Search results for: green capacity ratio.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10323

Search results for: green capacity ratio.

2853 Time-Dependent Reliability Analysis of Corrosion Affected Cast Iron Pipes with Mixed Mode Fracture

Authors: Chun-Qing Li, Guoyang Fu, Wei Yang

Abstract:

A significant portion of current water networks is made of cast iron pipes. Due to aging and deterioration with corrosion being the most predominant mechanism, the failure rate of cast iron pipes is very high. Although considerable research has been carried out in the past few decades, most are on the effect of corrosion on the structural capacity of pipes using strength theory as the failure criterion. This paper presents a reliability-based methodology for the assessment of corrosion affected cast iron pipe cracking failures. A nonlinear limit state function taking into account all three fracture modes is proposed for brittle metal pipes with mixed mode fracture. A stochastic model of the load effect is developed, and time-dependent reliability method is employed to quantify the probability of failure and predict the remaining service life. A case study is carried out using the proposed methodology, followed by sensitivity analysis to investigate the effects of the random variables on the probability of failure. It has been found that the larger the inclination angle or the Mode I fracture toughness is, the smaller the probability of pipe failure is. It has also been found that the multiplying and exponential coefficients k and n in the power law corrosion model and the internal pressure have the most influence on the probability of failure for cast iron pipes. The methodology presented in this paper can assist pipe engineers and asset managers in developing a risk-informed and cost-effective strategy for better management of corrosion-affected pipelines.

Keywords: corrosion, inclined surface cracks, pressurized cast iron pipes, stress intensity

Procedia PDF Downloads 321
2852 The Effect of a Saturated Kink on the Dynamics of Tungsten Impurities in the Plasma Core

Authors: H. E. Ferrari, R. Farengo, C. F. Clauser

Abstract:

Tungsten (W) will be used in ITER as one of the plasma facing components (PFCs). The W could migrate to the plasma center. This could have a potentially deleterious effect on plasma confinement. Electron cyclotron resonance heating (ECRH) can be used to prevent W accumulation. We simulated a series of H mode discharges in ASDEX U with PFC containing W, where central ECRH was used to prevent W accumulation in the plasma center. The experiments showed that the W density profiles were flat after a sawtooth crash, and become hollow in between sawtooth crashes when ECRH has been applied. It was also observed that a saturated kink mode was active in these conditions. We studied the effect of saturated kink like instabilities on the redistribution of W impurities. The kink was modeled as the sum of a simple analytical equilibrium (large aspect ratio, circular cross section) plus the perturbation produced by the kink. A numerical code that follows the exact trajectories of the impurity ions in the total fields and includes collisions was employed. The code is written in Cuda C and runs in Graphical Processing Units (GPUs), allowing simulations with a large number of particles with modest resources. Our simulations show that when the W ions have a thermal velocity distribution, the kink has no effect on the W density. When we consider the plasma rotation, the kink can affect the W density. When the average passing frequency of the W particles is similar to the frequency of the kink mode, the expulsion of W ions from the plasma core is maximum, and the W density shows a hollow structure. This could have implications for the mitigation of W accumulation.

Keywords: impurity transport, kink instability, tungsten accumulation, tungsten dynamics

Procedia PDF Downloads 171
2851 Using Optimal Cultivation Strategies for Enhanced Biomass and Lipid Production of an Indigenous Thraustochytrium sp. BM2

Authors: Hsin-Yueh Chang, Pin-Chen Liao, Jo-Shu Chang, Chun-Yen Chen

Abstract:

Biofuel has drawn much attention as a potential substitute to fossil fuels. However, biodiesel from waste oil, oil crops or other oil sources can only satisfy partial existing demands for transportation. Due to the feature of being clean, green and viable for mass production, using microalgae as a feedstock for biodiesel is regarded as a possible solution for a low-carbon and sustainable society. In particular, Thraustochytrium sp. BM2, an indigenous heterotrophic microalga, possesses the potential for metabolizing glycerol to produce lipids. Hence, it is being considered as a promising microalgae-based oil source for biodiesel production and other applications. This study was to optimize the culture pH, scale up, assess the feasibility of producing microalgal lipid from crude glycerol and apply operation strategies following optimal results from shake flask system in a 5L stirred-tank fermenter for further enhancing lipid productivities. Cultivation of Thraustochytrium sp. BM2 without pH control resulted in the highest lipid production of 3944 mg/L and biomass production of 4.85 g/L. Next, when initial glycerol and corn steep liquor (CSL) concentration increased five times (50 g and 62.5 g, respectively), the overall lipid productivity could reach 124 mg/L/h. However, when using crude glycerol as a sole carbon source, direct addition of crude glycerol could inhibit culture growth. Therefore, acid and metal salt pretreatment methods were utilized to purify the crude glycerol. Crude glycerol pretreated with acid and CaCl₂ had the greatest overall lipid productivity 131 mg/L/h when used as a carbon source and proved to be a better substitute for pure glycerol as carbon source in Thraustochytrium sp. BM2 cultivation medium. Engineering operation strategies such as fed-batch and semi-batch operation were applied in the cultivation of Thraustochytrium sp. BM2 for the improvement of lipid production. In cultivation of fed-batch operation strategy, harvested biomass 132.60 g and lipid 69.15 g were obtained. Also, lipid yield 0.20 g/g glycerol was same as in batch cultivation, although with poor overall lipid productivity 107 mg/L/h. In cultivation of semi-batch operation strategy, overall lipid productivity could reach 158 mg/L/h due to the shorter cultivation time. Harvested biomass and lipid achieved 232.62 g and 126.61 g respectively. Lipid yield was improved from 0.20 to 0.24 g/g glycerol. Besides, product costs of three kinds of operation strategies were also calculated. The lowest product cost 12.42 $NTD/g lipid was obtained while employing semi-batch operation strategy and reduced 33% in comparison with batch operation strategy.

Keywords: heterotrophic microalga Thrasutochytrium sp. BM2, microalgal lipid, crude glycerol, fermentation strategy, biodiesel

Procedia PDF Downloads 148
2850 Optical Emission Studies of Laser Produced Lead Plasma: Measurements of Transition Probabilities of the 6P7S → 6P2 Transitions Array

Authors: Javed Iqbal, R. Ahmed, M. A. Baig

Abstract:

We present new data on the optical emission spectra of the laser produced lead plasma using a pulsed Nd:YAG laser at 1064 nm (pulse energy 400 mJ, pulse width 5 ns, 10 Hz repetition rate) in conjunction with a set of miniature spectrometers covering the spectral range from 200 nm to 720 nm. Well resolved structure due to the 6p7s → 6p2 transition array of neutral lead and a few multiplets of singly ionized lead have been observed. The electron temperatures have been calculated in the range (9000 - 10800) ± 500 K using four methods; two line ratio, Boltzmann plot, Saha-Boltzmann plot and Morrata method whereas, the electron number densities have been determined in the range (2.0 – 8.0) ± 0.6 ×1016 cm-3 using the Stark broadened line profiles of neutral lead lines, singly ionized lead lines and hydrogen Hα-line. Full width at half maximum (FWHM) of a number of neutral and singly ionized lead lines have been extracted by the Lorentzian fit to the experimentally observed line profiles. Furthermore, branching fractions have been deduced for eleven lines of the 6p7s → 6p2 transition array in lead whereas the absolute values of the transition probabilities have been calculated by combining the experimental branching fractions with the life times of the excited levels The new results are compared with the existing data showing a good agreement.

Keywords: LIBS, plasma parameters, transition probabilities, branching fractions, stark width

Procedia PDF Downloads 283
2849 Sustainable Production of Algae through Nutrient Recovery in the Biofuel Conversion Process

Authors: Bagnoud-Velásquez Mariluz, Damergi Eya, Grandjean Dominique, Frédéric Vogel, Ludwig Christian

Abstract:

The sustainability of algae to biofuel processes is seriously affected by the energy intensive production of fertilizers. Large amounts of nitrogen and phosphorus are required for a large-scale production resulting in many cases in a negative impact of the limited mineral resources. In order to meet the algal bioenergy opportunity it appears crucial the promotion of processes applying a nutrient recovery and/or making use of renewable sources including waste. Hydrothermal (HT) conversion is a promising and suitable technology for microalgae to generate biofuels. Besides the fact that water is used as a “green” reactant and solvent and that no biomass drying is required, the technology offers a great potential for nutrient recycling. This study evaluated the possibility to treat the water HT effluent by the growth of microalgae while producing renewable algal biomass. As already demonstrated in previous works by the authors, the HT aqueous product besides having N, P and other important nutrients, presents a small fraction of organic compounds rarely studied. Therefore, extracted heteroaromatic compounds in the HT effluent were the target of the present research; they were profiled using GC-MS and LC-MS-MS. The results indicate the presence of cyclic amides, piperazinediones, amines and their derivatives. The most prominent nitrogenous organic compounds (NOC’s) in the extracts were carefully examined by their effect on microalgae, namely 2-pyrrolidinone and β-phenylethylamine (β-PEA). These two substances were prepared at three different concentrations (10, 50 and 150 ppm). This toxicity bioassay used three different microalgae strains: Phaeodactylum tricornutum, Chlorella sorokiniana and Scenedesmus vacuolatus. The confirmed IC50 was for all cases ca. 75ppm. Experimental conditions were set up for the growth of microalgae in the aqueous phase by adjusting the nitrogen concentration (the key nutrient for algae) to fit that one established for a known commercial medium. The values of specific NOC’s were lowered at concentrations of 8.5 mg/L 2-pyrrolidinone; 1mg/L δ-valerolactam and 0.5 mg/L β-PEA. The growth with the diluted HT solution was kept constant with no inhibition evidence. An additional ongoing test is addressing the possibility to apply an integrated water cleanup step making use of the existent hydrothermal catalytic facility.

Keywords: hydrothermal process, microalgae, nitrogenous organic compounds, nutrient recovery, renewable biomass

Procedia PDF Downloads 410
2848 Effects of Soaking of Maize on the Viscosity of Masa and Tortilla Physical Properties at Different Nixtamalization Times

Authors: Jorge Martínez-Rodríguez, Esther Pérez-Carrillo, Diana Laura Anchondo Álvarez, Julia Lucía Leal Villarreal, Mariana Juárez Dominguez, Luisa Fernanda Torres Hernández, Daniela Salinas Morales, Erick Heredia-Olea

Abstract:

Maize tortillas are a staple food in Mexico which are mostly made by nixtamalization, which includes the cooking and steeping of maize kernels in alkaline conditions. The cooking step in nixtamalization demands a lot of energy and also generates nejayote, a water pollutant, at the end of the process. The aim of this study was to reduce the cooking time by adding a maize soaking step before nixtamalization while maintaining the quality properties of masa and tortillas. Maize kernels were soaked for 36 h to increase moisture up to 36%. Then, the effect of different cooking times (0, 5, 10, 15, 20, 20, 25, 30, 35, 45-control and 50 minutes) was evaluated on viscosity profile (RVA) of masa to select the treatments with a profile similar or equal to control. All treatments were left steeping overnight and had the same milling conditions. Treatments selected were 20- and 25-min cooking times which had similar values for pasting temperature (79.23°C and 80.23°C), Maximum Viscosity (105.88 Cp and 96.25 Cp) and Final Viscosity (188.5 Cp and 174 Cp) to those of 45 min-control (77.65 °C, 110.08 Cp, and 186.70 Cp, respectively). Afterward, tortillas were produced with the chosen treatments (20 and 25 min) and for control, then were analyzed for texture, damage starch, colorimetry, thickness, and average diameter. Colorimetric analysis of tortillas only showed significant differences for yellow/blue coordinates (b* parameter) at 20 min (0.885), unlike the 25-minute treatment (1.122). Luminosity (L*) and red/green coordinates (a*) showed no significant differences from treatments with respect control (69.912 and 1.072, respectively); however, 25 minutes was closer in both parameters (73.390 and 1.122) than 20 minutes (74.08 and 0.884). For the color difference, (E), the 25 min value (3.84) was the most similar to the control. However, for tortilla thickness and diameter, the 20-minute with 1.57 mm and 13.12 cm respectively was closer to those of the control (1.69 mm and 13.86 cm) although smaller to it. On the other hand, the 25 min treatment tortilla was smaller than both 20 min and control with 1.51 mm thickness and 13.590 cm diameter. According to texture analyses, there was no difference in terms of stretchability (8.803-10.308 gf) and distance for the break (95.70-126.46 mm) among all treatments. However, for the breaking point, all treatments (317.1 gf and 276.5 gf for 25 and 20- min treatment, respectively) were significantly different from the control tortilla (392.2 gf). Results suggest that by adding a soaking step and reducing cooking time by 25 minutes, masa and tortillas obtained had similar functional and textural properties to the traditional nixtamalization process.

Keywords: tortilla, nixtamalization, corn, lime cooking, RVA, colorimetry, texture, masa rheology

Procedia PDF Downloads 177
2847 Assessing Natura 2000 Network Effectiveness in Landscape Conservation: A Case Study in Castile and León, Spain (1990-2018)

Authors: Paula García-Llamas, Polonia Díez González, Angela Taboada

Abstract:

In an era marked by unprecedented anthropogenic alterations to landscapes and biodiversity, the consequential loss of fauna, flora, and habitats poses a grave concern. It is imperative to evaluate our capacity to manage and mitigate such changes effectively. This study aims to scrutinize the efficacy of the Natura 2000 Network (NN2000) in landscape conservation within the autonomous community of Castile and Leon (Spain), spanning from 1990 to 2018. Leveraging land use change maps from the European Corine Land Cover database across four subperiods (1990-2000, 2000-2006, 2006-2012, and 2012-2018), we quantified alterations occurring both within NN2000 protected sites and within a 5km buffer zone. Additionally, we spatially assess land use/land cover patterns of change considering fluxes of various habitat types defined within NN2000. Our findings reveal that the protected areas under NN2000 were particularly susceptible to change, with the most significant transformations observed during the 1990-2000 period. Predominant change processes include secondary succession and scrubland formation due to land use cessation, deforestation, and agricultural intensification. While NN2000 demonstrates efficacy in curtailing urbanization and industrialization within buffer zones, its management measures have proven insufficient in safeguarding landscapes against the dynamic changes witnessed between 1990 and 2018, especially in relation to rural abandonment.

Keywords: Corine land cover, land cover changes, site of community importance, special protection area

Procedia PDF Downloads 49
2846 Currency Boards in Crisis: Experience of Baltic Countries

Authors: Gordana Kordić, Petra Palić

Abstract:

The European countries that during the past two decades based their exchange rate regimes on currency board arrangement (CBA) are usually analysed from the perspective of corner solution choice’s stabilisation effects. There is an open discussion on the positive and negative background of a strict exchange rate regime choice, although it should be seen as part of the transition process towards the monetary union membership. The focus of the paper is on the Baltic countries that after two decades of a rigid exchange rate arrangement and strongly influenced by global crisis are finishing their path towards the euro zone. Besides the stabilising capacity, the CBA is highly vulnerable regime, with limited developing potential. The rigidity of the exchange rate (and monetary) system, despite the ensured credibility, do not leave enough (or any) space for the adjustment and/or active crisis management. Still, the Baltics are in a process of recovery, with fiscal consolidation measures combined with (painful and politically unpopular) measures of internal devaluation. Today, two of them (Estonia and Latvia) are members of euro zone, fulfilling their ultimate transition targets, but de facto exchanging one fixed regime with another. The paper analyses the challenges for the CBA in unstable environment since the fixed regimes rely on imported stability and are sensitive to external shocks. With limited monetary instruments, these countries were oriented to the fiscal policies and used a combination of internal devaluation and tax policy measures. Despite their rather quick recovery, our second goal is to analyse the long term influence that the measures had on the national economy.

Keywords: currency board arrangement, internal devaluation, exchange rate regime, great recession

Procedia PDF Downloads 262
2845 Composite Materials from Beer Bran Fibers and Polylactic Acid: Characterization and Properties

Authors: Camila Hurtado, Maria A. Morales, Diego Torres, L.H. Reyes, Alejandro Maranon, Alicia Porras

Abstract:

This work presents the physical and chemical characterization of beer brand fibers and the properties of novel composite materials made of these fibers and polylactic acid (PLA). Treated and untreated fibers were physically characterized in terms of their moisture content (ASTM D1348), density, and particle size (ASAE S319.2). A chemical analysis following TAPPI standards was performed to determine ash, extractives, lignin, and cellulose content on fibers. Thermal stability was determined by TGA analysis, and an FTIR was carried out to check the influence of the alkali treatment in fiber composition. An alkali treatment with NaOH (5%) of fibers was performed for 90 min, with the objective to improve the interfacial adhesion with polymeric matrix in composites. Composite materials based on either treated or untreated beer brand fibers and polylactic acid (PLA) were developed characterized in tension (ASTM D638), bending (ASTM D790) and impact (ASTM D256). Before composites manufacturing, PLA and brand beer fibers (10 wt.%) were mixed in a twin extruder with a temperature profile between 155°C and 180°C. Coupons were manufactured by compression molding (110 bar) at 190°C. Physical characterization showed that alkali treatment does not affect the moisture content (6.9%) and the density (0.48 g/cm³ for untreated fiber and 0.46 g/cm³ for the treated one). Chemical and FTIR analysis showed a slight decrease in ash and extractives. Also, a decrease of 47% and 50% for lignin and hemicellulose content was observed, coupled with an increase of 71% for cellulose content. Fiber thermal stability was improved with the alkali treatment at about 10°C. Tensile strength of composites was found to be between 42 and 44 MPa with no significant statistical difference between coupons with either treated or untreated fibers. However, compared to neat PLA, composites with beer bran fibers present a decrease in tensile strength of 27%. Young modulus increases by 10% with treated fiber, compared to neat PLA. Flexural strength decreases in coupons with treated fiber (67.7 MPa), while flexural modulus increases (3.2 GPa) compared to neat PLA (83.3 MPa and 2.8 GPa, respectively). Izod impact test results showed an improvement of 99.4% in coupons with treated fibers - compared with neat PLA.

Keywords: beer bran, characterization, green composite, polylactic acid, surface treatment

Procedia PDF Downloads 133
2844 Removal Capacity of Activated Carbon (AC) by Combining AC and Titanium Dioxide (TIO₂) in a Photocatalytically Regenerative Activated Carbon

Authors: Hanane Belayachi, Sarra Bourahla, Amel Belayachi, Fadela Nemchi, Mostefa Belhakem

Abstract:

The most used techniques to remove pollutants from wastewater are adsorption onto activated carbon (AC) and oxidation using a photocatalyst slurry. The aim of this work is to eliminate such drawbacks by combining AC and titanium dioxide (TiO₂) in a photocatalytically Regenerative Activated Carbon. Anatase titania was deposited on powder-activated carbon made from grape seeds by the impregnation method, and then the composite photocatalyst was employed for the removal of reactive black 5, which is an anionic azo dye, from water. The AGS/TiO₂ was characterized by BET, MEB, RDX and optical absorption spectroscopy. The BET surface area and the pore structure of composite photocatalysts (AGS/TiO₂) and activated grape seeds (AGS) were evaluated from nitrogen adsorption data at 77 K in relation to process conditions. Our results indicate that the photocatalytic activity of AGS/TiO₂ was much higher than single-phase titania. The adsorption equilibrium of reactive black 5 from aqueous solutions on the examined materials was investigated. Langmuir, Freundlich, and Redlich–Petersen models were fitted to experimental equilibrium data, and their goodness of fit is compared. The degradation kinetics fitted well to the Langmuir-Hinselwood pseudo first order rate low. The photocatalytic activity of AGS/TiO₂ was much higher than virgin TiO₂. Chemical oxygen demand (COD) removal was measured at regular intervals to quantify the mineralization of the dye. Above 96% mineralization was observed. These results suggest that UV-irradiated TiO₂ immobilized on activated carbon may be considered an adequate process for the treatment of diluted colored textile wastewater.

Keywords: activated carbon, pollutant, catalysis, TiO₂

Procedia PDF Downloads 50
2843 Study and Simulation of the Thrust Vectoring in Supersonic Nozzles

Authors: Kbab H, Hamitouche T

Abstract:

In recent years, significant progress has been accomplished in the field of aerospace propulsion and propulsion systems. These developments are associated with efforts to enhance the accuracy of the analysis of aerothermodynamic phenomena in the engine. This applies in particular to the flow in the nozzles used. One of the most remarkable processes in this field is thrust vectoring by means of devices able to orientate the thrust vector and control the deflection of the exit jet in the engine nozzle. In the study proposed, we are interested in the fluid thrust vectoring using a second injection in the nozzle divergence. This fluid injection causes complex phenomena, such as boundary layer separation, which generates a shock wave in the primary jet upstream of the fluid interacting zone (primary jet - secondary jet). This will cause the deviation of the main flow, and therefore of the thrust vector with reference to the axis nozzle. In the modeling of the fluidic thrust vector, various parameters can be used. The Mach number of the primary jet and the injected fluid, the total pressures ratio, the injection rate, the thickness of the upstream boundary layer, the injector position in the divergent part, and the nozzle geometry are decisive factors in this type of phenomenon. The complexity of the latter challenges researchers to understand the physical phenomena of the turbulent boundary layer encountered in supersonic nozzles, as well as the calculation of its thickness and the friction forces induced on the walls. The present study aims to numerically simulate the thrust vectoring by secondary injection using the ANSYS-FLUENT, then to analyze and validate the results and the performances obtained (angle of deflection, efficiency...), which will then be compared with those obtained by other authors.

Keywords: CD Nozzle, TVC, SVC, NPR, CFD, NPR, SPR

Procedia PDF Downloads 133
2842 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots

Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu

Abstract:

Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.

Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law

Procedia PDF Downloads 84
2841 Nitrogen, Phosphorus, Potassium (NPK) Hydroxyapatite Nano-Hybrid Slow Release Fertilizer

Authors: Tinomuvonga Manenji Zhou, Eubert Mahofa, Tatenda Crispen Madzokere

Abstract:

The nanostructured formulation can increase fertilizer efficacy and uptake ratio of the soil nutrients in agriculture production and save fertilizer resources. Controlled release modes have properties of both release rate and release pattern of nutrients, for fertilizers that are soluble in water might be correctly controlled. Nanoparticles can reduce the rate at which fertilizer nutrients are in the soil by leaching. A slow release NPK-hydroxyapatite nano hybrid fertilizer was synthesized using exfoliated bentonite as filler material. A simple, scalable method was used to synthesize the nitrogen-phosphorus hydroxyapatite nano fertilizer, where calcium hydroxide, phosphoric acid, and urea were used as precursor material, followed by the incorporation of potassium through a liquid grinding method. The product obtained was an NPK-hydroxyapatite nano hybrid fertilizer. A quantitative analysis was done to determine the percentage of nitrogen, phosphorus, and potassium in the hybrid fertilizer. AAS was used to determine the percentage of potassium in the fertilizer. An accelerated water test was conducted to compare the nutrient release behavior of nutrients between the synthesized NPK-hydroxyapatite nano hybrid fertilizer and commercial NPK fertilizer. The rate of release of Nitrogen, phosphorus, and potassium was significantly lower in the synthesized NPK hydroxyapatite nano hybrid fertilizer than in the convectional NPK fertilizer. The synthesized fertilizer was characterized using XRD. NPK hydroxyapatite nano hybrid fertilizer encapsulated in exfoliated bentonite thus prepared can be used as an environmentally friendly fertilizer formulation which could be extended to solve one of the major problems faced in the global fertilization of low nitrogen, phosphorus, and potassium use efficiency in agriculture.

Keywords: NPK hydroxyapatite nano hybrid fertilizer, bentonite, encapsulation, low release

Procedia PDF Downloads 94
2840 Integrated Coastal Management for the Sustainable Development of Coastal Cities: The Case of El-Mina, Tripoli, Lebanon

Authors: G. Ghamrawi, Y. Abunnasr, M. Fawaz, S. Yazigi

Abstract:

Coastal cities are constantly exposed to environmental degradation and economic regression fueled by rapid and uncontrolled urban growth as well as continuous resource depletion. This is the case of the City of Mina in Tripoli (Lebanon), where lack of awareness to preserve social, ecological, and historical assets, coupled with the increasing development pressures, are threatening the socioeconomic status of the city residents, the quality of life and accessibility to the coast. To address these challenges, a holistic coastal urban design and planning approach was developed to analyze the environmental, political, legal, and socioeconomic context of the city. This approach aims to investigate the potential of balancing urban development with the protection and enhancement of cultural, ecological, and environmental assets under an integrated coastal zone management approach (ICZM). The analysis of Mina's different sectors adopted several tools that include direct field observation, interviews with stakeholders, analysis of available data, historical maps, and previously proposed projects. The findings from the analysis were mapped and graphically represented, allowing the recognition of character zones that become the design intervention units. Consequently, the thesis proposes an urban, city-scale intervention that identifies 6 different character zones (the historical fishing port, Abdul Wahab island, the abandoned Port Said, Hammam el Makloub, the sand beach, and the new developable area) and proposes context-specific design interventions that capitalize on the main characteristics of each zone. Moreover, the intervention builds on the institutional framework of ICZM as well as other studies previously conducted for the coast and adopts nature-based solutions with hybrid systems for providing better environmental design solutions for developing the coast. This enables the realization of an all-inclusive, well-connected shoreline with easy and free access towards the sea; a developed shoreline with an active local economy, and an improved urban environment.

Keywords: blue green infrastructure, coastal cities, hybrid solutions, integrated coastal zone management, sustainable development, urban planning

Procedia PDF Downloads 156
2839 Thermal Effects on Wellbore Stability and Fluid Loss in High-Temperature Geothermal Drilling

Authors: Mubarek Alpkiray, Tan Nguyen, Arild Saasen

Abstract:

Geothermal drilling operations contain numerous challenges that are encountered to increase the well cost and nonproductive time. Fluid loss is one of the most undesirable troublesome that can cause well abandonment in geothermal drilling. Lost circulation can be seen due to natural fractures, high mud weight, and extremely high formation temperatures. This challenge may cause wellbore stability problems and lead to expensive drilling operations. Wellbore stability is the main domain that should be considered to mitigate or prevent fluid loss into the formation. This paper describes the causes of fluid loss in the Pamukoren geothermal field in Turkey. A geomechanics approach integration and assessment is applied to help the understanding of fluid loss problems. In geothermal drillings, geomechanics is primarily based on rock properties, in-situ stress characterization, the temperature of the rock, determination of stresses around the wellbore, and rock failure criteria. Since a high-temperature difference between the wellbore wall and drilling fluid is presented, temperature distribution through the wellbore is estimated and implemented to the wellbore stability approach. This study reviewed geothermal drilling data to analyze temperature estimation along the wellbore, the cause of fluid loss and stored electric capacity of the reservoir. Our observation demonstrates the geomechanical approach's significant role in understanding safe drilling operations on high-temperature wells. Fluid loss is encountered due to thermal stress effects around the borehole. This paper provides a wellbore stability analysis for a geothermal drilling operation to discuss the causes of lost circulation resulting in nonproductive time and cost.

Keywords: geothermal wells, drilling, wellbore stresses, drilling fluid loss, thermal stress

Procedia PDF Downloads 194
2838 Carbon Dioxide Hydrogenation to Methanol over Cu/ZnO-SBA-15 Catalyst: Effect of Metal Loading

Authors: S. F. H. Tasfy, N. A. M. Zabidi, M.-S. Shaharun

Abstract:

Utilization of CO2 as a carbon source to produce valuable chemicals is one of the important ways to reduce the global warming caused by increasing CO2 in the atmosphere. Supported metal catalysts are crucial for the production of clean and renewable fuels and chemicals from the stable CO2 molecules. The catalytic conversion of CO2 into methanol is recently under increased scrutiny as an opportunity to be used as a low-cost carbon source. Therefore, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were synthesized via impregnation technique with different total metal loading and tested in the catalytic hydrogenation of CO2 to methanol. The morphological and textural properties of the synthesized catalysts were determined by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and N2-adsorption. The CO2 hydrogenation reaction was performed in microactivity fixed-bed system at 250 °C, 2.25 MPa, and H2/CO2 ratio of 3. Experimental results showed that the catalytic structure and performance was strongly affected by the loading of the active site. Where, the catalytic activity, methanol selectivity as well as the space-time yield increased with increasing the metal loading until it reaches the maximum values at a metal loading of 15 wt% while further addition of metal inhibits the catalytic performance. The higher catalytic activity of 14 % and methanol selectivity of 92 % were obtained over Cu/ZnO-SBA-15 catalyst with total bimetallic loading of 15 wt%. The excellent performance of 15 wt% Cu/ZnO-SBA-15 catalyst is attributed to the presence of well disperses active sites with small particle size, higher Cu surface area, and lower catalytic reducibility.

Keywords: hydrogenation of carbon dioxide, methanol synthesis, metal loading, Cu/ZnO-SBA-15 catalyst

Procedia PDF Downloads 230
2837 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach

Authors: M. Taheri Tehrani, H. Ajorloo

Abstract:

In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.

Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems

Procedia PDF Downloads 518
2836 Effects of Clinical Practice Guidelines for Central Venous Catheter to Infection Rate and Nurse’s Satisfaction in Medicine Intensive Care Unit 240 Hat Yai Hospital, Thailand

Authors: Jiranun Sreecharit, Anongnat Boonrut, Kunvadee Munvaradee, Phechnoy Singchungchai

Abstract:

Hatyai Hospital as center of hospital with a capacity of 670 beds. Medicine intensive care units (MICU240) provide care for critically ill patients who are at high risk need to be monitored closely. Intravenous catheter is vital to help assess the level of water in the body fluids and medications. Potential complications such as infection. We need to have guidelines for the care of patients who received intravenous catheter used to achieve good results. The operations research in this study was intended 1) To study the effects of practice for nurses in caring for patients with central venous catheter to infection rate and 2) To assess the satisfaction of nurses and patient care practices in central venous catheterization patients in the MICU 240. The sample of the patient's central venous catheter crisis that everyone who admitted in MICU 240 during the period from October 2013 to May 2014. Samples prior to practice and 148 samples with 249 case of practice. A systematic review of the research NSWHealth Statewide Guideline for Intensive Care. Data were analyzed by statistics, percentages and frequency NON-PARAMETRICS with Mann-Whitney U. The finding revealed that: 1. Results of the practice patient care central venous catheter infection rates were found to be reduced from 35.14 percent to 25.3 percent. 2. The results of the evaluation of nurses and patients in the patient care practices central venous catheter found to be satisfied and happy to work 85 percent.

Keywords: clinical practice guidelines, central venous catheter, infection satisfaction

Procedia PDF Downloads 475
2835 Water Governance Perspectives on the Urmia Lake Restoration Process: Challenges and Achievements

Authors: Jalil Salimi, Mandana Asadi, Naser Fathi

Abstract:

Urmia Lake (UL) has undergone a significant decline in water levels, resulting in severe environmental, socioeconomic, and health-related challenges. This paper examines the restoration process of UL from a water governance perspective. By applying a water governance model, the study evaluates the process based on six selected principles: stakeholder engagement, transparency and accountability, effectiveness, equitable water use, adaptation capacity, and water usage efficiency. The dominance of structural and physicalist approaches to water governance has led to a weak understanding of social and environmental issues, contributing to social crises. Urgent efforts are required to address the water crisis and reform water governance in the country, making water-related issues a top national priority. The UL restoration process has achieved significant milestones, including stakeholder consensus, scientific and participatory planning, environmental vision, intergenerational justice considerations, improved institutional environment for NGOs, investments in water infrastructure, transparency promotion, environmental effectiveness, and local issue resolutions. However, challenges remain, such as power distribution imbalances, bureaucratic administration, weak conflict resolution mechanisms, financial constraints, accountability issues, limited attention to social concerns, overreliance on structural solutions, legislative shortcomings, program inflexibility, and uncertainty management weaknesses. Addressing these weaknesses and challenges is crucial for the successful restoration and sustainable governance of UL.

Keywords: evaluation, restoration process, Urmia Lake, water governance, water resource management

Procedia PDF Downloads 67
2834 Automated Distribution System Management: Substation Remote Diagnostic and Operation Solution for Obafemi Awolowo University

Authors: Aderonke Oluseun Akinwumi, Olusola A. Komolaf

Abstract:

This paper gives information about the wide array of challenges facing both the electric utilities and consumers in the distribution system in developing countries, using Obafemi Awolowo University, Ile-Ife Nigeria as a case study. It also proffers cost-effective solution through remote monitoring, diagnostic and operation of distribution networks without compromising the system reliability. As utilities move from manned and unintelligent networks to completely unmanned smart grids, switching activities at substations and feeders will be managed and controlled remotely by dedicated systems hence this design. The Substation Remote Diagnostic and Operation Solution (sRDOs) would remotely monitor the load on Medium Voltage (MV) and Low Voltage (LV) feeders as well as distribution transformers and allow the utility disconnect non-paying customers with absolutely no extra resource deployment and without interrupting supply to paying customers. The aftermath of the implementation of this design improved the lifetime of key distribution infrastructure by automatically isolating feeders during overload conditions and more importantly erring consumers. This increased the ratio of revenue generated on electricity bills to total network load.

Keywords: electric utility, consumers, remote monitoring, diagnostic, system reliability, manned and unintelligent networks, unmanned smart grids, switching activities, medium voltage, low voltage, distribution transformer

Procedia PDF Downloads 131
2833 Response Development of larvae Portunus pelagicus to Artificial Feeding Predigest

Authors: Siti Aslamyah, Yushinta Fujaya, Okto Rimaldi

Abstract:

One of the problems faced in the crab hatchery operations is the reliance on the use of natural feed. This study aims to analyze the response of larval development and determine the initial stages crab larvae begin to fully able to accept artificial feeding predigest with the help of probiotic Bacillus sp. The experiment was conducted in June 2014 through July 2014 at the location of the scale backyard hatcheries, Bojo village Mallusettasi sub-district, district Barru. This study was conducted in two stages larval rearing. The first stage is designed in a completely randomized design with 5 treatments and each with 3 repetitions, ie, without the use of artificial feeding; predigest feed given from zoea 1 - megalopa; predigest feed given since zoea 2 - megalopa; predigest feed given from zoea 3 - megalopa; and feed predigest given since zoea 4 - megalopa. The second stage of the two treatments, i.e. comparing artificial feeding without and with predigest. The results showed that the artificial feeding predigest able to replace the use of natural feed started zoea 3 generated based on the survival rate. Artificial feeding predigest provide a higher survival rate (16%) compared to artificial diets without predigest only 10.8%. However, feed predigest not give a different effect on the rate of development of stadia. Cell activity in larvae that received artificial feed predigest higher with RNA-DNA ratio of 8.88 compared with no predigest only 5:36. This research is very valuable information for crab hatchery hatchery scale households have limitations in preparing natural food.

Keywords: artificial feeding, development of stadia, larvae Portunus pelagicus, predigest

Procedia PDF Downloads 533
2832 Effects of Continuous Training on Anthropometric Characteristics of Adolescents in Kano, Nigeria

Authors: Emmanuel S. Adeyanju

Abstract:

This study assessed the effects of continuous training on anthropometric characteristics of adolescents in Kano, Nigeria. The anthropometric measures of per cent body fat (%BF), body mass index (BMI), conicity index (CI) and waist-to-hip ratio (WHR) were selected because of their roles in increased adiposity and favourable cardiovascular disease (CVD) factor profiles in children and adolescence. The international standards and procedures were followed in all the measurements. A total of thirty (30) subjects (M=15; F=15), selected at random, were divided into two groups; one training (M=10; F=10) and the other control (M=5; F=5). Both groups were tested before training, at six (6) and 12 weeks in all the listed variables. The training group had 12 weeks continuous training which involved running round the standard 400 m track of the college following standard procedures; while the control group did not. The findings revealed significant sex-specific reductions in %BF (F=610.482 ˂ 0.05), BMI (F=73.860 ˂ 0.05), WHR (F=49.756 ˂ 0.05); however, no significant training effect on CI (F=1.855 ˃ 0.05) and WHR (F=1.956 ˃ 0.05) was found. Greater modifications found in females than in males (except in CI and WHR) due to training were probably related to their initial level of fitness and enzymatic modifications at subcellular level during training. The result also revealed significant relationship between the modifications in %BF, BMI and WHR but failed to establish any between CI and other adiposity measures. Thus, to avert the consequences of obesity and overweight, the declining fitness level of adolescents should be checked by ensuring they engaged in regular moderate-to-vigorous physical activity (MVPA) programmes. Such a childhood habit of exercise developed early in life will have a carry-over value into adult life and improve the quality of adult population.

Keywords: adiposity, anthropometry, conicity, continuous training

Procedia PDF Downloads 451
2831 Factors Affecting Access to Education: The Experiences of Parents of Children Who Are Deaf or Hard of Hearing

Authors: Hanh Thi My Nguyen

Abstract:

The purpose of this research is to examine the experiences of parents of children who are deaf or hard of hearing in supporting their children to access education in Vietnam. Parents play a crucial role in supporting their children to gain full access to education. It was widely reported that parents of those children confronted a range of problems to support their children to access education. To author’s best knowledge, there has been a lack of research exploring the experiences of those parents in literature. This research examines factors affecting those parents in supporting their children to access education. To conduct the study, qualitative approach using a phenomenological research design was chosen to explore the central phenomena. Ten parents of children who were diagnosed as deaf or hard of hearing and aged 6-9 years were recruited through the support of the Association of Parents of Children with Hearing Impairment. Participants were interviewed via telephone with a mix of open and closed questions; interviews were audio recorded, transcribed and thematically analysed. The research results show that there are nine main factors that affected the parents in this study in making decisions relating to education for their children including: lack of information resources, perspectives of those parents on communication approaches, the families’ financial capacity, the psychological impact on the participants after their children’ diagnosis, the attitude of family members, attitude of school administrators, lack of local schools and qualified teachers, and current education system for the deaf in Vietnam. Apart from those factors, the lack of knowledge of the participants’ partners about deaf education and the partners’ employment are barriers to educational access and successful communication with their child.

Keywords: access to education, deaf, hard of hearing, parents experience

Procedia PDF Downloads 136
2830 Sustainability of Heritage Management in Aksum: Focus on Heritage Conservation and Interpretation

Authors: Gebrekiros Welegebriel Asfaw

Abstract:

The management of the fragile, unique and irreplaceable cultural heritage from different perspectives is becoming a major challenge as important elements of culture are vanishing throughout the globe. The major purpose of this study is to assess how the cultural heritages of Aksum are managed for their future sustainability from heritage conservation and interpretation perspectives. Descriptive type of research design inculcating both quantitative and qualitative research methods is employed. Primary quantitative data was collected from 189 respondents (19 professionals, 88 tourism service providers and 82 tourists) and interview was conducted with 33 targeted informants from heritage and related professions, security employees, local community, service providers and church representatives by applying probability and non probability sampling methods. Findings of the study reveal that the overall sustainable management status of the cultural heritage of Aksum is below average. It is found that the sustainability of cultural heritage management in Aksum is facing a lot of unfavorable factors like lack of long term planning, incompatible system of heritage administration, limited capacity and number of professionals, scant attention to community based heritage and tourism development, dirtiness and drainage problems, problems with stakeholder involvement and cooperation, lack of organized interpretation and presentation systems and others. So, re-organization of the management system, creating platform for coordination among stakeholders and developing appropriate interpretation system can be good remedies. Introducing community based heritage and tourism development concept is also recommendable for a long term win-win success in Aksum.

Keywords: Aksum, conservation, interpretation, Sustainable Cultural Heritage Management

Procedia PDF Downloads 324
2829 Disseminated Tuberculosis: Experience from Tuberculosis Directly Observed Treatment Short Course Center at a Tertiary Care Teaching Hospital in the Philippines

Authors: Jamie R. Chua, Christina Irene D. Mejia, Regina P. Berba

Abstract:

Disseminated tuberculosis is an infectious disease caused by Mycobacterium tuberculosis involving two or more non-contiguous sites identified through bacteriologic confirmation or clinical diagnosis. Over the five year period included in the study, the UP-PGH TB DOTS clinic had total of 3,967 referrals, and the prevalence of disseminated tuberculosis is 1% (68/3967). The mean age was 33.9 years (range 19-64 years) with a male: female ratio of 1:1. 67% (52 patients) had no predisposing comorbid illness or immune disorder. The most common presenting symptoms were abdominal pain (19%), back pain (13%), abdominal enlargement (11%) and mass (10.2%). Anemia, leukocytosis, hypoalbuminemia, and high-normal serum calcium were common biochemical and hematologic findings. Around 36% (25) of patients were diagnosed clinically with disseminated tuberculosis despite lacking bacteriologic evidence of multi-organ involvement. The lungs (86%) is still the most commonly involved site, followed by intestinal (22%), vertebral/Pott’s (27%), and pelvic/genital (19%). The mean time from presentation to initiation of therapy was 22 days (SD 32.7). Only 18 patients (29.3%) were properly recorded to have been referred to local TB DOTs facilities. Of the 68 patients, only 16% (11 patients) continued follow-up at PGH, and all had documented treatment completion. Treatment outcomes of the remaining were unknown. Due to the variety of involved sites, a high index of suspicion is required. Knowledge on clinical features, common radiographic findings, and histopathologic characteristics of disseminated TB is important as bacteriologic evidence of infection is not always apparent.

Keywords: disseminated tuberculosis, Mycobacterium tuberculosis, miliary tuberculosis, tuberculosis

Procedia PDF Downloads 240
2828 Assessment of Water Availability and Quality in the Climate Change Context in Urban Areas

Authors: Rose-Michelle Smith, Musandji Fuamba, Salomon Salumu

Abstract:

Water is vital for life. Access to drinking water and sanitation for humans is one of the Sustainable Development Goals (specifically the sixth) approved by United Nations Member States in September 2015. There are various problems identified relating to water: insufficient fresh water, inequitable distribution of water resources, poor water management in certain places on the planet, detection of water-borne diseases due to poor water quality, and the negative impacts of climate change on water. One of the major challenges in the world is finding ways to ensure that people and the environment have enough water resources to sustain and support their existence. Thus, this research project aims to develop a tool to assess the availability, quality and needs of water in current and future situations with regard to climate change. This tool was tested using threshold values for three regions in three countries: the Metropolitan Community of Montreal (Canada), Normandie Region (France) and North Department (Haiti). The WEAP software was used to evaluate the available quantity of water resources. For water quality, two models were performed: the Canadian Council of Ministers of the Environment (CCME) and the Malaysian Water Quality Index (WQI). Preliminary results showed that the ratio of the needs could be estimated at 155, 308 and 644 m3/capita in 2023 for Normandie, Cap-Haitian and CMM, respectively. Then, the Water Quality Index (WQI) varied from one country to another. Other simulations regarding the water availability and quality are still in progress. This tool will be very useful in decision-making on projects relating to water use in the future; it will make it possible to estimate whether the available resources will be able to satisfy the needs.

Keywords: climate change, water needs, balance sheet, water quality

Procedia PDF Downloads 75
2827 Conjunctive Use of Shallow Groundwater for Irrigation Purpose: The Case of Wonji Shoa Sugar Estate, Ethiopia

Authors: Megersa Olumana Dinka, Kassahun Birhanu Tadesse

Abstract:

Irrigation suitability of shallow groundwater (SGW) was investigated by taking thirty groundwater samples from piezometers and hand-dug wells in Wonji Shoa Sugar Estate (WSSE) (Ethiopia). Many physicochemical parameters (Mg²⁺, Na⁺, Ca²⁺, K⁺, CO₃-, SO4²⁻, HCO₃⁻, Cl⁻, TH, EC, TDS and pH) were analyzed following standard procedures. Different irrigation indices (MAR, SSP, SAR, RSC, KR, and PI) were also used for SGW suitability assessment. If all SGW are blended and used for irrigation, the salinity problem would be slight to moderate, and 100% of potential sugarcane yield could be obtained. The infiltration and sodium ion toxicity problems of the blended water would be none to moderate, and slight to moderate, respectively. As sugarcane is semi-tolerant to sodium toxicity, no significant sodium toxicity problem would be expected from the use of blended water. Blending SGW would also reduce each chloride and boron ion toxicity to none. In general, the rating of SGW was good to excellent for irrigation in terms of average EC (salinity), and excellent in terms of average SAR (infiltration). The SGW of the WSSE was categorized under C3S1 (high salinity and low sodium hazard). In conclusion, the conjunctive use of groundwater for irrigation would help to reduce the potential effect of waterlogging and salinization and their associated problems on soil and sugarcane production and productivity. However, a high value of SSP and RSC indicate a high possibility of infiltration problem. Hence, it is advisable to use the SGW for irrigation after blending with surface water. In this case, the optimum blending ratio of the surface to SGW sources has to be determined for sustainable sugarcane productivity.

Keywords: blending, infiltration, salinity, sodicity, sugarcane, toxicity

Procedia PDF Downloads 382
2826 Collagen Silver Lipid Nanoparticles as Matrix and Fillers for Cosmeceuticals: An In-Vitro and In-Vivo Study

Authors: Kumari Kajal, Muthu Kumar Sampath, Hare Ram Singh

Abstract:

In this context, the formulation and characterization of collagen silver lipid nanoparticles (CSLNs) were studied for their capacity to serve as fillers/matrix materials used in cosmeceutical applications. The CSLNs were prepared following a series of studies, such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy FT-IR; thermogravimetric analysis (TGA); and differential scanning calorimetry (DSC). The studies confirmed the structural integrity of nanoparticles, their cargo and thermal stability. The biological functionality of CSLNs was studied by carrying out in vitro & in vivo studies. The antibacterial effect, hemocompatibility and anti-inflammatory characteristics of these fibers were systematically investigated. The toxicological assays included oral toxicity in mice and aquatic life tests with the fish Danio rerio model. The morphology of the nanoparticles was confirmed using high-resolution transmission electron microscopy (HR-TEM). The report found that CSLNs had strong antimicrobial effects, unmatched hemocompatibility, and low or absent inflammatory reactions, which makes them perfect candidates for cosmeceutical applications. The toxicological evaluations evinced a good safety record without any significant adverse effects in both murine and Danio rerio models. This research reveals the efficient way of CSLNs to the efficacy and safety of dermaceuticals.

Keywords: collagen silver lipid nanoparticles (CSLNs), cosmeceuticals, antimicrobial activity, hemocompatibility, in vitro assessment, in vivo assessment.

Procedia PDF Downloads 15
2825 Comparison of Effect of Promoter and K Addition of Co₃O₄ for N₂O Decomposition Reaction

Authors: R. H. Hwang, J. H. Park, K. B. Yi

Abstract:

Nitrous oxide (N2O) is now distinguished as an environmental pollutant. N2O is one of the representative greenhouse gases and N2O is produced by both natural and anthropogenic sources. So, it is very important to reduce N2O. N2O abatement processes are various processes such as HC-SCR, NH3-SCR and decomposition process. Among them, decomposition process is advantageous because it does not use a reducing agent. N2O decomposition is a reaction in which N2O is decomposed into N2 and O2. There are noble metals, transition metal ion-exchanged zeolites, pure and mixed oxides for N2O decomposition catalyst. Among the various catalysts, cobalt-based catalysts derived from hydrotalcites gathered much attention because spinel catalysts having large surface areas and high thermal stabilities. In this study, the effect of promoter and K addition on the activity was compared and analyzed. Co3O4 catalysts for N2O decomposition were prepared by co- precipitation method. Ce and Zr were added during the preparation of the catalyst as promoter with the molar ratio (Ce or Zr) / Co = 0.05. In addition, 1 wt% K2CO3 was doped to the prepared catalyst with impregnation method to investigate the effect of K on the catalyst performance. Characterizations of catalysts were carried out with SEM, BET, XRD, XPS and H2-TPR. The catalytic activity tests were carried out at a GHSV of 45,000 h-1 and a temperature range of 250 ~ 375 ℃. The Co3O4 catalysts showed a spinel crystal phase, and the addition of the promoter increased the specific surface area and reduced the particle and crystal size. It was exhibited that the doping of K improves the catalytic activity by increasing the concentration of Co2+ in the catalyst which is an active site for catalytic reaction. As a result, the K-doped catalyst showed higher activity than the promoter added. Also, it was found through experiments that Co2+ concentration and reduction temperature greatly affect the reactivity.

Keywords: Co₃O4, K-doped, N₂O decomposition, promoter

Procedia PDF Downloads 169
2824 Fortification of Concentrated Milk Protein Beverages with Soy Proteins: Impact of Divalent Cations and Heating Treatment on the Physical Stability

Authors: Yichao Liang, Biye Chen, Xiang Li, Steven R. Dimler

Abstract:

This study investigated the effects of adding calcium and magnesium chloride on heat and storage stability of milk protein concentrate-soy protein isolate (8:2 respectively) mixtures containing 10% w/w total protein subjected to the in-container sterilization (115 °C x 15 min). The particle size does not change when emulsions are heated at pH between 6.7 and 7.3 irrespective of the mixed protein ratio. Increasing concentration of divalent cation salts resulted in an increase in protein particle size, dry sediment formation and sediment height and a decrease in pH, heat stability and hydration in milk protein concentrate-soy protein isolate mixtures solutions on sterilization at 115°C. Fortification of divalent cation salts in milk protein concentrate-soy protein isolate mixture solutions resulted in an accelerated protein sedimentation and two unique sediment regions during accelerated storage stability testing. Moreover, the heat stability decreased upon sterilization at 115°C, with addition of MgCl₂ causing a greater increase in sedimentation velocity and compressibility than CaCl₂. Increasing pH value of protein milk concentrate-soy protein isolate mixtures solutions from 6.7 to 7.2 resulted in an increase in viscosity following the heat treatment. The study demonstrated that the type and concentration of divalent cation salts used strongly impact heat and storage stability of milk protein concentrate-soy protein isolate mixture nutritional beverages.

Keywords: divalent cation salts, heat stability, milk protein concentrate, soy protein isolate, storage stability

Procedia PDF Downloads 331