Search results for: single tuned mass damper
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8093

Search results for: single tuned mass damper

503 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring

Authors: Zheng Wang, Zhenhong Li, Jon Mills

Abstract:

Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.

Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring

Procedia PDF Downloads 161
502 Carbonyl Iron Particles Modified with Pyrrole-Based Polymer and Electric and Magnetic Performance of Their Composites

Authors: Miroslav Mrlik, Marketa Ilcikova, Martin Cvek, Josef Osicka, Michal Sedlacik, Vladimir Pavlinek, Jaroslav Mosnacek

Abstract:

Magnetorheological elastomers (MREs) are a unique type of materials consisting of two components, magnetic filler, and elastomeric matrix. Their properties can be tailored upon application of an external magnetic field strength. In this case, the change of the viscoelastic properties (viscoelastic moduli, complex viscosity) are influenced by two crucial factors. The first one is magnetic performance of the particles and the second one is off-state stiffness of the elastomeric matrix. The former factor strongly depends on the intended applications; however general rule is that higher magnetic performance of the particles provides higher MR performance of the MRE. Since magnetic particles possess low stability properties against temperature and acidic environment, several methods how to improve these drawbacks have been developed. In the most cases, the preparation of the core-shell structures was employed as a suitable method for preservation of the magnetic particles against thermal and chemical oxidations. However, if the shell material is not single-layer substance, but polymer material, the magnetic performance is significantly suppressed, due to the in situ polymerization technique, when it is very difficult to control the polymerization rate and the polymer shell is too thick. The second factor is the off-state stiffness of the elastomeric matrix. Since the MR effectivity is calculated as the relative value of the elastic modulus upon magnetic field application divided by elastic modulus in the absence of the external field, also the tuneability of the cross-linking reaction is highly desired. Therefore, this study is focused on the controllable modification of magnetic particles using a novel monomeric system based on 2-(1H-pyrrol-1-yl)ethyl methacrylate. In this case, the short polymer chains of different chain lengths and low polydispersity index will be prepared, and thus tailorable stability properties can be achieved. Since the relatively thin polymer chains will be grafted on the surface of magnetic particles, their magnetic performance will be affected only slightly. Furthermore, also the cross-linking density will be affected, due to the presence of the short polymer chains. From the application point of view, such MREs can be utilized for, magneto-resistors, piezoresistors or pressure sensors especially, when the conducting shell on the magnetic particles will be created. Therefore, the selection of the pyrrole-based monomer is very crucial and controllably thin layer of conducting polymer can be prepared. Finally, such composite particle consisting of magnetic core and conducting shell dispersed in elastomeric matrix can find also the utilization in shielding application of electromagnetic waves.

Keywords: atom transfer radical polymerization, core-shell, particle modification, electromagnetic waves shielding

Procedia PDF Downloads 209
501 Numerical Investigation of Flow Boiling within Micro-Channels in the Slug-Plug Flow Regime

Authors: Anastasios Georgoulas, Manolia Andredaki, Marco Marengo

Abstract:

The present paper investigates the hydrodynamics and heat transfer characteristics of slug-plug flows under saturated flow boiling conditions within circular micro-channels. Numerical simulations are carried out, using an enhanced version of the open-source CFD-based solver ‘interFoam’ of OpenFOAM CFD Toolbox. The proposed user-defined solver is based in the Volume Of Fluid (VOF) method for interface advection, and the mentioned enhancements include the implementation of a smoothing process for spurious current reduction, the coupling with heat transfer and phase change as well as the incorporation of conjugate heat transfer to account for transient solid conduction. In all of the considered cases in the present paper, a single phase simulation is initially conducted until a quasi-steady state is reached with respect to the hydrodynamic and thermal boundary layer development. Then, a predefined and constant frequency of successive vapour bubbles is patched upstream at a certain distance from the channel inlet. The proposed numerical simulation set-up can capture the main hydrodynamic and heat transfer characteristics of slug-plug flow regimes within circular micro-channels. In more detail, the present investigation is focused on exploring the interaction between subsequent vapour slugs with respect to their generation frequency, the hydrodynamic characteristics of the liquid film between the generated vapour slugs and the channel wall as well as of the liquid plug between two subsequent vapour slugs. The proposed investigation is carried out for the 3 different working fluids and three different values of applied heat flux in the heated part of the considered microchannel. The post-processing and analysis of the results indicate that the dynamics of the evolving bubbles in each case are influenced by both the upstream and downstream bubbles in the generated sequence. In each case a slip velocity between the vapour bubbles and the liquid slugs is evident. In most cases interfacial waves appear close to the bubble tail that significantly reduce the liquid film thickness. Finally, in accordance with previous investigations vortices that are identified in the liquid slugs between two subsequent vapour bubbles can significantly enhance the convection heat transfer between the liquid regions and the heated channel walls. The overall results of the present investigation can be used to enhance the present understanding by providing better insight of the complex, underpinned heat transfer mechanisms in saturated boiling within micro-channels in the slug-plug flow regime.

Keywords: slug-plug flow regime, micro-channels, VOF method, OpenFOAM

Procedia PDF Downloads 267
500 Identification and Characterization of Novel Genes Involved in Quinone Synthesis in the Odoriferous Defensive Stink Glands of the Red Flour Beetle, Tribolium castaneum

Authors: B. Atika, S. Lehmann, E. Wimmer

Abstract:

The defense strategy is very common in the insect world. Defensive substances play a wide variety of functions for beetles, such as repellents, toxicants, insecticides, and antimicrobics. Beetles react to predators, invaders, and parasitic microbes with the release of toxic and repellent substances. Defensive substances are directed against a large array of potential target organisms or may function for boiling bombardment or as surfactants. Usually, Coleoptera biosynthesize and store their defensive compounds in a complex secretory organ, known as odoriferous defensive stink glands. The red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae), uses these glands to produce antimicrobial p-benzoquinones and 1-alkenes. In the past, the morphology of stink gland has been studied in detail in tenebrionid beetles; however, very little is known about the genes that are involved in the production of gland secretion. In this study, we studied a subset of genes that are essential for the benzoquinone production in red flour beetle. In the first phase, we selected 74 potential candidate genes from a genome-wide RNA interference (RNAi) knockdown screen named 'iBeetle.' All these 74 candidate genes were functionally characterized by RNAi-mediated gene knockdown. Therefore, they were selected for a subsequent gas chromatography-mass spectrometry (GC-MS) analysis of secretion volatiles in respective RNAi knockdown glands. 33 of them were observed to alter the phenotype of stink gland. In the GC-MS analysis, 7 candidate genes were noted to display a strongly altered gland, in terms of secretion color and chemical composition, upon knockdown, showing their key role in the biosynthesis of gland secretion. Morphologically altered stink glands were found for odorant receptor and protein kinase superfamily. Subsequent GC-MS analysis of secretion volatiles revealed reduced benzoquinone levels in LIM domain, PDZ domain, PBP/GOBP family knockdowns and a complete lack of benzoquinones in the knockdown of sulfatase-modifying factor enzyme 1, sulfate transporter family. Based on stink gland transcriptome data, we analyzed the function of sulfatase-modifying factor enzyme 1 and sulfate transporter family via RNAi-mediated gene knockdowns, GC-MS, in situ hybridization, and enzymatic activity assays. Morphologically altered stink glands were noted in knockdown of both these genes. Furthermore, GC-MS analysis of secretion volatiles showed a complete lack of benzoquinones in the knockdown of these two genes. In situ hybridization showed that these two genes are expressed around the vesicle of certain subgroup of secretory stink gland cells. Enzymatic activity assays on stink gland tissue showed that these genes are involved in p-benzoquinone biosynthesis. These results suggest that sulfatase-modifying factor enzyme 1 and sulfate transporter family play a role specifically in benzoquinone biosynthesis in red flour beetles.

Keywords: Red Flour Beetle, defensive stink gland, benzoquinones, sulfate transporter, sulfatase-modifying factor enzyme 1

Procedia PDF Downloads 154
499 A Laundry Algorithm for Colored Textiles

Authors: H. E. Budak, B. Arslan-Ilkiz, N. Cakmakci, I. Gocek, U. K. Sahin, H. Acikgoz-Tufan, M. H. Arslan

Abstract:

The aim of this study is to design a novel laundry algorithm for colored textiles which have significant decoloring problem. During the experimental work, bleached knitted single jersey fabric made of 100% cotton and dyed with reactive dyestuff was utilized, since according to a conducted survey textiles made of cotton are the most demanded textile products in the textile market by the textile consumers and for coloration of textiles reactive dyestuffs are the ones that are the most commonly used in the textile industry for dyeing cotton-made products. Therefore, the fabric used in this study was selected and purchased in accordance with the survey results. The fabric samples cut out of this fabric were dyed with different dyeing parameters by using Remazol Brilliant Red 3BS dyestuff in Gyrowash machine at laboratory conditions. From the alternative reactive-dyed cotton fabric samples, the ones that have high tendency to color loss were determined and examined. Accordingly, the parameters of the dyeing process used for these fabric samples were evaluated and the dyeing process which was chosen to be used for causing high tendency to color loss for the cotton fabrics was determined in order to reveal the level of improvement in color loss during this study clearly. Afterwards, all of the untreated fabric samples cut out of the fabric purchased were dyed with the dyeing process selected. When dyeing process was completed, an experimental design was created for the laundering process by using Minitab® program considering temperature, time and mechanical action as parameters. All of the washing experiments were performed in domestic washing machine. 16 washing experiments were performed with 8 different experimental conditions and 2 repeats for each condition. After each of the washing experiments, water samples of the main wash of the laundering process were measured with UV spectrophotometer. The values obtained were compared with the calibration curve of the materials used for the dyeing process. The results of the washing experiments were statistically analyzed with Minitab® program. According to the results, the most suitable washing algorithm to be used in terms of the parameters temperature, time and mechanical action for domestic washing machines for minimizing fabric color loss was chosen. The laundry algorithm proposed in this study have the ability of minimalizing the problem of color loss of colored textiles in washing machines by eliminating the negative effects of the parameters of laundering process on color of textiles without compromising the fundamental effects of basic cleaning action being performed properly. Therefore, since fabric color loss is minimized with this washing algorithm, dyestuff residuals will definitely be lower in the grey water released from the laundering process. In addition to this, with this laundry algorithm it is possible to wash and clean other types of textile products with proper cleaning effect and minimized color loss.

Keywords: color loss, laundry algorithm, textiles, domestic washing process

Procedia PDF Downloads 357
498 Numerical Investigations of Unstable Pressure Fluctuations Behavior in a Side Channel Pump

Authors: Desmond Appiah, Fan Zhang, Shouqi Yuan, Wei Xueyuan, Stephen N. Asomani

Abstract:

The side channel pump has distinctive hydraulic performance characteristics over other vane pumps because of its generation of high pressure heads in only one impeller revolution. Hence, there is soaring utilization and application in the fields of petrochemical, food processing fields, automotive and aerospace fuel pumping where high heads are required at low flows. The side channel pump is characterized by unstable flow because after fluid flows into the impeller passage, it moves into the side channel and comes back to the impeller again and then moves to the next circulation. Consequently, the flow leaves the side channel pump following a helical path. However, the pressure fluctuation exhibited in the flow greatly contributes to the unwanted noise and vibration which is associated with the flow. In this paper, a side channel pump prototype was examined thoroughly through numerical calculations based on SST k-ω turbulence model to ascertain the pressure fluctuation behavior. The pressure fluctuation intensity of the 3D unstable flow dynamics were carefully investigated under different working conditions 0.8QBEP, 1.0 QBEP and 1.2QBEP. The results showed that the pressure fluctuation distribution around the pressure side of the blade is greater than the suction side at the impeller and side channel interface (z=0) for all three operating conditions. Part-load condition 0.8QBEP recorded the highest pressure fluctuation distribution because of the high circulation velocity thus causing an intense exchanged flow between the impeller and side channel. Time and frequency domains spectra of the pressure fluctuation patterns in the impeller and the side channel were also analyzed under the best efficiency point value, QBEP using the solution from the numerical calculations. It was observed from the time-domain analysis that the pressure fluctuation characteristics in the impeller flow passage increased steadily until the flow reached the interrupter which separates low-pressure at the inflow from high pressure at the outflow. The pressure fluctuation amplitudes in the frequency domain spectrum at the different monitoring points depicted a gentle decreasing trend of the pressure amplitudes which was common among the operating conditions. The frequency domain also revealed that the main excitation frequencies occurred at 600Hz, 1200Hz, and 1800Hz and continued in the integers of the rotating shaft frequency. Also, the mass flow exchange plots indicated that the side channel pump is characterized with many vortex flows. Operating conditions 0.8QBEP, 1.0 QBEP depicted less and similar vortex flow while 1.2Q recorded many vortex flows around the inflow, middle and outflow regions. The results of the numerical calculations were finally verified experimentally. The performance characteristics curves from the simulated results showed that 0.8QBEP working condition recorded a head increase of 43.03% and efficiency decrease of 6.73% compared to 1.0QBEP. It can be concluded that for industrial applications where the high heads are mostly required, the side channel pump can be designed to operate at part-load conditions. This paper can serve as a source of information in order to optimize a reliable performance and widen the applications of the side channel pumps.

Keywords: exchanged flow, pressure fluctuation, numerical simulation, side channel pump

Procedia PDF Downloads 136
497 The Stable Isotopic Composition of Pedogenic Carbonate in the Minusinsk Basin, South Siberia

Authors: Jessica Vasil'chuk, Elena Ivanova, Pavel Krechetov, Vladimir Litvinsky, Nadine Budantseva, Julia Chizhova, Yurij Vasil'chuk

Abstract:

Carbonate minerals’ isotopic composition is widely used as a proxy for environmental parameters of the past. Pedogenic carbonate coatings on lower surfaces of coarse rock fragments are studied in order to indicate the climatic conditions and predominant vegetation under which they were formed. The purpose of the research is to characterize the isotopic composition of carbonate pedofeatures in soils of Minusink Hollow and estimate its correlation with isotopic composition of soil pore water, precipitation, vegetation and parent material. The samples of pedogenic carbonates, vegetation, carbonate parent material, soil water and precipitation water were analyzed using the Delta-V mass spectrometer with options of a gas bench and element analyser. The soils we studied are mainly Kastanozems that are poorly moisturized, therefore soil pore water was extracted by ethanol. Oxygen and carbon isotopic composition of pedogenic carbonates was analyzed in 3 key sites. Kazanovka Khakass state national reserve, Hankul salt lake, region of Sayanogorsk aluminum smelter. Vegetation photosynthetic pathway in the region is mainly C3. δ18O values of carbonate coatings in soils of Kazanovka vary in a range from −7.49 to −10.5‰ (vs V-PDB), and the smallest value −13.9‰ corresponds the coatings found between two buried soil horizons which 14C dates are 4.6 and 5.2 kyr BP. That may indicate cooler conditions of late Holocene than nowadays. In Sayanogorsk carbonates’ δ18O range is from −8.3 to −11.1‰ and near the Hankul Lake is from −9.0 to −10.2‰ all ranges are quite similar and may indicate coatings’ uniform formation conditions. δ13C values of carbonate coatings in Kazanovka vary from −2.5 to −6.7‰, the highest values correspond to the soils of Askiz and Syglygkug rivers former floodplains. For Sayanogorsk the range is from −4.9 to −6.8‰ and for Hankul from −2.3 to −5.7‰, where the highest value is for the modern salt crust. δ13C values of coatings strongly decrease from inner (older) to outer (younger) layers of coatings, that can indicate differences connected with the diffusion of organic material. Carbonate parent material δ18O value in the region vary from −11.1 to −12.0‰ and δ13C values vary from −4.9 to −5.7‰. Soil pore water δ18O values that determine the oxygen isotope composition of carbonates vary due to the processes of transpiration and mixing in the studied sites in a wide range of −2.0 to −13.5‰ (vs V-SMOW). Precipitation waters show δ18O values from -6.6‰ in May and -19.0‰ in January (snow) due to the temperature difference. The main conclusions are as follows: pedogenic carbonates δ13C values (−7…−2,5‰) show no correlation with modern C3 vegetation δ13C values (−30…−26‰), expected values under such vegetation are (−19…−15‰) but are closer to C4 vegetation. Late Holocene climate for the Minusinsk Hollow according to obtained data on isotope composition of carbonates and soil pore water chemical composition was dryer and cooler than present, that does not contradict with paleocarpology data obtained for the region. The research was supported by Russian Science Foundation (grant №14-27-00083).

Keywords: carbon, oxygen, pedogenic carbonates, South Siberia, stable isotopes

Procedia PDF Downloads 297
496 A Review on Agricultural Landscapes as a Habitat of Rodents

Authors: Nadeem Munawar, Tariq Mahmood, Paula Rivadeneira, Ali Akhter

Abstract:

In this paper, we review on rodent species which are common inhabitants of agricultural landscapes where they are an important prey source for a wide variety of avian, reptilian, and mammalian predators. Agricultural fields are surrounded by fallow land, which provide suitable sites for shelter and breeding for rodents, while shrubs, grasses, annual weeds and forbs may provide supplementary food. The assemblage of rodent’s fauna in the cropland habitats including cropped fields, meadows and adjacent field structures like hedgerows, woodland and field margins fluctuates seasonally. The mature agricultural crops provides good source of food and shelter to the rodents and these factors along with favorable climatic factors/season facilitate breeding activities of these rodent species. Changes in vegetation height and vegetative cover affect two important aspects of a rodent’s life: food and shelter. In addition, during non-crop period vegetation can be important for building nests above or below ground and it provides thermal protection for rodents from heat and cold. The review revealed that rodents form a very diverse group of mammals, ranging from tiny pigmy mice to big capybaras, from arboreal flying squirrels to subterranean mole rats, from opportunistic omnivores (e.g. Norway rats) to specialist feeders (e.g. the North African fat sand rats that feed on a single family of plants only). It is therefore no surprise that some species thrive well under the conditions that are found in agricultural fields. The review on the population dynamics of the rodent species indicated that they are agricultural pests probably due to the heterogeneous landscape and to the high rotativity of vegetable crop cultivation. They also cause damage to various crops, directly and indirectly, by gnawing, spoilage, contamination and hoarding activities, besides this behavior they have also significance importance in agricultural habitat. The burrowing activities of rodents alter the soil properties around their burrows which improve its aeration, infiltration, increase the water holding capacity and thus encourage plant growth. These properties are beneficial for the soil because they affect absorption of phosphorus, absorption zinc, copper, other nutrients and the uptake of water and thus rodents are known as indicator species in agricultural fields. Our review suggests that wide crop field’s borders, particularly those contiguous to various cropland fields, should be understood as priority sites for nesting, feeding, and cover for the rodent’s fauna. The goal of this review paper is to provide a comprehensive synthesis of understanding regarding rodent habitat and biodiversity in agricultural landscapes.

Keywords: agricultural landscapes, food, indicator species, shelter

Procedia PDF Downloads 169
495 Analyzing Social Media Discourses of Domestic Violence in Promoting Awareness and Support Seeking: An Exploratory Study

Authors: Sudha Subramani, Hua Wang

Abstract:

Domestic Violence (DV) against women is now recognized to be a serious and widespread problem worldwide. There is a growing concern that violence against women has a global public health impact, as well as a violation of human rights. From the existing statistical surveys, it is revealed that there exists a strong relationship between DV and health issues of women like bruising, lacerations, depression, anxiety, flashbacks, sleep disturbances, hyper-arousal, emotional distress, sexually transmitted diseases and so on. This social problem is still considered as behind the closed doors issue and stigmatized topic. Women conceal their sufferings from family and friends, as they experience a lack of trust in others, feelings of shame and embarrassment among the society. Hence, women survivors of DV experience some barriers in seeking the support of specialized services such as health care access, crisis support, and legal guidance. Fortunately, with the popularity of social media like Facebook and Twitter, people share their opinions and emotional feelings to seek the social and emotional support, for sympathetic encouragement, to show compassion and empathy among the public. Considering the DV, social media plays a predominant role in creating the awareness and promoting the support services to the public, as we live in the golden era of social media. The various professional people like the public health researchers, clinicians, psychologists, social workers, national family health organizations, lawyers, and victims or their family and friends share the unprecedentedly valuable information (personal opinions and experiences) in a single platform to improve the social welfare of the community. Though each tweet or post contains a less informational value, the consolidation of millions of messages can generate actionable knowledge and provide valuable insights about the public opinion in general. Hence, this paper reports on an exploratory analysis of the effectiveness of social media for unobtrusive assessment of attitudes and awareness towards DV. In this paper, mixed methods such as qualitative analysis and text mining approaches are used to understand the social media disclosures of DV through the lenses of opinion sharing, anonymity, and support seeking. The results of this study could be helpful to avoid the cost of wide scale surveys, while still maintaining appropriate research conditions is to leverage the abundance of data publicly available on the web. Also, this analysis with data enrichment and consolidation would be useful in assisting advocacy and national family health organizations to provide information about resources and support, raise awareness and counter common stigmatizing attitudes about DV.

Keywords: domestic violence, social media, social stigma and support, women health

Procedia PDF Downloads 290
494 Development and Total Error Concept Validation of Common Analytical Method for Quantification of All Residual Solvents Present in Amino Acids by Gas Chromatography-Head Space

Authors: A. Ramachandra Reddy, V. Murugan, Prema Kumari

Abstract:

Residual solvents in Pharmaceutical samples are monitored using gas chromatography with headspace (GC-HS). Based on current regulatory and compendial requirements, measuring the residual solvents are mandatory for all release testing of active pharmaceutical ingredients (API). Generally, isopropyl alcohol is used as the residual solvent in proline and tryptophan; methanol in cysteine monohydrate hydrochloride, glycine, methionine and serine; ethanol in glycine and lysine monohydrate; acetic acid in methionine. In order to have a single method for determining these residual solvents (isopropyl alcohol, ethanol, methanol and acetic acid) in all these 7 amino acids a sensitive and simple method was developed by using gas chromatography headspace technique with flame ionization detection. During development, no reproducibility, retention time variation and bad peak shape of acetic acid peaks were identified due to the reaction of acetic acid with the stationary phase (cyanopropyl dimethyl polysiloxane phase) of column and dissociation of acetic acid with water (if diluent) while applying temperature gradient. Therefore, dimethyl sulfoxide was used as diluent to avoid these issues. But most the methods published for acetic acid quantification by GC-HS uses derivatisation technique to protect acetic acid. As per compendia, risk-based approach was selected as appropriate to determine the degree and extent of the validation process to assure the fitness of the procedure. Therefore, Total error concept was selected to validate the analytical procedure. An accuracy profile of ±40% was selected for lower level (quantitation limit level) and for other levels ±30% with 95% confidence interval (risk profile 5%). The method was developed using DB-Waxetr column manufactured by Agilent contains 530 µm internal diameter, thickness: 2.0 µm, and length: 30 m. A constant flow of 6.0 mL/min. with constant make up mode of Helium gas was selected as a carrier gas. The present method is simple, rapid, and accurate, which is suitable for rapid analysis of isopropyl alcohol, ethanol, methanol and acetic acid in amino acids. The range of the method for isopropyl alcohol is 50ppm to 200ppm, ethanol is 50ppm to 3000ppm, methanol is 50ppm to 400ppm and acetic acid 100ppm to 400ppm, which covers the specification limits provided in European pharmacopeia. The accuracy profile and risk profile generated as part of validation were found to be satisfactory. Therefore, this method can be used for testing of residual solvents in amino acids drug substances.

Keywords: amino acid, head space, gas chromatography, total error

Procedia PDF Downloads 148
493 Linkages between Innovation Policies and SMEs' Innovation Activities: Empirical Evidence from 15 Transition Countries

Authors: Anita Richter

Abstract:

Innovation is one of the key foundations of competitive advantage, generating growth and welfare worldwide. Consequently, all firms should innovate to bring new ideas to the market. Innovation is a vital growth driver, particularly for transition countries to move towards knowledge-based, high-income economies. However, numerous barriers, such as financial, regulatory or infrastructural constraints prevent, in particular, new and small firms in transition countries from innovating. Thus SMEs’ innovation output may benefit substantially from government support. This research paper aims to assess the effect of government interventions on innovation activities in SMEs in emerging countries. Until now academic research related to the innovation policies focused either on single country and/or high-income countries assessments and less on cross-country and/or low and middle-income countries. Therefore the paper seeks to close the research gap by providing empirical evidence from 8,500 firms in 15 transition countries (Eastern Europe, South Caucasus, South East Europe, Middle East and North Africa). Using firm-level data from the Business Environment and Enterprise Performance Survey of the World Bank and EBRD and policy data from the SME Policy Index of the OECD, the paper investigates how government interventions affect SME’s likelihood of investing in any technological and non-technological innovation. Using the Standard Linear Regression, the impact of government interventions on SMEs’ innovation output and R&D activities is measured. The empirical analysis suggests that a firm’s decision to invest into innovative activities is sensitive to government interventions. A firm’s likelihood to invest into innovative activities increases by 3% to 8%, if the innovation eco-system noticeably improves (measured by an increase of 1 level in the SME Policy Index). At the same time, a better eco-system encourages SMEs to invest more in R&D. Government reforms in establishing a dedicated policy framework (IP legislation), institutional infrastructure (science and technology parks, incubators) and financial support (public R&D grants, innovation vouchers) are particularly relevant to stimulate innovation performance in SMEs. Particular segments of the SME population, namely micro and manufacturing firms, are more likely to benefit from an increased innovation framework conditions. The marginal effects are particularly strong on product innovation, process innovation, and marketing innovation, but less on management innovation. In conclusion, government interventions supporting innovation will likely lead to higher innovation performance of SMEs. They increase productivity at both firm and country level, which is a vital step in transitioning towards knowledge-based market economies.

Keywords: innovation, research and development, government interventions, economic development, small and medium-sized enterprises, transition countries

Procedia PDF Downloads 324
492 The Greek Revolution Through the Foreign Press. The Case of the Newspaper "The London Times" In the Period 1821-1828

Authors: Euripides Antoniades

Abstract:

In 1821 the Greek Revolution movement, under the political influence that arose from the French revolution, and the corresponding movements in Italy, Germany and America, requested the liberation of the nation and the establishment of an independent national state. Published topics in the British press regarding the Greek Revolution, focused on : a) the right of the Greeks to claim their freedom from Turkish domination in order to establish an independent state based on the principle of national autonomy, b) criticism regarding Turkish rule as illegal and the power of the Ottoman Sultan as arbitrary, c) the recognition of the Greek identity and its distinction from the Turkish one and d) the endorsement Greeks as the descendants of ancient Greeks. The advantage of newspaper as a media is sharing information and ideas and dealing with issues in greater depth and detail, unlike other media, such as radio or television. The London Times is a print publication that presents, in chronological or thematic order, the news, opinions or announcements about the most important events that have occurred in a place during a specified period of time. This paper employs the rich archive of The London Times archive by quoting extracts from publications of that period, to convey the British public perspective regarding the Greek Revolution from its beginning until the London Protocol of 1828. Furthermore, analyses the publications of the British newspaper in terms of the number of references to the Greek revolution, front page and editorial references as well as the size of publications on the revolution during the period 1821-1828. A combination of qualitative and quantitative content analysis was applied. An attempt was made to record Greek Revolution references along with the usage of specific words and expressions that contribute to the representation of the historical events and their exposure to the reading public. Key finds of this research reveal that a) there was a frequency of passionate daily articles concerning the events in Greece, their length, and context in The London Times, b) the British public opinion was influenced by this particular newspaper and c) the newspaper published various news about the revolution by adopting the role of animator of the Greek struggle. For instance, war events and the battles of Wallachin and Moldavia, Hydra, Crete, Psara, Mesollogi, Peloponnese were presented not only for informing the readers but for promoting the essential need for freedom and the establishment of an independent Greek state. In fact, this type of news was the main substance of the The London Times’ structure, establishing a positive image about the Greek Revolution contributing to the European diplomatic development such as the standpoint of France, - that did not wish to be detached from the conclusions regarding the English loans and the death of Alexander I of Russia and his succession by the ambitious Nicholas. These factors offered a change in the attitude of the British and Russians respectively assuming a positive approach towards Greece. The Great Powers maintained a neutral position in the Greek-Ottoman conflict, same time they engaged in Greek power increasement by offering aid.

Keywords: Greece, revolution, newspaper, the London times, London, great britain, mass media

Procedia PDF Downloads 90
491 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording

Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen

Abstract:

It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.

Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration

Procedia PDF Downloads 179
490 The Design of a Computer Simulator to Emulate Pathology Laboratories: A Model for Optimising Clinical Workflows

Authors: M. Patterson, R. Bond, K. Cowan, M. Mulvenna, C. Reid, F. McMahon, P. McGowan, H. Cormican

Abstract:

This paper outlines the design of a simulator to allow for the optimisation of clinical workflows through a pathology laboratory and to improve the laboratory’s efficiency in the processing, testing, and analysis of specimens. Often pathologists have difficulty in pinpointing and anticipating issues in the clinical workflow until tests are running late or in error. It can be difficult to pinpoint the cause and even more difficult to predict any issues which may arise. For example, they often have no indication of how many samples are going to be delivered to the laboratory that day or at a given hour. If we could model scenarios using past information and known variables, it would be possible for pathology laboratories to initiate resource preparations, e.g. the printing of specimen labels or to activate a sufficient number of technicians. This would expedite the clinical workload, clinical processes and improve the overall efficiency of the laboratory. The simulator design visualises the workflow of the laboratory, i.e. the clinical tests being ordered, the specimens arriving, current tests being performed, results being validated and reports being issued. The simulator depicts the movement of specimens through this process, as well as the number of specimens at each stage. This movement is visualised using an animated flow diagram that is updated in real time. A traffic light colour-coding system will be used to indicate the level of flow through each stage (green for normal flow, orange for slow flow, and red for critical flow). This would allow pathologists to clearly see where there are issues and bottlenecks in the process. Graphs would also be used to indicate the status of specimens at each stage of the process. For example, a graph could show the percentage of specimen tests that are on time, potentially late, running late and in error. Clicking on potentially late samples will display more detailed information about those samples, the tests that still need to be performed on them and their urgency level. This would allow any issues to be resolved quickly. In the case of potentially late samples, this could help to ensure that critically needed results are delivered on time. The simulator will be created as a single-page web application. Various web technologies will be used to create the flow diagram showing the workflow of the laboratory. JavaScript will be used to program the logic, animate the movement of samples through each of the stages and to generate the status graphs in real time. This live information will be extracted from an Oracle database. As well as being used in a real laboratory situation, the simulator could also be used for training purposes. ‘Bots’ would be used to control the flow of specimens through each step of the process. Like existing software agents technology, these bots would be configurable in order to simulate different situations, which may arise in a laboratory such as an emerging epidemic. The bots could then be turned on and off to allow trainees to complete the tasks required at that step of the process, for example validating test results.

Keywords: laboratory-process, optimization, pathology, computer simulation, workflow

Procedia PDF Downloads 286
489 Immunoprotective Role of Baker's Yeast (Saccharomyces cerevisiae) against Experimentally Induced Aflatoxicosis in Broiler Chicks

Authors: Zain Ul Abadeen, Muhammad Zargham Khan, Muhammad Kashif Saleemi, Ahrar Khan, Ijaz Javed Hassan, Aisha Khatoon, Qasim Altaf

Abstract:

Aflatoxins are secondary metabolites produced by toxigenic fungi, and there are four types of aflatoxins include AFB1, AFB2, AFG1 and AFG2. Aflatoxin B1 (AFB1) is considered as most toxic form. It is mainly responsible for the contamination of poultry feed and produces a condition called aflatoxicosis leads to immunosuppression in poultry birds. Saccharomyces cerevisiae is a single cell microorganism and acts as a source of growth factors, minerals and amino acids which improve the immunity and digestibility in poultry birds as probiotics. Saccharomyces cerevisiae is well recognized to cause the biological degradation of mycotoxins (toxin binder) because its cell wall contains β-glucans and mannans which specifically bind with aflatoxins and reduce their absorption or transfer them to some non-toxic compounds. The present study was designed to investigate the immunosuppressive effects of aflatoxins in broiler chicks and the reduction of severity of these effects by the use of Baker’s Yeast (Saccharomyces cerevisiae). One-day-old broiler chicks were procured from local hatchery and were divided into various groups (A-I). These groups were treated with different levels of AFB1 @ 400 µg/kg and 600 µg/kg along with different levels of Baker’s Yeast (Saccharomyces cerevisiae) 0.1% and 0.5 % in the feed. The total duration of the experiment was six weeks and different immunological parameters including the cellular immune response by injecting PHA-P (Phytohemagglutinin-P) in the skin of the birds, phagocytic function of mononuclear cells by Carbon clearance assay from blood samples and humoral immune response against intravenously injected sheep RBCs from the serum samples were determined. The birds from each group were slaughtered at the end of the experiment to determine the presence of gross lesions in the immune organs and these tissues were fixed in 10% neutral buffered formalin for histological investigations. The results showed that AFB1 intoxicated groups had reduced body weight gain, feed intake, organs weight and immunological responses compared to the control and Baker’s Yeast (Saccharomyces cerevisiae) treated groups. Different gross and histological degenerative changes were recorded in the immune organs of AFB1 intoxicated groups compared to control and Baker’s Yeast (Saccharomyces cerevisiae) treated groups. The present study concluded that Baker’s Yeast (Saccharomyces cerevisiae) addition in the feed helps to ameliorate the immunotoxigenic effects produced by AFB1 in broiler chicks.

Keywords: aflatoxins, body weight gain, feed intake, immunological response, toxigenic effect

Procedia PDF Downloads 312
488 CybeRisk Management in Banks: An Italian Case Study

Authors: E. Cenderelli, E. Bruno, G. Iacoviello, A. Lazzini

Abstract:

The financial sector is exposed to the risk of cyber-attacks like any other industrial sector. Furthermore, the topic of CybeRisk (cyber risk) has become particularly relevant given that Information Technology (IT) attacks have increased drastically in recent years, and cannot be stopped by single organizations requiring a response at international and national level. IT risk is never a matter purely for the IT manager, although he clearly plays a key role. A bank's risk management function requires a thorough understanding of the evolving risks as well as the tools and practical techniques available to address them. Upon the request of European and national legislation regarding CybeRisk in the financial system, banks are therefore called upon to strengthen the operational model for CybeRisk management. This will require an important change with a more intense collaboration with the structures that deal with information security for the development of an ad hoc system for the evaluation and control of this type of risk. The aim of the work is to propose a framework for the management and control of CybeRisk that will bridge the gap in the literature regarding the understanding and consideration of CybeRisk as an integral part of business management. The IT function has a strong relevance in the management of CybeRisk, which is perceived mainly as operational risk, but with a positive tendency on the part of risk management to the identification of CybeRisk assessment methods that are increasingly complete, quantitative and able to better describe the possible impacts on the business. The paper provides answers to the research questions: Is it possible to define a CybeRisk governance structure able to support the comparison between risk and security? How can the relationships between IT assets be integrated into a cyberisk assessment framework to guarantee a system of protection and risks control? From a methodological point of view, this research uses a case study approach. The choice of “Monte dei Paschi di Siena” was determined by the specific features of one of Italy’s biggest lenders. It is chosen to use an intensive research strategy: an in-depth study of reality. The case study methodology is an empirical approach to explore a complex and current phenomenon that develops over time. The use of cases has also the advantage of allowing the deepening of aspects concerning the "how" and "why" of contemporary events, on which the scholar has little control. The research bases on quantitative data and qualitative information obtained through semi-structured interviews of an open-ended nature and questionnaires to directors, members of the audit committee, risk, IT and compliance managers, and those responsible for internal audit function and anti-money laundering. The added value of the paper can be seen in the development of a framework based on a mapping of IT assets from which it is possible to identify their relationships for purposes of a more effective management and control of cyber risk.

Keywords: bank, CybeRisk, information technology, risk management

Procedia PDF Downloads 232
487 Use of Sewage Sludge Ash as Partial Cement Replacement in the Production of Mortars

Authors: Domagoj Nakic, Drazen Vouk, Nina Stirmer, Mario Siljeg, Ana Baricevic

Abstract:

Wastewater treatment processes generate significant quantities of sewage sludge that need to be adequately treated and disposed. In many EU countries, the problem of adequate disposal of sewage sludge has not been solved, nor is determined by the unique rules, instructions or guidelines. Disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater and sludge treatment technology. Among the solutions that seem reasonable, recycling of sewage sludge and its byproducts reaches the top recommendation. Within the framework of sustainable development, recycling of sludge almost completely closes the cycle of wastewater treatment in which only negligible amounts of waste that requires landfilling are being generated. In many EU countries, significant amounts of sewage sludge are incinerated, resulting in a new byproduct in the form of ash. Sewage sludge ash is three to five times less in volume compared to stabilized and dehydrated sludge, but it also requires further management. The combustion process also destroys hazardous organic components in the sludge and minimizes unpleasant odors. The basic objective of the presented research is to explore the possibilities of recycling of the sewage sludge ash as a supplementary cementitious material. This is because of the main oxides present in the sewage sludge ash (SiO2, Al2O3 and Cao, which is similar to cement), so it can be considered as latent hydraulic and pozzolanic material. Physical and chemical characteristics of ashes, generated by sludge collected from different wastewater treatment plants, and incinerated in laboratory conditions at different temperatures, are investigated since it is a prerequisite of its subsequent recycling and the eventual use in other industries. Research was carried out by replacing up to 20% of cement by mass in cement mortar mixes with different obtained ashes and examining characteristics of created mixes in fresh and hardened condition. The mixtures with the highest ash content (20%) showed an average drop in workability of about 15% which is attributed to the increased water requirements when ash was used. Although some mixes containing added ash showed compressive and flexural strengths equivalent to those of reference mixes, generally slight decrease in strength was observed. However, it is important to point out that the compressive strengths always remained above 85% compared to the reference mix, while flexural strengths remained above 75%. Ecological impact of innovative construction products containing sewage sludge ash was determined by analyzing leaching concentrations of heavy metals. Results demonstrate that sewage sludge ash can satisfy technical and environmental criteria for use in cementitious materials which represents a new recycling application for an increasingly important waste material that is normally landfilled. Particular emphasis is placed on linking the composition of generated ashes depending on its origin and applied treatment processes (stage of wastewater treatment, sludge treatment technology, incineration temperature) with the characteristics of the final products. Acknowledgement: This work has been fully supported by Croatian Science Foundation under the project '7927 - Reuse of sewage sludge in concrete industry – from infrastructure to innovative construction products'.

Keywords: cement mortar, recycling, sewage sludge ash, sludge disposal

Procedia PDF Downloads 247
486 Acoustic Energy Harvesting Using Polyvinylidene Fluoride (PVDF) and PVDF-ZnO Piezoelectric Polymer

Authors: S. M. Giripunje, Mohit Kumar

Abstract:

Acoustic energy that exists in our everyday life and environment have been overlooked as a green energy that can be extracted, generated, and consumed without any significant negative impact to the environment. The harvested energy can be used to enable new technology like wireless sensor networks. Technological developments in the realization of truly autonomous MEMS devices and energy storage systems have made acoustic energy harvesting (AEH) an increasingly viable technology. AEH is the process of converting high and continuous acoustic waves from the environment into electrical energy by using an acoustic transducer or resonator. AEH is not popular as other types of energy harvesting methods since sound waves have lower energy density and such energy can only be harvested in very noisy environment. However, the energy requirements for certain applications are also correspondingly low and also there is a necessity to observe the noise to reduce noise pollution. So the ability to reclaim acoustic energy and store it in a usable electrical form enables a novel means of supplying power to relatively low power devices. A quarter-wavelength straight-tube acoustic resonator as an acoustic energy harvester is introduced with polyvinylidene fluoride (PVDF) and PVDF doped with ZnO nanoparticles, piezoelectric cantilever beams placed inside the resonator. When the resonator is excited by an incident acoustic wave at its first acoustic eigen frequency, an amplified acoustic resonant standing wave is developed inside the resonator. The acoustic pressure gradient of the amplified standing wave then drives the vibration motion of the PVDF piezoelectric beams, generating electricity due to the direct piezoelectric effect. In order to maximize the amount of the harvested energy, each PVDF and PVDF-ZnO piezoelectric beam has been designed to have the same structural eigen frequency as the acoustic eigen frequency of the resonator. With a single PVDF beam placed inside the resonator, the harvested voltage and power become the maximum near the resonator tube open inlet where the largest acoustic pressure gradient vibrates the PVDF beam. As the beam is moved to the resonator tube closed end, the voltage and power gradually decrease due to the decreased acoustic pressure gradient. Multiple piezoelectric beams PVDF and PVDF-ZnO have been placed inside the resonator with two different configurations: the aligned and zigzag configurations. With the zigzag configuration which has the more open path for acoustic air particle motions, the significant increases in the harvested voltage and power have been observed. Due to the interruption of acoustic air particle motion caused by the beams, it is found that placing PVDF beams near the closed tube end is not beneficial. The total output voltage of the piezoelectric beams increases linearly as the incident sound pressure increases. This study therefore reveals that the proposed technique used to harvest sound wave energy has great potential of converting free energy into useful energy.

Keywords: acoustic energy, acoustic resonator, energy harvester, eigenfrequency, polyvinylidene fluoride (PVDF)

Procedia PDF Downloads 385
485 Detection of Antibiotic Resistance Genes and Antibiotic Residues in Plant-based Products

Authors: Morello Sara, Pederiva Sabina, Bianchi Manila, Martucci Francesca, Marchis Daniela, Decastelli Lucia

Abstract:

Vegetables represent an integral part of a healthy diet due to their valuable nutritional properties and the growth in consumer demand in recent years is particularly remarkable for a diet rich in vitamins and micronutrients. However, plant-based products are involved in several food outbreaks connected to various sources of contamination and quite often, bacteria responsible for side effects showed high resistance to antibiotics. The abuse of antibiotics can be one of the main mechanisms responsible for increasing antibiotic resistance (AR). Plants grown for food use can be contaminated directly by spraying antibiotics on crops or indirectly by treatments with antibiotics due to the use of manure, which may contain both antibiotics and genes of antibiotic resistance (ARG). Antibiotic residues could represent a potential way of human health risk due to exposure through the consumption of plant-based foods. The presence of antibiotic-resistant bacteria might pose a particular risk to consumers. The present work aims to investigate through a multidisciplinary approach the occurrence of ARG by means of a biomolecular approach (PCR) and the prevalence of antibiotic residues using a multi residues LC-MS/MS method, both in different plant-based products. During the period from July 2020 to October 2021, a total of 74 plant samples (33 lettuces and 41 tomatoes) were collected from 57 farms located throughout the Piedmont area, and18 out of 74 samples (11 lettuces and 7 tomatoes) were selected to LC-MS/MS analyses. DNA extracted (ExtractME, Blirt, Poland) from plants used on crops and isolated bacteria were analyzed with 6 sets of end-point multiplex PCR (Qiagen, Germany) to detect the presence of resistance genes of the main antibiotic families, such as tet genes (tetracyclines), bla (β-lactams) and mcr (colistin). Simultaneous detection of 43 molecules of antibiotics belonging to 10 different classes (tetracyclines, sulphonamides, quinolones, penicillins, amphenicols, macrolides, pleuromotilines, lincosamides, diaminopyrimidines) was performed using Exion LC system AB SCIEX coupled to a triple quadrupole mass spectrometer QTRAP 5500 from AB SCIEX. The PCR assays showed the presence of ARG in 57% (n=42): tetB (4.8%; n=2), tetA (9.5%; n=4), tetE (2.4%; n=1), tetL (12%; n=5), tetM (26%; n=11), blaSHV (21.5%; n=9), blaTEM (4.8%; n =2) and blaCTX-M (19%; n=8). In none of the analyzed samples was the mcr gene responsible for colistin resistance detected. Results obtained from LC-MS/MS analyses showed that none of the tested antibiotics appear to exceed the LOQ (100 ppb). Data obtained confirmed the presence of bacterial populations containing antibiotic resistance determinants such as tet gene (tetracycline) and bla genes (beta-lactams), widely used in human medicine, which can join the food chain and represent a risk for consumers, especially with raw products. The presence of traces of antibiotic residues in vegetables, in concentration below the LOQ of the LC-MS/MS method applied, cannot be excluded. In conclusion, traces of antibiotic residues could be a health risk to the consumer due to potential involvement in the spread of AR. PCR represents a useful and effective approach to characterize and monitor AR carried by bacteria from the entire food chain.

Keywords: plant-based products, ARG, PCR, antibiotic residues

Procedia PDF Downloads 90
484 Peak Constituent Fluxes from Small Arctic Rivers Generated by Late Summer Episodic Precipitation Events

Authors: Shawn G. Gallaher, Lilli E. Hirth

Abstract:

As permafrost thaws with the continued warming of the Alaskan North Slope, a progressively thicker active thaw layer is evidently releasing previously sequestered nutrients, metals, and particulate matter exposed to fluvial transport. In this study, we estimate material fluxes on the North Slope of Alaska during the 2019-2022 melt seasons. The watershed of the Alaskan North Slope can be categorized into three regions: mountains, tundra, and coastal plain. Precipitation and discharge data were collected from repeat visits to 14 sample sites for biogeochemical surface water samples, 7 point discharge measurements, 3 project deployed meteorology stations, and 2 U. S. Geological Survey (USGS) continuous discharge observation sites. The timing, intensity, and spatial distribution of precipitation determine the material flux composition in the Sagavanirktok and surrounding bodies of water, with geogenic constituents (e.g., dissolved inorganic carbon (DIC)) expected from mountain flushed events and biogenic constituents (e.g., dissolved organic compound (DOC)) expected from transitional tundra precipitation events. Project goals include connecting late summer precipitation events to peak discharge to determine the responses of the watershed to localized atmospheric forcing. Field study measurements showed widespread precipitation in August 2019, generating an increase in total suspended solids, dissolved organic carbon, and iron fluxes from the tundra, shifting the main-stem mountain river biogeochemistry toward tundra source characteristics typically only observed during the spring floods. Intuitively, a large-scale precipitation event (as defined by this study as exceeding 12.5 mm of precipitation on a single observation day) would dilute a body of water; however, in this study, concentrations increased with higher discharge responses on several occasions. These large-scale precipitation events continue to produce peak constituent fluxes as the thaw layer increases in depth and late summer precipitation increases, evidenced by 6 large-scale events in July 2022 alone. This increase in late summer events is in sharp contrast to the 3 or fewer large events in July in each of the last 10 years. Changes in precipitation intensity, timing, and location have introduced late summer peak constituent flux events previously confined to the spring freshet.

Keywords: Alaska North Slope, arctic rivers, material flux, precipitation

Procedia PDF Downloads 75
483 Examining the Overuse of Cystoscopy in the Evaluation of Lower Urinary Tract Symptoms in Men with Benign Prostatic Hyperplasia: A Prospective Study

Authors: Ilija Kelepurovski, Stefan Lazorovski, Pece Petkovski, Marian Anakievski, Svetlana Petkovska

Abstract:

Introduction: Benign prostatic hyperplasia (BPH) is a common condition that affects men over the age of 50 and is characterized by an enlarged prostate gland that can cause lower urinary tract symptoms (LUTS). Uroflowmetry and cystoscopy are two commonly used diagnostic tests to evaluate LUTS and diagnose BPH. While both tests can be useful, there is a risk of overusing cystoscopy and underusing uroflowmetry in the evaluation of LUTS. The aim of this study was to compare the use of uroflowmetry and cystoscopy in a prospective cohort of 100 patients with suspected BPH or other urinary tract conditions and to assess the diagnostic yield of each test. Materials and Methods: This was a prospective study of 100 male patients over the age of 50 with suspected BPH or other urinary tract conditions who underwent uroflowmetry and cystoscopy for the evaluation of LUTS at a single tertiary care center. Inclusion criteria included male patients over the age of 50 with suspected BPH or other urinary tract conditions, while exclusion criteria included previous urethral or bladder surgery, active urinary tract infection, and significant comorbidities. The primary outcome of the study was the frequency of cystoscopy in the evaluation of LUTS, and the secondary outcome was the diagnostic yield of each test. Results: Of the 100 patients included in the study, 86 (86%) were diagnosed with BPH and 14 (14%) had other urinary tract conditions. The mean age of the study population was 67 years. Uroflowmetry was performed on all 100 patients, while cystoscopy was performed on 70 (70%) of the patients. The diagnostic yield of uroflowmetry was high, with a clear diagnosis made in 92 (92%) of the patients. The diagnostic yield of cystoscopy was also high, with a clear diagnosis made in 63 (90%) of the patients who underwent the procedure. There was no statistically significant difference in the diagnostic yield of uroflowmetry and cystoscopy (p = 0.20). Discussion: Our study found that uroflowmetry is an effective and well-tolerated diagnostic tool for evaluating LUTS and diagnosing BPH, with a high diagnostic yield and low risk of complications. Cystoscopy is also a useful diagnostic tool, but it is more invasive and carries a small risk of complications such as bleeding or urinary tract infection. Both tests had a high diagnostic yield, suggesting that either test can provide useful information in the evaluation of LUTS. However, the fact that 70% of the study population underwent cystoscopy raises concerns about the potential overuse of this test in the evaluation of LUTS. This is especially relevant given the focus on patient-centered care and the need to minimize unnecessary or invasive procedures. Our findings underscore the importance of considering the clinical context and using evidence-based guidelines. Conclusion: In this prospective study of 100 patients with suspected BPH or other urinary tract conditions, we found that uroflowmetry and cystoscopy were both valuable diagnostic tools for the evaluation of LUTS. However, the potential overuse of cystoscopy in this population warrants further investigation and highlights the need for careful consideration of the optimal use of diagnostic tests in the evaluation of LUTS and the diagnosis of BPH. Further research is needed to better understand the relative roles of uroflowmetry and cystoscopy in the diagnostic workup of patients with LUTS, and to develop evidence-based guidelines for their appropriate use.

Keywords: uroflowmetry, cystoscopy, LUTS, BPH

Procedia PDF Downloads 77
482 Vicarious Cues in Portraying Emotion: Musicians' Self-Appraisal

Authors: W. Linthicum-Blackhorse, P. Martens

Abstract:

This present study seeks to discover attitudinal commonalities and differences within a musician population relative to the communication of emotion via music. We hypothesized that instrument type, as well as age and gender, would bear significantly on musicians’ opinions. A survey was administered to 178 participants; 152 were current music majors (mean age 20.3 years, 62 female) and 26 were adult participants in a community choir (mean age 54.0 years, 12 female). The adult participants were all vocalists, while student participants represented the full range of orchestral instruments. The students were grouped by degree program, (performance, music education, or other) and instrument type (voice, brass, woodwinds, strings, percussion). The survey asked 'How important are each of the following areas to you for portraying emotion in music?' Participants were asked to rate each of 15 items on a scale of 1 (not at all important) to 10 (very important). Participants were also instructed to leave blank any item that they did not understand. The 15 items were: dynamic contrast, overall volume, phrasing, facial expression, staging (placement), pitch accuracy, tempo changes, bodily movement, your mood, your attitude, vibrato, rubato, stage/room lighting, clothing type, and clothing color. Contrary to our hypothesis, there was no overall effect of gender or age, and neither did any single response item show a significant difference due to these subject parameters. Among the student participants, however, one-way ANOVA revealed a significant effect of degree program on the rated importance of four items: dynamic contrast, tempo changes, vibrato, and rubato. Significant effects of instrument type were found in the responses to eight items: facial expression, staging, body movement, vibrato, rubato, lighting, clothing type, and clothing color. Post hoc comparisons (Tukey) show that some variation follows from obvious differences between instrument types (e.g. string players are more concerned with vibrato than everyone but woodwind players; vocalists are significantly more concerned with facial expression than everyone but string players), but other differences could point to communal mindsets toward vicarious cues within instrument type. These mindsets could be global (e.g. brass players deeming body movement significantly less important than string players, being less often featured as soloists and appearing less often at the front of the stage) or local (e.g. string players being significantly more concerned than all other groups about both clothing color and type, perhaps due to the strongly-expressed opinions of specific teachers). Future work will attempt to identify the source of these self-appraisals, whether enculturated via explicit pedagogy, or whether absorbed from individuals' observations and performance experience.

Keywords: performance, vicarious cues, communication, emotion

Procedia PDF Downloads 110
481 Digital Twins: Towards an Overarching Framework for the Built Environment

Authors: Astrid Bagireanu, Julio Bros-Williamson, Mila Duncheva, John Currie

Abstract:

Digital Twins (DTs) have entered the built environment from more established industries like aviation and manufacturing, although there has never been a common goal for utilising DTs at scale. Defined as the cyber-physical integration of data between an asset and its virtual counterpart, DT has been identified in literature from an operational standpoint – in addition to monitoring the performance of a built asset. However, this has never been translated into how DTs should be implemented into a project and what responsibilities each project stakeholder holds in the realisation of a DT. What is needed is an approach to translate these requirements into actionable DT dimensions. This paper presents a foundation for an overarching framework specific to the built environment. For the purposes of this research, the UK widely used the Royal Institute of British Architects (RIBA) Plan of Work from 2020 is used as a basis for itemising project stages. The RIBA Plan of Work consists of eight stages designed to inform on the definition, briefing, design, coordination, construction, handover, and use of a built asset. Similar project stages are utilised in other countries; therefore, the recommendations from the interviews presented in this paper are applicable internationally. Simultaneously, there is not a single mainstream software resource that leverages DT abilities. This ambiguity meets an unparalleled ambition from governments and industries worldwide to achieve a national grid of interconnected DTs. For the construction industry to access these benefits, it necessitates a defined starting point. This research aims to provide a comprehensive understanding of the potential applications and ramifications of DT in the context of the built environment. This paper is an integral part of a larger research aimed at developing a conceptual framework for the Architecture, Engineering, and Construction (AEC) sector following a conventional project timeline. Therefore, this paper plays a pivotal role in providing practical insights and a tangible foundation for developing a stage-by-stage approach to assimilate the potential of DT within the built environment. First, the research focuses on a review of relevant literature, albeit acknowledging the inherent constraint of limited sources available. Secondly, a qualitative study compiling the views of 14 DT experts is presented, concluding with an inductive analysis of the interview findings - ultimately highlighting the barriers and strengths of DT in the context of framework development. As parallel developments aim to progress net-zero-centred design and improve project efficiencies across the built environment, the limited resources available to support DTs should be leveraged to propel the industry to reach its digitalisation era, in which AEC stakeholders have a fundamental role in understanding this, from the earliest stages of a project.

Keywords: digital twins, decision-making, design, net-zero, built environment

Procedia PDF Downloads 122
480 A Cross-Sectional Study Assessing Communication Practices among Doctors at a University Hospital in Pakistan

Authors: Muhammad Waqas Baqai, Noman Shahzad, Rehman Alvi

Abstract:

Communication among health care givers is the essence of quality patient care and any compromise results in errors and inefficiency leading to cumbersome outcomes. The use of smartphone among health professionals has increased tremendously. Almost every health professional carries it and majority of them uses a third party communication software called whatsApp for work related communications. It gives instant access to the person responsible for any particular query and therefore helps in efficient and timely decision making. It is also an easy way of sharing medical documents, multimedia and provides platform for consensual decision making through group discussions. However clinical communication through whatsApp has some demerits too including reduction in verbal communication, worsening professional relations, unprofessional behavior, risk of confidentiality breach and threats from cyber-attacks. On the other hand the traditional pager device being used in many health care systems is a unidirectional communication that lacks the ability to convey any information other than the number to which the receiver has to respond. Our study focused on these two widely used modalities of communication among doctors of the largest tertiary care center of Pakistan i.e. The Aga Khan University Hospital. Our aim was to note which modality is considered better and has fewer threats to medical data. Approval from ethical review committee of the institute was taken prior to conduction of this study. We submitted an online survey form to all the interns and residents working at our institute and collected their response in a month’s time. 162 submissions were recorded and analyzed using descriptive statistics. Only 20% of them were comfortable with using pagers exclusively, 52% with whatsApp and 28% with both. 65% think that whatsApp is time-saving and quicker than pager. 54% of them considered whatsApp to be causing nuisance from work related notifications in their off-work hours. 60% think that they are more likely to miss information through pager system because of the unidirectional nature. Almost all (96%) of residents and interns found whatsApp to be useful in terms of saving information for future reference. For urgent issues, majority (70%) preferred pager over whatsApp and also pager was considered more valid in terms of hospital policies and legal issues. Among major advantages of whatsApp as listed by them were; easy mass communication, sharing of clinical pictures, universal access and no need of carrying additional device. However the major drawback of using whatsApp for clinical communication that everyone shared was threat to patients’ confidentiality as clinicians usually share pictures of wounds, clinical documents etc. Lastly we asked them if they think there is a need of a separate application for instant communication dedicated to clinical communication only and 90% responded positively. Therefore, we concluded that both modalities have their merits and demerits but the greatest drawback with whatsApp is the risk of breach in patients’ confidentiality and off-work disturbance. Hence, we recommend a more secure, institute-run application for all intra hospital communications where they can share documents, pictures etc. easily under a controlled environment.

Keywords: WhatsApp, pager, clinical communication, confidentiality

Procedia PDF Downloads 146
479 Novel Numerical Technique for Dusty Plasma Dynamics (Yukawa Liquids): Microfluidic and Role of Heat Transport

Authors: Aamir Shahzad, Mao-Gang He

Abstract:

Currently, dusty plasmas motivated the researchers' widespread interest. Since the last two decades, substantial efforts have been made by the scientific and technological community to investigate the transport properties and their nonlinear behavior of three-dimensional and two-dimensional nonideal complex (dusty plasma) liquids (NICDPLs). Different calculations have been made to sustain and utilize strongly coupled NICDPLs because of their remarkable scientific and industrial applications. Understanding of the thermophysical properties of complex liquids under various conditions is of practical interest in the field of science and technology. The determination of thermal conductivity is also a demanding question for thermophysical researchers, due to some reasons; very few results are offered for this significant property. Lack of information of the thermal conductivity of dense and complex liquids at different parameters related to the industrial developments is a major barrier to quantitative knowledge of the heat flux flow from one medium to another medium or surface. The exact numerical investigation of transport properties of complex liquids is a fundamental research task in the field of thermophysics, as various transport data are closely related with the setup and confirmation of equations of state. A reliable knowledge of transport data is also important for an optimized design of processes and apparatus in various engineering and science fields (thermoelectric devices), and, in particular, the provision of precise data for the parameters of heat, mass, and momentum transport is required. One of the promising computational techniques, the homogenous nonequilibrium molecular dynamics (HNEMD) simulation, is over viewed with a special importance on the application to transport problems of complex liquids. This proposed work is particularly motivated by the FIRST TIME to modify the problem of heat conduction equations leads to polynomial velocity and temperature profiles algorithm for the investigation of transport properties with their nonlinear behaviors in the NICDPLs. The aim of proposed work is to implement a NEMDS algorithm (Poiseuille flow) and to delve the understanding of thermal conductivity behaviors in Yukawa liquids. The Yukawa system is equilibrated through the Gaussian thermostat in order to maintain the constant system temperature (canonical ensemble ≡ NVT)). The output steps will be developed between 3.0×105/ωp and 1.5×105/ωp simulation time steps for the computation of λ data. The HNEMD algorithm shows that the thermal conductivity is dependent on plasma parameters and the minimum value of lmin shifts toward higher G with an increase in k, as expected. New investigations give more reliable simulated data for the plasma conductivity than earlier known simulation data and generally the plasma λ0 by 2%-20%, depending on Γ and κ. It has been shown that the obtained results at normalized force field are in satisfactory agreement with various earlier simulation results. This algorithm shows that the new technique provides more accurate results with fast convergence and small size effects over a wide range of plasma states.

Keywords: molecular dynamics simulation, thermal conductivity, nonideal complex plasma, Poiseuille flow

Procedia PDF Downloads 274
478 Life Cycle Assessment of a Parabolic Solar Cooker

Authors: Bastien Sanglard, Lou Magnat, Ligia Barna, Julian Carrey, Sébastien Lachaize

Abstract:

Cooking is a primary need for humans, several techniques being used around the globe based on different sources of energy: electricity, solid fuel (wood, coal...), fuel or liquefied petroleum gas. However, all of them leads to direct or indirect greenhouse gas emissions and sometimes health damage in household. Therefore, the solar concentrated power represent a great option to lower the damages because of a cleaner using phase. Nevertheless, the construction phase of the solar cooker still requires primary energy and materials, which leads to environmental impacts. The aims of this work is to analyse the ecological impacts of a commercialaluminium parabola and to compare it with other means of cooking, taking the boiling of 2 litres of water three times a day during 40 years as the functional unit. Life cycle assessment was performed using the software Umberto and the EcoInvent database. Calculations were realized over more than 13 criteria using two methods: the international panel on climate change method and the ReCiPe method. For the reflector itself, different aluminium provenances were compared, as well as the use of recycled aluminium. For the structure, aluminium was compared to iron (primary and recycled) and wood. Results show that climate impacts of the studied parabola was 0.0353 kgCO2eq/kWh when built with Chinese aluminium and can be reduced by 4 using aluminium from Canada. Assessment also showed that using 32% of recycled aluminium would reduce the impact by 1.33 and 1.43 compared to the use of primary Canadian aluminium and primary Chinese aluminium, respectively. The exclusive use of recycled aluminium lower the impact by 17. Besides, the use of iron (recycled or primary) or wood for the structure supporting the reflector significantly lowers the impact. The impact categories of the ReCiPe method show that the parabola made from Chinese aluminium has the heaviest impact - except for metal resource depletion - compared to aluminium from Canada, recycled aluminium or iron. Impact of solar cooking was then compared to gas stove and induction. The gas stove model was a cast iron tripod that supports the cooking pot, and the induction plate was as well a single spot plate. Results show the parabolic solar cooker has the lowest ecological impact over the 13 criteria of the ReCiPe method and over the global warming potential compared to the two other technologies. The climate impact of gas cooking is 0.628kgCO2/kWh when used with natural gas and 0.723 kgCO2/kWh when used with a bottle of gas. In each case, the main part of emissions came from gas burning. Induction cooking has a global warming potential of 0.12 kgCO2eq/kWh with the electricity mix of France, 96.3% of the impact being due to electricity production. Therefore, the electricity mix is a key factor for this impact: for instance, with the electricity mix of Germany and Poland, impacts are 0.81kgCO2eq/kWh and 1.39 kgCO2eq/kWh, respectively. Therefore, the parabolic solar cooker has a real ecological advantages compared to both gas stove and induction plate.

Keywords: life cycle assessement, solar concentration, cooking, sustainability

Procedia PDF Downloads 184
477 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition

Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang

Abstract:

Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.

Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model

Procedia PDF Downloads 109
476 Molecular Defects Underlying Genital Ambiguity in Egyptian Patients: A Systematic Review

Authors: Y. Z. Gad

Abstract:

Disorders of Sex Development (DSD) are defined as congenital conditions in which development of chromosomal, gonadal or anatomical sex is atypical. The DSD are relatively prevalent in Egypt. In spite of that, the relative rarity of the individual disease types or their molecular pathologies frequently resulted in reporting on single or few cases. This augmented the challenging nature of phenotype-genotype correlation in this disease group and its utilization in the management of such medical emergency. Through critical assessment of the published DSD reports, the current review aims at analyzing the clinical characteristics of the various DSD forms in relation to the underlying molecular pathologies. A systematic literature search was done in Pubmed, using relevant keywords (Egypt versus DSD, genital ambiguity or ambiguous genitalia, the old terms of 'intersex, hermaphroditism and pseudohermaphroditism', and a list of the DSD entities and their related genes). The search yielded 24 reports of molecular data in Egyptian patients presenting with ambiguous genitalia. However, only 21 publications fulfilled the criteria of inclusion of detailed clinical descriptions and definitive molecular diagnoses of individual patients. Curation of the data yielded a total of 53 cases that were ascertained from 40 families. Fifty-one patients present with ambiguous genitalia only while 2 had multiple congenital anomalies. Parental consanguinity was noted in 60% of cases. Sex of rearing at initial presentation was female in 75% and 60% in 46,XY and 46,XX DSD cases, respectively. The external genital phenotype in 2/3 of the 46,XY DSD cases showed moderate undermasculinization [Quigley scores 3 & 4] and 1/3 had severe presentations [scores 5 & 6]. For 46,XX subjects, 1 had severe virilization of the external genitalia while 8 had moderate phenotype. Hormonal data were inconclusive or contradictory to final diagnosis in a forth of cases. Collectively, 31 families [31/40, 77.5%] with 46,XY DSD had molecular defects in the genes, 5 alpha reductase 2 (SRD5A2) [12/31], 17 beta-hydroxysteroid dehydrogenase 3 [8/31], androgen receptor [7/31], Steroidogenic factor 1 [2/31], luteinizing hormone receptor [1/31], and fibroblast growth factor receptor 1 [1/31]. In a multiethnic study, 9 families afflicted with 46,XX DSD due to 11 beta hydroxylase (CYP11B1) deficiency were documented. Two recurrent mutations, G34R and N160D, in SRD5A2 were present, respectively, in 42 and 17% of cases. Similarly, 4 recurrent mutations resulted in 89% of the CYP11B1 presentations. In conclusion, this analysis highlights the importance of autosomal recessive inheritance and inbreeding among DSD presentations, the importance of founder effect in at least 2 disorders, the difficulties in relating the genotype with the indeterminate genital phenotype, the under-reporting of some DSD subtypes, and the notion that the reported mutational profiles among Egyptian DSD cases are relatively different from those reported in other ethnic groups.

Keywords: disorders of sex development, genital ambiguity, mutation, molecular diagnosis, Egypt

Procedia PDF Downloads 137
475 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens

Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang

Abstract:

The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.

Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen

Procedia PDF Downloads 69
474 Strategic Asset Allocation Optimization: Enhancing Portfolio Performance Through PCA-Driven Multi-Objective Modeling

Authors: Ghita Benayad

Abstract:

Asset allocation, which affects the long-term profitability of portfolios by distributing assets to fulfill a range of investment objectives, is the cornerstone of investment management in the dynamic and complicated world of financial markets. This paper offers a technique for optimizing strategic asset allocation with the goal of improving portfolio performance by addressing the inherent complexity and uncertainty of the market through the use of Principal Component Analysis (PCA) in a multi-objective modeling framework. The study's first section starts with a critical evaluation of conventional asset allocation techniques, highlighting how poorly they are able to capture the intricate relationships between assets and the volatile nature of the market. In order to overcome these challenges, the project suggests a PCA-driven methodology that isolates important characteristics influencing asset returns by decreasing the dimensionality of the investment universe. This decrease provides a stronger basis for asset allocation decisions by facilitating a clearer understanding of market structures and behaviors. Using a multi-objective optimization model, the project builds on this foundation by taking into account a number of performance metrics at once, including risk minimization, return maximization, and the accomplishment of predetermined investment goals like regulatory compliance or sustainability standards. This model provides a more comprehensive understanding of investor preferences and portfolio performance in comparison to conventional single-objective optimization techniques. While applying the PCA-driven multi-objective optimization model to historical market data, aiming to construct portfolios better under different market situations. As compared to portfolios produced from conventional asset allocation methodologies, the results show that portfolios optimized using the proposed method display improved risk-adjusted returns, more resilience to market downturns, and better alignment with specified investment objectives. The study also looks at the implications of this PCA technique for portfolio management, including the prospect that it might give investors a more advanced framework for navigating financial markets. The findings suggest that by combining PCA with multi-objective optimization, investors may obtain a more strategic and informed asset allocation that is responsive to both market conditions and individual investment preferences. In conclusion, this capstone project improves the field of financial engineering by creating a sophisticated asset allocation optimization model that integrates PCA with multi-objective optimization. In addition to raising concerns about the condition of asset allocation today, the proposed method of portfolio management opens up new avenues for research and application in the area of investment techniques.

Keywords: asset allocation, portfolio optimization, principle component analysis, multi-objective modelling, financial market

Procedia PDF Downloads 47