effort to solve the cases of malnutrition children in Bojonegoro, this study used the approach geographically Mixed Weighted Regression (MGWR) to determine the factors that influence the percentage of malnourished children under five in which factors can be divided into locally influential factor in each district and global factors that influence throughout the district. Based on the test of goodness of fit models, R2 and AIC values in GWR models are better than MGWR models. R2 and AIC values in MGWR models are 84.37% and 14.28, while the GWR models respectively are 91.04% and -62.04. Based on the analysis with GWR models, District Sekar, Bubulan, Gondang, and Dander is a district with three predictor variables (percentage of vitamin A, the percentage of births assisted health personnel, and the percentage of clean water) that significantly influence the percentage of malnourished children under five.

Keywords: GWR, MGWR, R2, AIC

Procedia PDF Downloads 296
18026 Towards Efficient Reasoning about Families of Class Diagrams Using Union Models

Authors: Tejush Badal, Sanaa Alwidian

Abstract:

Class diagrams are useful tools within the Unified Modelling Language (UML) to model and visualize the relationships between, and properties of objects within a system. As a system evolves over time and space (e.g., products), a series of models with several commonalities and variabilities create what is known as a model family. In circumstances where there are several versions of a model, examining each model individually, becomes expensive in terms of computation resources. To avoid performing redundant operations, this paper proposes an approach for representing a family of class diagrams into Union Models to represent model families using a single generic model. The paper aims to analyze and reason about a family of class diagrams using union models as opposed to individual analysis of each member model in the family. The union algorithm provides a holistic view of the model family, where the latter cannot be otherwise obtained from an individual analysis approach, this in turn, enhances the analysis performed in terms of speeding up the time needed to analyze a family of models together as opposed to analyzing individual models, one model at a time.

Keywords: analysis, class diagram, model family, unified modeling language, union model

Procedia PDF Downloads 74
18025 Predicting Success and Failure in Drug Development Using Text Analysis

Authors: Zhi Hao Chow, Cian Mulligan, Jack Walsh, Antonio Garzon Vico, Dimitar Krastev

Abstract:

Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy.

Keywords: data analysis, drug development, sentiment analysis, text-mining

Procedia PDF Downloads 157
18024 Finite Element Modeling of Aortic Intramural Haematoma Shows Size Matters

Authors: Aihong Zhao, Priya Sastry, Mark L Field, Mohamad Bashir, Arvind Singh, David Richens

Abstract:

Objectives: Intramural haematoma (IMH) is one of the pathologies, along with acute aortic dissection, that present as Acute Aortic Syndrome (AAS). Evidence suggests that unlike aortic dissection, some intramural haematomas may regress with medical management. However, intramural haematomas have been traditionally managed like acute aortic dissections. Given that some of these pathologies may regress with conservative management, it would be useful to be able to identify which of these may not need high risk emergency intervention. A computational aortic model was used in this study to try and identify intramural haematomas with risk of progression to aortic dissection. Methods: We created a computational model of the aorta with luminal blood flow. Reports in the literature have identified 11 mm as the radial clot thickness that is associated with heightened risk of progression of intramural haematoma. Accordingly, haematomas of varying sizes were implanted in the modeled aortic wall to test this hypothesis. The model was exposed to physiological blood flows and the stresses and strains in each layer of the aortic wall were recorded. Results: Size and shape of clot were seen to affect the magnitude of aortic stresses. The greatest stresses and strains were recorded in the intima of the model. When the haematoma exceeded 10 mm in all dimensions, the stress on the intima reached breaking point. Conclusion: Intramural clot size appears to be a contributory factor affecting aortic wall stress. Our computer simulation corroborates clinical evidence in the literature proposing that IMH diameter greater than 11 mm may be predictive of progression. This preliminary report suggests finite element modelling of the aortic wall may be a useful process by which to examine putative variables important in predicting progression or regression of intramural haematoma.

Keywords: intramural haematoma, acute aortic syndrome, finite element analysis,

Procedia PDF Downloads 431
18023 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner

Authors: Beier Zhu, Rui Zhang, Qi Song

Abstract:

Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.

Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization

Procedia PDF Downloads 194
18022 The Impact of Prior Cancer History on the Prognosis of Salivary Gland Cancer Patients: A Population-based Study from the Surveillance, Epidemiology, and End Results (SEER) Database

Authors: Junhong Li, Danni Cheng, Yaxin Luo, Xiaowei Yi, Ke Qiu, Wendu Pang, Minzi Mao, Yufang Rao, Yao Song, Jianjun Ren, Yu Zhao

Abstract:

Background: The number of multiple cancer patients was increasing, and the impact of prior cancer history on salivary gland cancer patients remains unclear. Methods: Clinical, demographic and pathological information on salivary gland cancer patients were retrospectively collected from the Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2017, and the characteristics and prognosis between patients with a prior cancer and those without prior caner were compared. Univariate and multivariate cox proportional regression models were used for the analysis of prognosis. A risk score model was established to exam the impact of treatment on patients with a prior cancer in different risk groups. Results: A total of 9098 salivary gland cancer patients were identified, and 1635 of them had a prior cancer history. Salivary gland cancer patients with prior cancer had worse survival compared with those without a prior cancer (p<0.001). Patients with a different type of first cancer had a distinct prognosis (p<0.001), and longer latent time was associated with better survival (p=0.006) in the univariate model, although both became nonsignificant in the multivariate model. Salivary gland cancer patients with a prior cancer were divided into low-risk (n= 321), intermediate-risk (n=223), and high-risk (n=62) groups and the results showed that patients at high risk could benefit from surgery, radiation therapy, and chemotherapy, and those at intermediate risk could benefit from surgery. Conclusion: Prior cancer history had an adverse impact on the survival of salivary gland cancer patients, and individualized treatment should be seriously considered for them.

Keywords: prior cancer history, prognosis, salivary gland cancer, SEER

Procedia PDF Downloads 146
18021 Recognition of a Stacked Wave-Tide Dominated Fluvio-Marine Depositional System in an Ancient Rock Record, Proterozoic Simla Group, Lesser Himalaya, India

Authors: Ananya Mukhopadhyay, Priyanka Mazumdar, Tithi Banerjee, Alono Thorie

Abstract:

Outcrop-based facies analysis of the Proterozoic rock successions in the Simla Basin, Lesser Himalaya was combined with the application of sequence stratigraphy to delineate the stages of wave-tide dominated fluvio-marine depositional system development. On this basis, a vertical profile depositional model has been developed. Based on lateral and vertical facies transitions, twenty lithofacies have been delineated from the lower-middle-upper part of the Simla Group, which are categorized into four major facies (FA1, FA2, FA3 and FA4) belts. FA1 documented from the Basantpur Formation (lower part of the Simla Group) indicates evolution of a distally steepened carbonate ramp deposits) highly influenced by sea level fluctuations, where outer, mid and inner ramp sub environments were identified. This transition from inner-mid to outer ramp is marked by a distinct slope break that has been widely cited as an example of a distally steepened ramp. The Basantpur carbonate ramp represents two different systems tracts: TST and HST which developed at different stages of sea level fluctuations. FA2 manifested from the Kunihar Formation (uncorformably overlying the Basantpur Formation) indicates deposition in a rimmed shelf (rich in microbial activity) sub-environment and bears the signature of an HST. FA3 delineated from the Chhaosa Formation (unconformably overlying the Kunihar mixed siliciclastic carbonates, middle part of the Simla Group) provides an excellent example of tide- and wave influenced deltaic deposit (FA3) which is characterized by wave dominated shorefacies deposit in the lower part, sharply overlain by fluvio-tidal channel and/or estuarine bay successions in the middle part followed by a tide dominated muddy tidal flat in the upper part. Despite large-scale progradation, the Chhaosa deltaic deposits are volumetrically dominated by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units which are characterized by muddy tidal flat deposit. The Sanjauli Formation (upper part of the Simla Basin) records a major marine regression leading to the shifting of the shoreline basinward thereby resulting in fluvial incision on the top of the Chhaosa deltaic succession. The development of a braided fluvial system (FA4) with prominent fluvial incision is marked by presence of conglomerate-sandstone facies associations. Prominent fluvial incision on top of the delta deposits indicates the presence of sub-aerial TYPE 1 unconformity. The fluvial deposits mark the closure of sedimentation in the Simla basin that evolved during high frequency periods of coastal progradation and retrogradation. Each of the depositional cycles represents shoreline regression followed by transgression which is bounded by flooding surfaces and further followed by regression. The proposed depositional model in the present work deals with lateral facies variation due to shift in shore line along with fluctuations in accommodation space on a wave-tide influenced depositional system owing to fluctuations of sea level. This model will probably find its applicability in similar depositional setups.

Keywords: proterozoic, carbonate ramp, tide dominated delta, braided fluvial system, TYPE 1 unconformity

Procedia PDF Downloads 251
18020 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation

Procedia PDF Downloads 135
18019 Investigating Income Diversification Strategies into Off-Farm Activities Among Rural Households in Ethiopia

Authors: Kibret Berhanu Getinet

Abstract:

Off-farm income diversification by farm rural households has gained the attention of researchers and policymakers due to the fact that agriculture failed to meet the needs of people in developing countries like Ethiopia. The objective of this study was to investigate income diversification strategies into off-farm activities among rural households in Hawassa Zuria Woreda, Sidama National Regional State, Ethiopia. The study used primary and secondary data sources for the primary data collection questionnaire employed as a data collection instrument. A multistage sampling technique was used to collect data from a total of 197 sample households from four kebeles of the study area. Descriptive statistics, as well as econometrics methods of data analysis, were employed. The descriptive statistics result indicates that the majority of sample rural households (68.53 %) have engaged in off-farm income diversification activities while the remaining 31.47% of households did not participate in the diversification in the study area. The choice of participants among the strategies indicates that 6.60% of respondents participated in off-farm wage employment, 30.46% participated in off-farm self-employment, and about 31.47% of them participated in both off-farm wage employment. The study revealed that the share of off-farm income in total annual earnings of households was about 48.457%, and thus, the off-farm diversification significantly contributes to the rural household income. Moreover, binary and multinomial logistic regression models were employed to identify factors that affect the participation and the choices of the off-farm income diversification strategies, respectively. The binary logit model result indicated that agro-ecological zone, education status of the households, available technical skills of the household, household saving, total livestock owned by the households, access to electricity, road access and being married of household head were significant and positively affected the chance of diversification in off-farm activities while the on-farm income of households is negatively affected the chance of diversification. Similarly, the multinomial logistic regression model estimate revealed that agroecological zone, on-farm income, available technical skills, household savings, and access to electricity are positively related and significantly influenced the household’s choice of employment into off-farm wage employment. The off-farm self-employment diversification choice is significantly influenced by on-farm income, available technical skills, household savings, total livestock owned, and access to electricity. Moreover, the result showed that the factors that affect the choice of farm households to engage in both off-farm wage and self-employment are ecological zone, education status, on-farm income, available technical skills, household own saving, market access, total livestock owned, access to electricity and road access. Thus, due attention should be given to addressing the demographic, socio-economic, and institutional constraints to strengthen off-farm income diversification strategies to improve the income of rural households.

Keywords: off-farm, incoem, diversification, logit model

Procedia PDF Downloads 54
18018 Monocytic Paraoxonase 2 (PON 2) Lactonase Activity Is Related to Myocardial Infarction

Authors: Mukund Ramchandra Mogarekar, Pankaj Kumar, Shraddha V. More

Abstract:

Background: Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), Apo B, and lipoprotein(a) was found as atherogenic factors while high-density lipoprotein cholesterol (HDL-C) was anti-atherogenic. Methods and Results: The study group consists of 40 MI subjects as cases and 40 healthy as controls. Monocytic PON 2 Lactonase (LACT) activity was measured by using Dihydrocoumarine (DHC) as substrate. Phenotyping was done by method of Mogarekar MR et al, serum AOPP by modified method of Witko-Sarsat V et al and Apo B by Turbidimetric immunoassay. PON 2 LACT activities were significantly lower (p< 0.05) and AOPPs & Apo B were higher in MI subjects (p> 0.05). Trimodal distribution of QQ, QR & RR phenotypes of study population showed no significant difference among cases and controls (p> 0.05). Univariate binary logistic regression analysis showed independent association of TC, HDL, LDL, AOPP, Apo B, and PON 2 LACT activity with MI and multiple forward binary logistic regression showed PON 2 LACT activity and serum Apo B as an independent predictor of MI. Conclusions- Decrease in PON 2 LACT activity in MI subjects than in controls suggests increased oxidative stress in MI which is reflected by significantly increased AOPP and Apo B. PON 1 polymorphism of QQ, QR and RR showed no significant difference in protection against MI. Univariate and multiple forward binary logistic regression showed PON 2 LACT activity and serum Apo B as an independent predictor of MI.

Keywords: advanced oxidation protein products, apolipoprotein-B, myocardial infarction, paraoxonase 2 lactonase

Procedia PDF Downloads 237
18017 The Social Change Leadership Model for Administrators and Teachers Development in Northeast Thailand

Authors: D. Thawinkarn, S. Wongbutlee

Abstract:

The Social Change Leadership model is strongly aligned with administration’s mission. This research aims to examine the elements of social change leadership, build and develop leadership for social change, and evaluate effectiveness of leadership development model for social change. The research operation has 3 phases: model studies by in-depth interviews and survey research; drafting and creating model which verified by the experts; and trial of model in schools. The results showed that administrators and teachers have the elements of leadership for social change in moderate level. These elements are ranged descending from consciousness of self, common purpose, congruence, collaboration, commitment, citizenship, and controversy with civility. Model of leadership for social change is included the principles, objectives, content, process. Workshop process: Results show that the model of leadership development for social change in administrators and teachers leads to higher score in leadership evaluation prior to administering the operation.

Keywords: leadership, social change model, organization, administrators

Procedia PDF Downloads 418
18016 Assessment of Training, Job Attitudes and Motivation: A Mediation Model in Banking Sector of Pakistan

Authors: Abdul Rauf, Xiaoxing Liu, Rizwan Qaisar Danish, Waqas Amin

Abstract:

The core intention of this study is to analyze the linkage of training, job attitudes and motivation through a mediation model in the banking sector of Pakistan. Moreover, this study is executed to answer a range of queries regarding the consideration of employees about training, job satisfaction, motivation and organizational commitment. Hence, the association of training with job satisfaction, job satisfaction with motivation, organizational commitment with job satisfaction, organization commitment as independently with motivation and training directly related to motivation is determined in this course of study. A questionnaire crafted for comprehending the purpose of this study by including four variables such as training, job satisfaction, motivation and organizational commitment which have to measure. A sample of 450 employees from seventeen private (17) banks and two (2) public banks was taken on the basis of convenience sampling from Pakistan. However, 357 questionnaires, completely filled were received back. AMOS used for assessing the conformity factor analysis (CFA) model and statistical techniques practiced to scan the collected data (i.e.) descriptive statistics, regression analysis and correlation analysis. The empirical findings revealed that training and organizational commitment has a significant and positive impact directly on job satisfaction and motivation as well as through the mediator (job satisfaction) also the impact sensing in the same way on the motivation of employees in the financial Banks of Pakistan. In this research study, the banking sector is under discussion, so the findings could not generalize on other sectors such as manufacturing, textiles, telecom, and medicine, etc. The low sample size is also the limitation of this study. On the foundation of these results the management fascinates to make the revised strategies regarding training program for the employees as it enhances their motivation level, and job satisfaction on a regular basis.

Keywords: job satisfaction, motivation, organizational commitment, Pakistan, training

Procedia PDF Downloads 254
18015 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures

Authors: Jungyeol Hong, Dongjoo Park

Abstract:

The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.

Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership

Procedia PDF Downloads 177
18014 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE

Authors: A. Lakrim, D. Tahri

Abstract:

This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.

Keywords: SiC MPS diode, electro-thermal, SPICE model, behavioral macro-model

Procedia PDF Downloads 407
18013 Anti-Western Sentiment amongst Arabs and How It Drives Support for Russia against Ukraine

Authors: Soran Tarkhani

Abstract:

A glance at social media shows that Russia's invasion of Ukraine receives considerable support among Arabs. This significant support for the Russian invasion of Ukraine is puzzling since most Arab leaders openly condemned the Russian invasion through the UN ES‑11/4 Resolution, and Arabs are among the first who experienced the devastating consequences of war firsthand. This article tries to answer this question by using multiple regression to analyze the online content of Arab responses to Russia's invasion of Ukraine on seven major news networks: CNN Arabic, BBC Arabic, Sky News Arabic, France24 Arabic, DW, Aljazeera, and Al-Arabiya. The article argues that the underlying reason for this Arab support is a reaction to the common anti-Western sentiments among Arabs. The empirical result from regression analysis supports the central arguments and uncovers the motivations behind the endorsement of the Russian invasion of Ukraine and the opposing Ukraine by many Arabs.

Keywords: Ukraine, Russia, Arabs, Ukrainians, Russians, Putin, invasion, Europe, war

Procedia PDF Downloads 75
18012 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning

Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz

Abstract:

Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.

Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics

Procedia PDF Downloads 118
18011 Lee-Carter Mortality Forecasting Method with Dynamic Normal Inverse Gaussian Mortality Index

Authors: Funda Kul, İsmail Gür

Abstract:

Pension scheme providers have to price mortality risk by accurate mortality forecasting method. There are many mortality-forecasting methods constructed and used in literature. The Lee-Carter model is the first model to consider stochastic improvement trends in life expectancy. It is still precisely used. Mortality forecasting is done by mortality index in the Lee-Carter model. It is assumed that mortality index fits ARIMA time series model. In this paper, we propose and use dynamic normal inverse gaussian distribution to modeling mortality indes in the Lee-Carter model. Using population mortality data for Italy, France, and Turkey, the model is forecasting capability is investigated, and a comparative analysis with other models is ensured by some well-known benchmarking criterions.

Keywords: mortality, forecasting, lee-carter model, normal inverse gaussian distribution

Procedia PDF Downloads 360
18010 The Study of Elementary School Teacher’s Behavior of Using E-books by UTAUT Model

Authors: Tzong-Shing Cheng, Chen Pei Chen, Shu-Wei Chen

Abstract:

The purpose of this research is to apply Unified Theory of Acceptance and Use of Technology (UTAUT) model to investigate the factors that influence elementary school teacher’s behavior of using e-books. Based on the literature review, a questionnaire was modified and used to test the elementary school teachers in Changhua. A total of 420 questionnaires were administered and 364 of them were returned, including 328 valid and 36 invalid questionnaires. The effective response rate is 78%. The methods of data analysis include descriptive statistics, factor analysis, Pearson’s correlation coefficient, one way analysis of variance (ANOVA) and simple regression analysis. The results show that: 1. There were significant difference in the Elementary school teachers’ “Performance Expectancy”, “Effort Expectancy”, “Social Influence”, and “Facilitating Conditions” depending on their different “Demographic Variables”. 2. “Performance Expectancy” and “Behavioral Intention to Use” are positively correlated. 3. “Effort Expectancy” and “Behavioral Intention to Use” are positively correlated. 4. There was no significant relationship between “Social Influence” and “Behavioral Intention to Use”. 5. There was significant relationship between “Facilitating Conditions” and “Use Behavior”.

Keywords: e-books, UTAUT, elementary school teacher, behavioral intention to use

Procedia PDF Downloads 613
18009 Combining the Dynamic Conditional Correlation and Range-GARCH Models to Improve Covariance Forecasts

Authors: Piotr Fiszeder, Marcin Fałdziński, Peter Molnár

Abstract:

The dynamic conditional correlation model of Engle (2002) is one of the most popular multivariate volatility models. However, this model is based solely on closing prices. It has been documented in the literature that the high and low price of the day can be used in an efficient volatility estimation. We, therefore, suggest a model which incorporates high and low prices into the dynamic conditional correlation framework. Empirical evaluation of this model is conducted on three datasets: currencies, stocks, and commodity exchange-traded funds. The utilisation of realized variances and covariances as proxies for true variances and covariances allows us to reach a strong conclusion that our model outperforms not only the standard dynamic conditional correlation model but also a competing range-based dynamic conditional correlation model.

Keywords: volatility, DCC model, high and low prices, range-based models, covariance forecasting

Procedia PDF Downloads 183
18008 Big Data Analysis with Rhipe

Authors: Byung Ho Jung, Ji Eun Shin, Dong Hoon Lim

Abstract:

Rhipe that integrates R and Hadoop environment made it possible to process and analyze massive amounts of data using a distributed processing environment. In this paper, we implemented multiple regression analysis using Rhipe with various data sizes of actual data. Experimental results for comparing the performance of our Rhipe with stats and biglm packages available on bigmemory, showed that our Rhipe was more fast than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases. We also compared the computing speeds of pseudo-distributed and fully-distributed modes for configuring Hadoop cluster. The results showed that fully-distributed mode was faster than pseudo-distributed mode, and computing speeds of fully-distributed mode were faster as the number of data nodes increases.

Keywords: big data, Hadoop, Parallel regression analysis, R, Rhipe

Procedia PDF Downloads 497
18007 The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant

Authors: C. Shih, J. R. Wang, H. C. Chang, S. W. Chen, S. C. Chiang, T. Y. Yu

Abstract:

After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.

Keywords: RELAP5, TRACE, SNAP, BWR

Procedia PDF Downloads 429
18006 QoS-CBMG: A Model for e-Commerce Customer Behavior

Authors: Hoda Ghavamipoor, S. Alireza Hashemi Golpayegani

Abstract:

An approach to model the customer interaction with e-commerce websites is presented. Considering the service quality level as a predictive feature, we offer an improved method based on the Customer Behavior Model Graph (CBMG), a state-transition graph model. To derive the Quality of Service sensitive-CBMG (QoS-CBMG) model, process-mining techniques is applied to pre-processed website server logs which are categorized as ‘buy’ or ‘visit’. Experimental results on an e-commerce website data confirmed that the proposed method outperforms CBMG based method.

Keywords: customer behavior model, electronic commerce, quality of service, customer behavior model graph, process mining

Procedia PDF Downloads 416
18005 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region

Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho

Abstract:

The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.

Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon

Procedia PDF Downloads 66
18004 Model Based Simulation Approach to a 14-Dof Car Model Using Matlab/Simulink

Authors: Ishit Sheth, Chandrasekhar Jinendran, Chinmaya Ranjan Sahu

Abstract:

A fourteen degree of freedom (DOF) ride and handling control mathematical model is developed for a car using generalized boltzmann hamel equation which will create a basis for design of ride and handling controller. Mathematical model developed yield equations of motion for non-holonomic constrained systems in quasi-coordinates. The governing differential equation developed integrates ride and handling control of car. Model-based systems engineering approach is implemented for simulation using matlab/simulink, vehicle’s response in different DOF is examined and later validated using commercial software (ADAMS). This manuscript involves detailed derivation of full car vehicle model which provides response in longitudinal, lateral and yaw motion to demonstrate the advantages of the developed model over the existing dynamic model. The dynamic behaviour of the developed ride and handling model is simulated for different road conditions.

Keywords: Full Vehicle Model, MBSE, Non Holonomic Constraints, Boltzmann Hamel Equation

Procedia PDF Downloads 228
18003 Comprehensive Risk Assessment Model in Agile Construction Environment

Authors: Jolanta Tamošaitienė

Abstract:

The article focuses on a developed comprehensive model to be used in an agile environment for the risk assessment and selection based on multi-attribute methods. The model is based on a multi-attribute evaluation of risk in construction, and the determination of their optimality criterion values are calculated using complex Multiple Criteria Decision-Making methods. The model may be further applied to risk assessment in an agile construction environment. The attributes of risk in a construction project are selected by applying the risk assessment condition to the construction sector, and the construction process efficiency in the construction industry accounts for the agile environment. The paper presents the comprehensive risk assessment model in an agile construction environment. It provides a background and a description of the proposed model and the developed analysis of the comprehensive risk assessment model in an agile construction environment with the criteria.

Keywords: assessment, environment, agile, model, risk

Procedia PDF Downloads 255
18002 Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces

Authors: S. Matour, M. Mahdavinejad, R. Fayaz

Abstract:

Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.

Keywords: Tehran daylight availability, horizontal illuminance, vertical illuminance, diffuse illuminance

Procedia PDF Downloads 205
18001 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis

Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga

Abstract:

Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.

Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree

Procedia PDF Downloads 255
18000 Business Survival During Economic Crises: A Comparison Between Family and Non-family Firms

Authors: A. Hayrapetyan, A. Simon, P. Marques, G. Renart

Abstract:

Business survival is a question of greatest interest for any economy. Firm characteristics that can explain or predict performance and, ultimately, business survival become of the greatest significance, as the sustainable longevity of any business can mean health for the future of the country. Family Firms (FFs) are one of the most ubiquitous forms of business worldwide, as more than half of European firms (60%) are considered as family firms. Therefore, the inherent characteristics of FFs are one of the possible explanatory variables for firm survival because FFs have strategic goals that differentiate them from other types of businesses. Although there is literature on the performance of FFs across generations, there are fewer studies on the factors that impact the survival of family and non-family FFs, as there is a lack of data on failed firms. To address this gap, this paper explores the differential survival of family firms versus non-family firms with a representative sample of companies of the region of Catalonia (Northeast of Spain) that were adhoc classified as family or nonfamily firms, as well as classified as failed or surviving, since no census data for family firms or for failed firms is available in Spain. By using the COX regression model on a representative sample of 629 family and non-family firms, this study investigates to what extent financial ratios, such as Liquidity, Solvency Rate can impact business survival, taking into consideration the socioemotional side of family firms, as well as revealing the differences between family and non-family firms. The findings show that the liquidity rate is significant for non-family firm survival, whereas not for family firms. On the other hand, FFs can benefit while having a higher solvency rate. Ultimately, this paper discovers that FFs increase their chances of survival when they are small, as the growth in size starts negatively impacting the socioemotional objectives of the firm. This study proves the existence of significant differences between family and non-family firms’ survival during economic crises, suggesting that the prioritization of emotional wealth creates distinct conditions for both types of firms.

Keywords: COX regression, economy crises, family firm, non-family firm, survival

Procedia PDF Downloads 71
17999 Formal Verification of Cache System Using a Novel Cache Memory Model

Authors: Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang

Abstract:

Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible.

Keywords: cache system, formal verification, novel model, system on chip (SoC)

Procedia PDF Downloads 496
17998 Development of Simple-To-Apply Biogas Kinetic Models for the Co-Digestion of Food Waste and Maize Husk

Authors: Owamah Hilary, O. C. Izinyon

Abstract:

Many existing biogas kinetic models are difficult to apply to substrates they were not developed for, as they are substrate specific. Biodegradability kinetic (BIK) model and maximum biogas production potential and stability assessment (MBPPSA) model were therefore developed in this study for the anaerobic co-digestion of food waste and maize husk. Biodegradability constant (k) was estimated as 0.11d-1 using the BIK model. The results of maximum biogas production potential (A) obtained using the MBPPSA model corresponded well with the results obtained using the popular but complex modified Gompertz model for digesters B-1, B-2, B-3, B-4, and B-5. The (If) value of MBPPSA model also showed that digesters B-3, B-4, and B-5 were stable, while B-1 and B-2 were unstable. Similar stability observation was also obtained using the modified Gompertz model. The MBPPSA model can therefore be used as alternative model for anaerobic digestion feasibility studies and plant design.

Keywords: biogas, inoculum, model development, stability assessment

Procedia PDF Downloads 429