Search results for: Cloud computing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1381

Search results for: Cloud computing

631 Comparative Study of Scheduling Algorithms for LTE Networks

Authors: Samia Dardouri, Ridha Bouallegue

Abstract:

Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.

Keywords: LTE, multimedia flows, scheduling algorithms, mobile computing

Procedia PDF Downloads 383
630 Developement of a New Wearable Device for Automatic Guidance Service

Authors: Dawei Cai

Abstract:

In this paper, we present a new wearable device that provide an automatic guidance servie for visitors. By combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor, the head's direction can be calculated. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children.

Keywords: wearable device, ubiquitous computing, guide sysem, MEMS sensor, NFC

Procedia PDF Downloads 425
629 A Low-Area Fully-Reconfigurable Hardware Design of Fast Fourier Transform System for 3GPP-LTE Standard

Authors: Xin-Yu Shih, Yue-Qu Liu, Hong-Ru Chou

Abstract:

This paper presents a low-area and fully-reconfigurable Fast Fourier Transform (FFT) hardware design for 3GPP-LTE communication standard. It can fully support 32 different FFT sizes, up to 2048 FFT points. Besides, a special processing element is developed for making reconfigurable computing characteristics possible, while first-in first-out (FIFO) scheduling scheme design technique is proposed for hardware-friendly FIFO resource arranging. In a synthesis chip realization via TSMC 40 nm CMOS technology, the hardware circuit only occupies core area of 0.2325 mm2 and dissipates 233.5 mW at maximal operating frequency of 250 MHz.

Keywords: reconfigurable, fast Fourier transform (FFT), single-path delay feedback (SDF), 3GPP-LTE

Procedia PDF Downloads 278
628 Split Monotone Inclusion and Fixed Point Problems in Real Hilbert Spaces

Authors: Francis O. Nwawuru

Abstract:

The convergence analysis of split monotone inclusion problems and fixed point problems of certain nonlinear mappings are investigated in the setting of real Hilbert spaces. Inertial extrapolation term in the spirit of Polyak is incorporated to speed up the rate of convergence. Under standard assumptions, a strong convergence of the proposed algorithm is established without computing the resolvent operator or involving Yosida approximation method. The stepsize involved in the algorithm does not depend on the spectral radius of the linear operator. Furthermore, applications of the proposed algorithm in solving some related optimization problems are also considered. Our result complements and extends numerous results in the literature.

Keywords: fixedpoint, hilbertspace, monotonemapping, resolventoperators

Procedia PDF Downloads 52
627 Health and Climate Changes: "Ippocrate" a New Alert System to Monitor and Identify High Risk

Authors: A. Calabrese, V. F. Uricchio, D. di Noia, S. Favale, C. Caiati, G. P. Maggi, G. Donvito, D. Diacono, S. Tangaro, A. Italiano, E. Riezzo, M. Zippitelli, M. Toriello, E. Celiberti, D. Festa, A. Colaianni

Abstract:

Climate change has a severe impact on human health. There is a vast literature demonstrating temperature increase is causally related to cardiovascular problem and represents a high risk for human health, but there are not study that improve a solution. In this work, it is studied how the clime influenced the human parameter through the analysis of climatic conditions in an area of the Apulia Region: Capurso Municipality. At the same time, medical personnel involved identified a set of variables useful to define an index describing health condition. These scientific studies are the base of an innovative alert system, IPPOCRATE, whose aim is to asses climate risk and share information to population at risk to support prevention and mitigation actions. IPPOCRATE is an e-health system, it is designed to provide technological support to analysis of health risk related to climate and provide tools for prevention and management of critical events. It is the first integrated system of prevention of human risk caused by climate change. IPPOCRATE calculates risk weighting meteorological data with the vulnerability of monitored subjects and uses mobile and cloud technologies to acquire and share information on different data channels. It is composed of four components: Multichannel Hub. Multichannel Hub is the ICT infrastructure used to feed IPPOCRATE cloud with a different type of data coming from remote monitoring devices, or imported from meteorological databases. Such data are ingested, transformed and elaborated in order to be dispatched towards mobile app and VoIP phone systems. IPPOCRATE Multichannel Hub uses open communication protocols to create a set of APIs useful to interface IPPOCRATE with 3rd party applications. Internally, it uses non-relational paradigm to create flexible and highly scalable database. WeHeart and Smart Application The wearable device WeHeart is equipped with sensors designed to measure following biometric variables: heart rate, systolic blood pressure and diastolic blood pressure, blood oxygen saturation, body temperature and blood glucose for diabetic subjects. WeHeart is designed to be easy of use and non-invasive. For data acquisition, users need only to wear it and connect it to Smart Application by Bluetooth protocol. Easy Box was designed to take advantage from new technologies related to e-health care. EasyBox allows user to fully exploit all IPPOCRATE features. Its name, Easy Box, reveals its purpose of container for various devices that may be included depending on user needs. Territorial Registry is the IPPOCRATE web module reserved to medical personnel for monitoring, research and analysis activities. Territorial Registry allows to access to all information gathered by IPPOCRATE using GIS system in order to execute spatial analysis combining geographical data (climatological information and monitored data) with information regarding the clinical history of users and their personal details. Territorial Registry was designed for different type of users: control rooms managed by wide area health facilities, single health care center or single doctor. Territorial registry manages such hierarchy diversifying the access to system functionalities. IPPOCRATE is the first e-Health system focused on climate risk prevention.

Keywords: climate change, health risk, new technological system

Procedia PDF Downloads 867
626 Analyzing the Impact of DCF and PCF on WLAN Network Standards 802.11a, 802.11b, and 802.11g

Authors: Amandeep Singh Dhaliwal

Abstract:

Networking solutions, particularly wireless local area networks have revolutionized the technological advancement. Wireless Local Area Networks (WLANs) have gained a lot of popularity as they provide location-independent network access between computing devices. There are a number of access methods used in Wireless Networks among which DCF and PCF are the fundamental access methods. This paper emphasizes on the impact of DCF and PCF access mechanisms on the performance of the IEEE 802.11a, 802.11b and 802.11g standards. On the basis of various parameters viz. throughput, delay, load etc performance is evaluated between these three standards using above mentioned access mechanisms. Analysis revealed a superior throughput performance with low delays for 802.11g standard as compared to 802.11 a/b standard using both DCF and PCF access methods.

Keywords: DCF, IEEE, PCF, WLAN

Procedia PDF Downloads 425
625 Study on Security and Privacy Issues of Mobile Operating Systems Based on Malware Attacks

Authors: Huang Dennis, Aurelio Aziel, Burra Venkata Durga Kumar

Abstract:

Nowadays, smartphones and mobile operating systems have been popularly widespread in our daily lives. As people use smartphones, they tend to store more private and essential data on their devices, because of this it is very important to develop more secure mobile operating systems and cloud storage to secure the data. However, several factors can cause security risks in mobile operating systems such as malware, malicious app, phishing attacks, ransomware, and more, all of which can cause a big problem for users as they can access the user's private data. Those problems can cause data loss, financial loss, identity theft, and other serious consequences. Other than that, during the pandemic, people will use their mobile devices more and do all sorts of transactions online, which may lead to more victims of online scams and inexperienced users being the target. With the increase in attacks, researchers have been actively working to develop several countermeasures to enhance the security of operating systems. This study aims to provide an overview of the security and privacy issues in mobile operating systems, identifying the potential risk of operating systems, and the possible solutions. By examining these issues, we want to provide an easy understanding to users and researchers to improve knowledge and develop more secure mobile operating systems.

Keywords: mobile operating system, security, privacy, Malware

Procedia PDF Downloads 88
624 An Efficient Automated Radiation Measuring System for Plasma Monopole Antenna

Authors: Gurkirandeep Kaur, Rana Pratap Yadav

Abstract:

This experimental study is aimed to examine the radiation characteristics of different plasma structures of a surface wave-driven plasma antenna by an automated measuring system. In this study, a 30 cm long plasma column of argon gas with a diameter of 3 cm is excited by surface wave discharge mechanism operating at 13.56 MHz with RF power level up to 100 Watts and gas pressure between 0.01 to 0.05 mb. The study reveals that a single structured plasma monopole can be modified into an array of plasma antenna elements by forming multiple striations or plasma blobs inside the discharge tube by altering the values of plasma properties such as working pressure, operating frequency, input RF power, discharge tube dimensions, i.e., length, radius, and thickness. It is also reported that plasma length, electron density, and conductivity are functions of operating plasma parameters and controlled by changing working pressure and input power. To investigate the antenna radiation efficiency for the far-field region, an automation-based radiation measuring system has been fabricated and presented in detail. This developed automated system involves a combined setup of controller, dc servo motors, vector network analyzer, and computing device to evaluate the radiation intensity, directivity, gain and efficiency of plasma antenna. In this system, the controller is connected to multiple motors for moving aluminum shafts in both elevation and azimuthal plane whereas radiation from plasma monopole antenna is measured by a Vector Network Analyser (VNA) which is further wired up with the computing device to display radiations in polar plot forms. Here, the radiation characteristics of both continuous and array plasma monopole antenna have been studied for various working plasma parameters. The experimental results clearly indicate that the plasma antenna is as efficient as a metallic antenna. The radiation from plasma monopole antenna is significantly influenced by plasma properties which provides a wider range in radiation pattern where desired radiation parameters like beam-width, the direction of radiation, radiation intensity, antenna efficiency, etc. can be achieved in a single monopole. Due to its wide range of selectivity in radiation pattern; this can meet the demands of wider bandwidth to get high data speed in communication systems. Moreover, this developed system provides an efficient and cost-effective solution for measuring the radiation pattern in far-field zone for any kind of antenna system.

Keywords: antenna radiation characteristics, dynamically reconfigurable, plasma antenna, plasma column, plasma striations, surface wave

Procedia PDF Downloads 119
623 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 134
622 Preparation of Biodiesel by Three Step Method Followed Purification by Various Silica Sources

Authors: Chanchal Mewar, Shikha Gangil, Yashwant Parihar, Virendra Dhakar, Bharat Modhera

Abstract:

Biodiesel was prepared from Karanja oil by three step methods: saponification, acidification and esterification. In first step, saponification was done in presence of methanol and KOH or NaOH with Karanja oil. During second step acidification, various acids such as H3PO4, HCl, H2SO4 were used as acid catalyst. In third step, esterification followed by purification was done with various silica sources as Ludox (colloidal silicate) and fumed silica gel. It was found that there was no significant change in density, kinematic viscosity, iodine number, acid value, saponification number, flash point, cloud point, pour point and cetane number after purification by these adsorbents. The objective of this research is the comparison among different adsorbents which were used for the purification of biodiesel. Ludox (colloidal silicate) and fumed silica gel were used as adsorbents for the removal of glycerin from biodiesel and evaluate the effectiveness of biodiesel purity. Furthermore, this study compared the results of distilled water washing also. It was observed that Ludox, fumed silica gel and distilled water produced yield about 93%, 91% and 83% respectively. Highest yield was obtained with Ludox at 100 oC temperature using H3PO4 as acid catalyst and NaOH as base catalyst with methanol, (3:1) alcohol to oil molar ratio in 90 min.

Keywords: biodiesel, three step method, purification, silica sources

Procedia PDF Downloads 503
621 Molecular Dynamics Simulation on Nanoelectromechanical Graphene Nanoflake Shuttle Device

Authors: Eunae Lee, Oh-Kuen Kwon, Ki-Sub Kim, Jeong Won Kang

Abstract:

We investigated the dynamic properties of graphene-nanoribbon (GNR) memory encapsulating graphene-nanoflake (GNF) shuttle in the potential to be applicable as a non-volatile random access memory via molecular dynamics simulations. This work explicitly demonstrates that the GNR encapsulating the GNF shuttle can be applied to nonvolatile memory. The potential well was originated by the increase of the attractive vdW energy between the GNRs when the GNF approached the edges of the GNRs. So the bistable positions were located near the edges of the GNRs. Such a nanoelectromechanical non-volatile memory based on graphene is also applicable to the development of switches, sensors, and quantum computing.

Keywords: graphene nanoribbon, graphene nanoflake, shuttle memory, molecular dynamics

Procedia PDF Downloads 461
620 Alexa (Machine Learning) in Artificial Intelligence

Authors: Loulwah Bokhari, Jori Nazer, Hala Sultan

Abstract:

Nowadays, artificial intelligence (AI) is used as a foundation for many activities in modern computing applications at home, in vehicles, and in businesses. Many modern machines are built to carry out a specific activity or purpose. This is where the Amazon Alexa application comes in, as it is used as a virtual assistant. The purpose of this paper is to explore the use of Amazon Alexa among people and how it has improved and made simple daily tasks easier for many people. We gave our participants several questions regarding Amazon Alexa and if they had recently used or heard of it, as well as the different tasks it provides and whether it successfully satisfied their needs. Overall, we found that participants who have recently used Alexa have found it to be helpful in their daily tasks.

Keywords: artificial intelligence, Echo system, machine learning, feature for feature match

Procedia PDF Downloads 121
619 User-Driven Product Line Engineering for Assembling Large Families of Software

Authors: Zhaopeng Xuan, Yuan Bian, C. Cailleaux, Jing Qin, S. Traore

Abstract:

Traditional software engineering allows engineers to propose to their clients multiple specialized software distributions assembled from a shared set of software assets. The management of these assets however requires a trade-off between client satisfaction and software engineering process. Clients have more and more difficult to find a distribution or components based on their needs from all of distributed repositories. This paper proposes a software engineering for a user-driven software product line in which engineers define a feature model but users drive the actual software distribution on demand. This approach makes the user become final actor as a release manager in software engineering process, increasing user product satisfaction and simplifying user operations to find required components. In addition, it provides a way for engineers to manage and assembly large software families. As a proof of concept, a user-driven software product line is implemented for eclipse, an integrated development environment. An eclipse feature model is defined, which is exposed to users on a cloud-based built platform from which clients can download individualized Eclipse distributions.

Keywords: software product line, model-driven development, reverse engineering and refactoring, agile method

Procedia PDF Downloads 432
618 Comparative Analysis of Various Waste Oils for Biodiesel Production

Authors: Olusegun Ayodeji Olagunju, Christine Tyreesa Pillay

Abstract:

Biodiesel from waste sources is regarded as an economical and most viable fuel alternative to depleting fossil fuels. In this work, biodiesel was produced from three different sources of waste cooking oil; from cafeterias, which is vegetable-based using the transesterification method. The free fatty acids (% FFA) of the feedstocks were conducted successfully through the titration method. The results for sources 1, 2, and 3 were 0.86 %, 0.54 % and 0.20 %, respectively. The three variables considered in this process were temperature, reaction time, and catalyst concentration within the following range: 50 oC – 70 oC, 30 min – 90 min, and 0.5 % – 1.5 % catalyst. Produced biodiesel was characterized using ASTM standard methods for biodiesel property testing to determine the fuel properties, including kinematic viscosity, specific gravity, flash point, pour point, cloud point, and acid number. The results obtained indicate that the biodiesel yield from source 3 was greater than the other sources. All produced biodiesel fuel properties are within the standard biodiesel fuel specifications ASTM D6751. The optimum yield of biodiesel was obtained at 98.76%, 96.4%, and 94.53% from source 3, source 2, and source 1, respectively at optimum operating variables of 65 oC temperature, 90 minutes reaction time, and 0.5 wt% potassium hydroxide.

Keywords: waste cooking oil, biodiesel, free fatty acid content, potassium hydroxide catalyst, optimization analysis

Procedia PDF Downloads 77
617 A Contribution to Human Activities Recognition Using Expert System Techniques

Authors: Malika Yaici, Soraya Aloui, Sara Semchaoui

Abstract:

This paper deals with human activity recognition from sensor data. It is an active research area, and the main objective is to obtain a high recognition rate. In this work, a recognition system based on expert systems is proposed; the recognition is performed using the objects, object states, and gestures and taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions and the activity). The system recognizes complex activities after decomposing them into simple, easy-to-recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision.

Keywords: human activity recognition, ubiquitous computing, context-awareness, expert system

Procedia PDF Downloads 118
616 Development of a Vacuum System for Orthopedic Drilling Processes and Determination of Optimal Processing Parameters for Temperature Control

Authors: Kadir Gök

Abstract:

In this study, a vacuum system was developed for orthopedic drilling processes, and the most efficient processing parameters were determined using statistical analysis of temperature rise. A reverse engineering technique was used to obtain a 3D model of the chip vacuum system, and the obtained point cloud data was transferred to Solidworks software in STL format. An experimental design method was performed by selecting different parameters and their levels, such as RPM, feed rate, and drill bit diameter, to determine the most efficient processing parameters in temperature rise using ANOVA. Additionally, the bone chip-vacuum device was developed and performed successfully to collect the whole chips and fragments in the bone drilling experimental tests, and the chip-collecting device was found to be useful in removing overheating from the drilling zone. The effects of processing parameters on the temperature levels during the chip-vacuuming were determined, and it was found that bone chips and fractures can be used as autograft and allograft for tissue engineering. Overall, this study provides significant insights into the development of a vacuum system for orthopedic drilling processes and the use of bone chips and fractures in tissue engineering applications.

Keywords: vacuum system, orthopedic drilling, temperature rise, bone chips

Procedia PDF Downloads 98
615 Misleading Node Detection and Response Mechanism in Mobile Ad-Hoc Network

Authors: Earleen Jane Fuentes, Regeene Melarese Lim, Franklin Benjamin Tapia, Alexis Pantola

Abstract:

Mobile Ad-hoc Network (MANET) is an infrastructure-less network of mobile devices, also known as nodes. These nodes heavily rely on each other’s resources such as memory, computing power, and energy. Thus, some nodes may become selective in forwarding packets so as to conserve their resources. These nodes are called misleading nodes. Several reputation-based techniques (e.g. CORE, CONFIDANT, LARS, SORI, OCEAN) and acknowledgment-based techniques (e.g. TWOACK, S-TWOACK, EAACK) have been proposed to detect such nodes. These techniques do not appropriately punish misleading nodes. Hence, this paper addresses the limitations of these techniques using a system called MINDRA.

Keywords: acknowledgment-based techniques, mobile ad-hoc network, selfish nodes, reputation-based techniques

Procedia PDF Downloads 385
614 Knowledge and Skills Requirements for Software Developer Students

Authors: J. Liebenberg, M. Huisman, E. Mentz

Abstract:

It is widely acknowledged that there is a shortage of software developers, not only in South Africa, but also worldwide. Despite reports on a gap between industry needs and software education, the gap has mostly been explored in quantitative studies. This paper reports on the qualitative data of a mixed method study of the perceptions of professional software developers regarding what topics they learned from their formal education and the importance of these topics to their actual work. The analysis suggests that there is a gap between industry’s needs and software development education and the following recommendations are made: 1) Real-life projects must be included in students’ education; 2) Soft skills and business skills must be included in curricula; 3) Universities must keep the curriculum up to date; 4) Software development education must be made accessible to a diverse range of students.

Keywords: software development education, software industry, IT workforce, computing curricula

Procedia PDF Downloads 465
613 Blockchain-Based Approach on Security Enhancement of Distributed System in Healthcare Sector

Authors: Loong Qing Zhe, Foo Jing Heng

Abstract:

A variety of data files are now available on the internet due to the advancement of technology across the globe today. As more and more data are being uploaded on the internet, people are becoming more concerned that their private data, particularly medical health records, are being compromised and sold to others for money. Hence, the accessibility and confidentiality of patients' medical records have to be protected through electronic means. Blockchain technology is introduced to offer patients security against adversaries or unauthorised parties. In the blockchain network, only authorised personnel or organisations that have been validated as nodes may share information and data. For any change within the network, including adding a new block or modifying existing information about the block, a majority of two-thirds of the vote is required to confirm its legitimacy. Additionally, a consortium permission blockchain will connect all the entities within the same community. Consequently, all medical data in the network can be safely shared with all authorised entities. Also, synchronization can be performed within the cloud since the data is real-time. This paper discusses an efficient method for storing and sharing electronic health records (EHRs). It also examines the framework of roles within the blockchain and proposes a new approach to maintain EHRs with keyword indexes to search for patients' medical records while ensuring data privacy.

Keywords: healthcare sectors, distributed system, blockchain, electronic health records (EHR)

Procedia PDF Downloads 191
612 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars

Authors: Mirza Mujtaba Baig

Abstract:

Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.

Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence

Procedia PDF Downloads 119
611 Game-Based Learning in a Higher Education Course: A Case Study with Minecraft Education Edition

Authors: Salvador Antelmo Casanova Valencia

Abstract:

This study documents the use of the Minecraft Education Edition application to explore immersive game-based learning environments. We analyze the contributions of fourth-year university students who are pursuing a degree in Administrative Computing at the Universidad Michoacana de San Nicolas de Hidalgo. In this study, descriptive data and statistical inference are detailed using a quasi-experimental design using the Wilcoxon test. The instruments will provide data validation. Game-based learning in immersive environments necessarily implies greater student participation and commitment, resulting in the study, motivation, and significant improvements, promoting cooperation and autonomous learning.

Keywords: game-based learning, gamification, higher education, Minecraft

Procedia PDF Downloads 163
610 Using T-Splines to Model Point Clouds from Terrestrial Laser Scanner

Authors: G. Kermarrec, J. Hartmann

Abstract:

Spline surfaces are a major representation of freeform surfaces in the computer-aided graphic industry and were recently introduced in the field of geodesy for processing point clouds from terrestrial laser scanner (TLS). The surface fitting consists of approximating a trustworthy mathematical surface to a large numbered 3D point cloud. The standard B-spline surfaces lack of local refinement due to the tensor-product construction. The consequences are oscillating geometry, particularly in the transition from low-to-high curvature parts for scattered point clouds with missing data. More economic alternatives in terms of parameters on how to handle point clouds with a huge amount of observations are the recently introduced T-splines. As long as the partition of unity is guaranteed, their computational complexity is low, and they are flexible. T-splines are implemented in a commercial package called Rhino, a 3D modeler which is widely used in computer aided design to create and animate NURBS objects. We have applied T-splines surface fitting to terrestrial laser scanner point clouds from a bridge under load and a sheet pile wall with noisy observations. We will highlight their potential for modelling details with high trustworthiness, paving the way for further applications in terms of deformation analysis.

Keywords: deformation analysis, surface modelling, terrestrial laser scanner, T-splines

Procedia PDF Downloads 140
609 Searching k-Nearest Neighbors to be Appropriate under Gaming Environments

Authors: Jae Moon Lee

Abstract:

In general, algorithms to find continuous k-nearest neighbors have been researched on the location based services, monitoring periodically the moving objects such as vehicles and mobile phone. Those researches assume the environment that the number of query points is much less than that of moving objects and the query points are not moved but fixed. In gaming environments, this problem is when computing the next movement considering the neighbors such as flocking, crowd and robot simulations. In this case, every moving object becomes a query point so that the number of query point is same to that of moving objects and the query points are also moving. In this paper, we analyze the performance of the existing algorithms focused on location based services how they operate under gaming environments.

Keywords: flocking behavior, heterogeneous agents, similarity, simulation

Procedia PDF Downloads 302
608 Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System

Authors: S. Arun Prakash, V. Malathi, M. S. Mani Rajan

Abstract:

The analytical bright two soliton solution of the 3-coupled nonlinear Schrödinger equations with variable coefficients in birefringent optical fiber is obtained by Darboux transformation method. To the design of ultra-speed optical devices, Soliton interaction and control in birefringence fiber is investigated. Lax pair is constructed for N coupled NLS system through AKNS method. Using two soliton solution, we demonstrate different interaction behaviors of solitons in birefringent fiber depending on the choice of control parameters. Our results shows that interactions of optical solitons have some specific applications such as construction of logic gates, optical computing, soliton switching, and soliton amplification in wavelength division multiplexing (WDM) system.

Keywords: optical soliton, soliton interaction, soliton switching, WDM

Procedia PDF Downloads 505
607 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance

Procedia PDF Downloads 160
606 Human Activities Recognition Based on Expert System

Authors: Malika Yaici, Soraya Aloui, Sara Semchaoui

Abstract:

Recognition of human activities from sensor data is an active research area, and the main objective is to obtain a high recognition rate. In this work, we propose a recognition system based on expert systems. The proposed system makes the recognition based on the objects, object states, and gestures, taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions, and the activity). This work focuses on complex activities which are decomposed into simple easy to recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision.

Keywords: human activity recognition, ubiquitous computing, context-awareness, expert system

Procedia PDF Downloads 139
605 A Cloud-Based Spectrum Database Approach for Licensed Shared Spectrum Access

Authors: Hazem Abd El Megeed, Mohamed El-Refaay, Norhan Magdi Osman

Abstract:

Spectrum scarcity is a challenging obstacle in wireless communications systems. It hinders the introduction of innovative wireless services and technologies that require larger bandwidth comparing to legacy technologies. In addition, the current worldwide allocation of radio spectrum bands is already congested and can not afford additional squeezing or optimization to accommodate new wireless technologies. This challenge is a result of accumulative contributions from different factors that will be discussed later in this paper. One of these factors is the radio spectrum allocation policy governed by national regulatory authorities nowadays. The framework for this policy allocates specified portion of radio spectrum to a particular wireless service provider on exclusive utilization basis. This allocation is executed according to technical specification determined by the standard bodies of each Radio Access Technology (RAT). Dynamic access of spectrum is a framework for flexible utilization of radio spectrum resources. In this framework there is no exclusive allocation of radio spectrum and even the public safety agencies can share their spectrum bands according to a governing policy and service level agreements. In this paper, we explore different methods for accessing the spectrum dynamically and its associated implementation challenges.

Keywords: licensed shared access, cognitive radio, spectrum sharing, spectrum congestion, dynamic spectrum access, spectrum database, spectrum trading, reconfigurable radio systems, opportunistic spectrum allocation (OSA)

Procedia PDF Downloads 430
604 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar

Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma

Abstract:

Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.

Keywords: inland waterways, YOLO, sensor fusion, self-attention

Procedia PDF Downloads 121
603 A Nonlocal Means Algorithm for Poisson Denoising Based on Information Geometry

Authors: Dongxu Chen, Yipeng Li

Abstract:

This paper presents an information geometry NonlocalMeans(NLM) algorithm for Poisson denoising. NLM estimates a noise-free pixel as a weighted average of image pixels, where each pixel is weighted according to the similarity between image patches in Euclidean space. In this work, every pixel is a Poisson distribution locally estimated by Maximum Likelihood (ML), all distributions consist of a statistical manifold. A NLM denoising algorithm is conducted on the statistical manifold where Fisher information matrix can be used for computing distribution geodesics referenced as the similarity between patches. This approach was demonstrated to be competitive with related state-of-the-art methods.

Keywords: image denoising, Poisson noise, information geometry, nonlocal-means

Procedia PDF Downloads 285
602 Empowering Certificate Management with Blockchain Technology

Authors: Yash Ambekar, Kapil Vhatkar, Prathamesh Swami, Kartikey Singh, Yashovardhan Kaware

Abstract:

The rise of online courses and certifications has created new opportunities for individuals to enhance their skills. However, this digital transformation has also given rise to coun- terfeit certificates. To address this multifaceted issue, we present a comprehensive certificate management system founded on blockchain technology and strengthened by smart contracts. Our system comprises three pivotal components: certificate generation, authenticity verification, and a user-centric digital locker for certificate storage. Blockchain technology underpins the entire system, ensuring the immutability and integrity of each certificate. The inclusion of a cryptographic hash for each certificate is a fundamental aspect of our design. Any alteration in the certificate’s data will yield a distinct hash, a powerful indicator of potential tampering. Furthermore, our system includes a secure digital locker based on cloud storage that empowers users to efficiently manage and access all their certificates in one place. Moreover, our project is committed to providing features for certificate revocation and updating, thereby enhancing the system’s flexibility and security. Hence, the blockchain and smart contract-based certificate management system offers a robust and one-stop solution to the escalating problem of counterfeit certificates in the digital era.

Keywords: blockchain technology, smart contracts, counterfeit certificates, authenticity verification, cryptographic hash, digital locker

Procedia PDF Downloads 46