Search results for: transformed gamma distribution
5379 An Automated Bender Element System Used for S-Wave Velocity Tomography during Model Pile Installation
Authors: Yuxin Wu, Yu-Shing Wang, Zitao Zhang
Abstract:
A high-speed and time-lapse S-wave velocity measurement system has been built up for S-wave tomography in sand. This system is based on bender elements and applied to model pile tests in a tailor-made pressurized chamber to monitor the shear wave velocity distribution during pile installation in sand. Tactile pressure sensors are used parallel together with bender elements to monitor the stress changes during the tests. Strain gages are used to monitor the shaft resistance and toe resistance of pile. Since the shear wave velocity (Vs) is determined by the shear modulus of sand and the shaft resistance of pile is also influenced by the shear modulus of sand around the pile, the purposes of this study are to time-lapse monitor the S-wave velocity distribution change at a certain horizontal section during pile installation and to correlate the S-wave velocity distribution and shaft resistance of pile in sand.Keywords: bender element, pile, shaft resistance, shear wave velocity, tomography
Procedia PDF Downloads 4295378 Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone
Authors: Esra Arici, Duygu Olmez, Murat Ozkan, Nurcan Topcu, Furkan Capraz, Gokhan Deniz, Arman Altinyay
Abstract:
Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm.Keywords: engineered quartz stone, fine quartz aggregate, granular packing, mechanical strength, particle size distribution, physical properties.
Procedia PDF Downloads 1475377 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks
Authors: S. Neelima, P. S. Subramanyam
Abstract:
The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)
Procedia PDF Downloads 4375376 Enhancing the Pricing Expertise of an Online Distribution Channel
Authors: Luis N. Pereira, Marco P. Carrasco
Abstract:
Dynamic pricing is a revenue management strategy in which hotel suppliers define, over time, flexible and different prices for their services for different potential customers, considering the profile of e-consumers and the demand and market supply. This means that the fundamentals of dynamic pricing are based on economic theory (price elasticity of demand) and market segmentation. This study aims to define a dynamic pricing strategy and a contextualized offer to the e-consumers profile in order to improve the number of reservations of an online distribution channel. Segmentation methods (hierarchical and non-hierarchical) were used to identify and validate an optimal number of market segments. A profile of the market segments was studied, considering the characteristics of the e-consumers and the probability of reservation a room. In addition, the price elasticity of demand was estimated for each segment using econometric models. Finally, predictive models were used to define rules for classifying new e-consumers into pre-defined segments. The empirical study illustrates how it is possible to improve the intelligence of an online distribution channel system through an optimal dynamic pricing strategy and a contextualized offer to the profile of each new e-consumer. A database of 11 million e-consumers of an online distribution channel was used in this study. The results suggest that an appropriate policy of market segmentation in using of online reservation systems is benefit for the service suppliers because it brings high probability of reservation and generates more profit than fixed pricing.Keywords: dynamic pricing, e-consumers segmentation, online reservation systems, predictive analytics
Procedia PDF Downloads 2345375 Modelling Operational Risk Using Extreme Value Theory and Skew t-Copulas via Bayesian Inference
Authors: Betty Johanna Garzon Rozo, Jonathan Crook, Fernando Moreira
Abstract:
Operational risk losses are heavy tailed and are likely to be asymmetric and extremely dependent among business lines/event types. We propose a new methodology to assess, in a multivariate way, the asymmetry and extreme dependence between severity distributions, and to calculate the capital for Operational Risk. This methodology simultaneously uses (i) several parametric distributions and an alternative mix distribution (the Lognormal for the body of losses and the Generalized Pareto Distribution for the tail) via extreme value theory using SAS®, (ii) the multivariate skew t-copula applied for the first time for operational losses and (iii) Bayesian theory to estimate new n-dimensional skew t-copula models via Markov chain Monte Carlo (MCMC) simulation. This paper analyses a newly operational loss data set, SAS Global Operational Risk Data [SAS OpRisk], to model operational risk at international financial institutions. All the severity models are constructed in SAS® 9.2. We implement the procedure PROC SEVERITY and PROC NLMIXED. This paper focuses in describing this implementation.Keywords: operational risk, loss distribution approach, extreme value theory, copulas
Procedia PDF Downloads 6035374 A Hierarchical Bayesian Calibration of Data-Driven Models for Composite Laminate Consolidation
Authors: Nikolaos Papadimas, Joanna Bennett, Amir Sakhaei, Timothy Dodwell
Abstract:
Composite modeling of consolidation processes is playing an important role in the process and part design by indicating the formation of possible unwanted prior to expensive experimental iterative trial and development programs. Composite materials in their uncured state display complex constitutive behavior, which has received much academic interest, and this with different models proposed. Errors from modeling and statistical which arise from this fitting will propagate through any simulation in which the material model is used. A general hyperelastic polynomial representation was proposed, which can be readily implemented in various nonlinear finite element packages. In our case, FEniCS was chosen. The coefficients are assumed uncertain, and therefore the distribution of parameters learned using Markov Chain Monte Carlo (MCMC) methods. In engineering, the approach often followed is to select a single set of model parameters, which on average, best fits a set of experiments. There are good statistical reasons why this is not a rigorous approach to take. To overcome these challenges, A hierarchical Bayesian framework was proposed in which population distribution of model parameters is inferred from an ensemble of experiments tests. The resulting sampled distribution of hyperparameters is approximated using Maximum Entropy methods so that the distribution of samples can be readily sampled when embedded within a stochastic finite element simulation. The methodology is validated and demonstrated on a set of consolidation experiments of AS4/8852 with various stacking sequences. The resulting distributions are then applied to stochastic finite element simulations of the consolidation of curved parts, leading to a distribution of possible model outputs. With this, the paper, as far as the authors are aware, represents the first stochastic finite element implementation in composite process modelling.Keywords: data-driven , material consolidation, stochastic finite elements, surrogate models
Procedia PDF Downloads 1465373 Identification of Outliers in Flood Frequency Analysis: Comparison of Original and Multiple Grubbs-Beck Test
Authors: Ayesha S. Rahman, Khaled Haddad, Ataur Rahman
Abstract:
At-site flood frequency analysis is used to estimate flood quantiles when at-site record length is reasonably long. In Australia, FLIKE software has been introduced for at-site flood frequency analysis. The advantage of FLIKE is that, for a given application, the user can compare a number of most commonly adopted probability distributions and parameter estimation methods relatively quickly using a windows interface. The new version of FLIKE has been incorporated with the multiple Grubbs and Beck test which can identify multiple numbers of potentially influential low flows. This paper presents a case study considering six catchments in eastern Australia which compares two outlier identification tests (original Grubbs and Beck test and multiple Grubbs and Beck test) and two commonly applied probability distributions (Generalized Extreme Value (GEV) and Log Pearson type 3 (LP3)) using FLIKE software. It has been found that the multiple Grubbs and Beck test when used with LP3 distribution provides more accurate flood quantile estimates than when LP3 distribution is used with the original Grubbs and Beck test. Between these two methods, the differences in flood quantile estimates have been found to be up to 61% for the six study catchments. It has also been found that GEV distribution (with L moments) and LP3 distribution with the multiple Grubbs and Beck test provide quite similar results in most of the cases; however, a difference up to 38% has been noted for flood quantiles for annual exceedance probability (AEP) of 1 in 100 for one catchment. These findings need to be confirmed with a greater number of stations across other Australian states.Keywords: floods, FLIKE, probability distributions, flood frequency, outlier
Procedia PDF Downloads 4505372 Enhanced Magnetic Hyperthermic Efficiency of Ferrite Based Nanoparticles
Authors: J. P. Borah, R. D. Raland
Abstract:
Hyperthermia is one of many techniques used destroys cancerous cell. It uses the physical methods to heat certain organ or tissue delivering an adequate temperature in an appropriate period of time, to the entire tumor volume for achieving optimal therapeutic results. Magnetic Metal ferrites nanoparticles (MFe₂O₄ where M = Mn, Zn, Ni, Co, Mg, etc.) are one of the most potential candidates for hyperthermia due to their tunability, biocompatibility, chemical stability and notable ability to mediate high rate of heat induction. However, to obtain the desirable properties for these applications, it is important to optimize their chemical composition, structure and magnetic properties. These properties are mainly sensitive to cation distribution of tetrahedral and octahedral sites. Among the ferrites, zinc ferrite (ZnFe₂O₄) and Manganese ferrite ((MnFe₂O₄) is one of a strong candidate for hyperthermia application because Mn and zinc have a non-magnetic cation and therefore the magnetic property is determined only by the cation distribution of iron, which provides a better platform to manipulate or tailor the properties. In this talk, influence of doping and surfactant towards cation re-distribution leading to an enhancement of magnetic properties of ferrite nanoparticles will be demonstrated. The efficiency of heat generation in association with the enhanced magnetic property is also well discussed in this talk.Keywords: magnetic nanoparticle, hyperthermia, x-ray diffraction, TEM study
Procedia PDF Downloads 1645371 Localization of Radioactive Sources with a Mobile Radiation Detection System using Profit Functions
Authors: Luís Miguel Cabeça Marques, Alberto Manuel Martinho Vale, José Pedro Miragaia Trancoso Vaz, Ana Sofia Baptista Fernandes, Rui Alexandre de Barros Coito, Tiago Miguel Prates da Costa
Abstract:
The detection and localization of hidden radioactive sources are of significant importance in countering the illicit traffic of Special Nuclear Materials and other radioactive sources and materials. Radiation portal monitors are commonly used at airports, seaports, and international land borders for inspecting cargo and vehicles. However, these equipment can be expensive and are not available at all checkpoints. Consequently, the localization of SNM and other radioactive sources often relies on handheld equipment, which can be time-consuming. The current study presents the advantages of real-time analysis of gamma-ray count rate data from a mobile radiation detection system based on simulated data and field tests. The incorporation of profit functions and decision criteria to optimize the detection system's path significantly enhances the radiation field information and reduces survey time during cargo inspection. For source position estimation, a maximum likelihood estimation algorithm is employed, and confidence intervals are derived using the Fisher information. The study also explores the impact of uncertainties, baselines, and thresholds on the performance of the profit function. The proposed detection system, utilizing a plastic scintillator with silicon photomultiplier sensors, boasts several benefits, including cost-effectiveness, high geometric efficiency, compactness, and lightweight design. This versatility allows for seamless integration into any mobile platform, be it air, land, maritime, or hybrid, and it can also serve as a handheld device. Furthermore, integration of the detection system into drones, particularly multirotors, and its affordability enable the automation of source search and substantial reduction in survey time, particularly when deploying a fleet of drones. While the primary focus is on inspecting maritime container cargo, the methodologies explored in this research can be applied to the inspection of other infrastructures, such as nuclear facilities or vehicles.Keywords: plastic scintillators, profit functions, path planning, gamma-ray detection, source localization, mobile radiation detection system, security scenario
Procedia PDF Downloads 1165370 Size Distribution Effect of InAs/InP Self–Organized Quantum Dots on Optical Properties
Authors: Abdelkader Nouri, M’hamed Bouslama, Faouzi Saidi, Hassan Maaref, Michel Gendry
Abstract:
Self-organized InAs quantum dots (QDs) have been grown on 3,1% InP (110) lattice mismatched substrate by Solid Source Molecular Beam Epitaxy (SSMBE). Stranski-Krastanov mode growth has been used to create self-assembled 3D islands on InAs wetting layer (WL). The optical quality depending on the temperature and power is evaluated. In addition, Atomic Force Microscopy (AFM) images shows inhomogeneous island dots size distribution due to temperature coalescence. The quantum size effect was clearly observed through the spectra photoluminescence (PL) shape.Keywords: AFM, InAs QDs, PL, SSMBE
Procedia PDF Downloads 6875369 Strain DistributionProfiles of EDD Steel at Elevated Temperatures
Authors: Eshwara Prasad Koorapati, R. Raman Goud, Swadesh Kumar Singh
Abstract:
In the present work forming limit diagrams and strain distribution profile diagrams for extra deep drawing steel at room and elevated temperatures have been determined experimentally by conducting stretch forming experiments by using designed and fabricated warm stretch forming tooling setup. With the help of forming Limit Diagrams (FLDs) and strain distribution profile diagrams the formability of Extra Deep Drawing steel has been analyzed and co-related with mechanical properties like strain hardening coefficient (n) and normal anisotropy (r−).Mechanical properties of EDD steel from room temperature to 4500 C were determined and discussed the impact of temperature on the properties like work hardening exponent (n) anisotropy (r-) and strength coefficient of the material. Also, the fractured surfaces after stretching have undergone the some metallurgical investigations and attempt has been made to co-relate with the formability of EDD steel sheets. They are co-related and good agreement with FLDs at various temperatures.Keywords: FLD, micro hardness, strain distribution profile, stretch forming
Procedia PDF Downloads 4225368 The Role of the Rate of Profit Concept in Creating Economic Stability in Islamic Financial Market
Authors: Trisiladi Supriyanto
Abstract:
This study aims to establish a concept of rate of profit on Islamic banking that can create economic justice and stability in the Islamic Financial Market (Banking and Capital Markets). A rate of profit that creates economic justice and stability can be achieved through its role in maintaining the stability of the financial system in which there is an equitable distribution of income and wealth. To determine the role of the rate of profit as the basis of the profit sharing system implemented in the Islamic financial system, we can see the connection of rate of profit in creating financial stability, especially in the asset-liability management of financial institutions that generate a stable net margin or the rate of profit that is not affected by the ups and downs of the market risk factors, including indirect effect on interest rates. Furthermore, Islamic financial stability can be seen from the role of the rate of profit on the stability of the Islamic financial assets value that are measured from the Islamic financial asset price volatility in the Islamic Bond Market in the Capital Market.Keywords: economic justice, equitable distribution of income, equitable distribution of wealth, rate of profit, stability in the financial system
Procedia PDF Downloads 3145367 First Order Moment Bounds on DMRL and IMRL Classes of Life Distributions
Authors: Debasis Sengupta, Sudipta Das
Abstract:
The class of life distributions with decreasing mean residual life (DMRL) is well known in the field of reliability modeling. It contains the IFR class of distributions and is contained in the NBUE class of distributions. While upper and lower bounds of the reliability distribution function of aging classes such as IFR, IFRA, NBU, NBUE, and HNBUE have discussed in the literature for a long time, there is no analogous result available for the DMRL class. We obtain the upper and lower bounds for the reliability function of the DMRL class in terms of first order finite moment. The lower bound is obtained by showing that for any fixed time, the minimization of the reliability function over the class of all DMRL distributions with a fixed mean is equivalent to its minimization over a smaller class of distribution with a special form. Optimization over this restricted set can be made algebraically. Likewise, the maximization of the reliability function over the class of all DMRL distributions with a fixed mean turns out to be a parametric optimization problem over the class of DMRL distributions of a special form. The constructive proofs also establish that both the upper and lower bounds are sharp. Further, the DMRL upper bound coincides with the HNBUE upper bound and the lower bound coincides with the IFR lower bound. We also prove that a pair of sharp upper and lower bounds for the reliability function when the distribution is increasing mean residual life (IMRL) with a fixed mean. This result is proved in a similar way. These inequalities fill a long-standing void in the literature of the life distribution modeling.Keywords: DMRL, IMRL, reliability bounds, hazard functions
Procedia PDF Downloads 3975366 A Convolution Neural Network Approach to Predict Pes-Planus Using Plantar Pressure Mapping Images
Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi, Morvarid Lalenoor
Abstract:
Background: Plantar pressure distribution measurement has been used for a long time to assess foot disorders. Plantar pressure is an important component affecting the foot and ankle function and Changes in plantar pressure distribution could indicate various foot and ankle disorders. Morphologic and mechanical properties of the foot may be important factors affecting the plantar pressure distribution. Accurate and early measurement may help to reduce the prevalence of pes planus. With recent developments in technology, new techniques such as machine learning have been used to assist clinicians in predicting patients with foot disorders. Significance of the study: This study proposes a neural network learning-based flat foot classification methodology using static foot pressure distribution. Methodologies: Data were collected from 895 patients who were referred to a foot clinic due to foot disorders. Patients with pes planus were labeled by an experienced physician based on clinical examination. Then all subjects (with and without pes planus) were evaluated for static plantar pressures distribution. Patients who were diagnosed with the flat foot in both feet were included in the study. In the next step, the leg length was normalized and the network was trained for plantar pressure mapping images. Findings: From a total of 895 image data, 581 were labeled as pes planus. A computational neural network (CNN) ran to evaluate the performance of the proposed model. The prediction accuracy of the basic CNN-based model was performed and the prediction model was derived through the proposed methodology. In the basic CNN model, the training accuracy was 79.14%, and the test accuracy was 72.09%. Conclusion: This model can be easily and simply used by patients with pes planus and doctors to predict the classification of pes planus and prescreen for possible musculoskeletal disorders related to this condition. However, more models need to be considered and compared for higher accuracy.Keywords: foot disorder, machine learning, neural network, pes planus
Procedia PDF Downloads 3615365 Effect of Depth on the Distribution of Zooplankton in Wushishi Lake Minna, Niger State, Nigeria
Authors: Adamu Zubairu Mohammed, Fransis Oforum Arimoro, Salihu Maikudi Ibrahim, Y. I. Auta, T. I. Arowosegbe, Y. Abdullahi
Abstract:
The present study was conducted to evaluate the effect of depth on the distribution of zooplankton and some physicochemical parameters in Tungan Kawo Lake (Wushishi dam). Water and zooplankton samples were collected from the surface, 3.0 meters deep and 6.0 meters deep, for a period of 24 hours for six months. Standard procedures were adopted for the determination of physicochemical parameters. Results have shown significant differences in the pH, DO, BOD Hardness, Na, and Mg. A total of 1764 zooplankton were recorded, comprising 35 species, with cladocera having 18 species (58%), 14 species of copepoda (41%), 3 species of diptera (1.0%). Results show that more of the zooplankton were recorded in the 3.0 meters-deep region compared to the two other depts and a significant difference was observed in the distribution of Ceriodaphnia dubia, Daphnia laevis, and Leptodiaptomus coloradensis. Though the most abundant zooplankton was recorded in the 3.0 meters deep, Leptodiaptomus coloradesnsis, which was observed in the 6.0 meters deep as the most individual observed, this was followed by Daphnia laevis. Canonical correspondence analysis between physicochemical parameters and the zooplankton indicated a good relationship in the Lake. Ceriodaphnia dubia was found to have a good association with oxygen, sodium, and potassium, while Daphnia laevis and Leptodiaptomus coloradensis are in good relationship with magnesium and phosphorus. It was generally observed that this depth does not have much influence on the distribution of zooplankton in Wushishi Lake.Keywords: zooplankton, standard procedures, canonical correspondence analysis, Wushishi, canonical, physicochemical parameter
Procedia PDF Downloads 905364 HPSEC Application as a New Indicator of Nitrification Occurrence in Water Distribution Systems
Authors: Sina Moradi, Sanly Liu, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Soha Habibi, Rose Amal
Abstract:
In recent years, chloramine has been widely used for both primary and secondary disinfection. However, a major concern with the use of chloramine as a secondary disinfectant is the decay of chloramine and nitrification occurrence. The management of chloramine decay and the prevention of nitrification are critical for water utilities managing chloraminated drinking water distribution systems. The detection and monitoring of nitrification episodes is usually carried out through measuring certain water quality parameters, which are commonly referred to as indicators of nitrification. The approach taken in this study was to collect water samples from different sites throughout a drinking water distribution systems, Tailem Bend – Keith (TBK) in South Australia, and analyse the samples by high performance size exclusion chromatography (HPSEC). We investigated potential association between the water qualities from HPSEC analysis with chloramine decay and/or nitrification occurrence. MATLAB 8.4 was used for data processing of HPSEC data and chloramine decay. An increase in the absorbance signal of HPSEC profiles at λ=230 nm between apparent molecular weights of 200 to 1000 Da was observed at sampling sites that experienced rapid chloramine decay and nitrification while its absorbance signal of HPSEC profiles at λ=254 nm decreased. An increase in absorbance at λ=230 nm and AMW < 500 Da was detected for Raukkan CT (R.C.T), a location that experienced nitrification and had significantly lower chloramine residual (<0.1 mg/L). This increase in absorbance was not detected in other sites that did not experience nitrification. Moreover, the UV absorbance at 254 nm of the HPSEC spectra was lower at R.C.T. than other sites. In this study, a chloramine residual index (C.R.I) was introduced as a new indicator of chloramine decay and nitrification occurrence, and is defined based on the ratio of area underneath the HPSEC spectra at two different wavelengths of 230 and 254 nm. The C.R.I index is able to indicate DS sites that experienced nitrification and rapid chloramine loss. This index could be useful for water treatment and distribution system managers to know if nitrification is occurring at a specific location in water distribution systems.Keywords: nitrification, HPSEC, chloramine decay, chloramine residual index
Procedia PDF Downloads 2985363 Influence of Propeller Blade Lift Distribution on Whirl Flutter Stability Characteristics
Authors: J. Cecrdle
Abstract:
This paper deals with the whirl flutter of the turboprop aircraft structures. It is focused on the influence of the blade lift span-wise distribution on the whirl flutter stability. Firstly it gives the overall theoretical background of the whirl flutter phenomenon. After that the propeller blade forces solution and the options of the blade lift modelling are described. The problem is demonstrated on the example of a twin turboprop aircraft structure. There are evaluated the influences with respect to the propeller aerodynamic derivatives and finally the influences to the whirl flutter speed and the whirl flutter margin respectively.Keywords: aeroelasticity, flutter, propeller blade force, whirl flutter
Procedia PDF Downloads 5365362 Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics
Authors: C. R. Danielle, S. Erik, T. Patrick, M. Hugh
Abstract:
In the last decade there has been an increase in demand for fine grinding due to the depletion of coarse-grained orebodies and an increase of processing fine disseminated minerals and complex orebodies. These ores have provided new challenges in concentrator design because fine and ultra-fine grinding is required to achieve acceptable recovery rates. Therefore, the correct design of a grinding circuit is important for minimizing unit costs and increasing product quality. The use of ball mills for grinding in fine size ranges is inefficient and, therefore, vertical stirred grinding mills are becoming increasingly popular in the mineral processing industry due to its already known high energy efficiency. This work presents a hypothesis of a methodology to predict the product size distribution of a vertical stirred mill using a Bond ball mill. The Population Balance Model (PBM) was used to empirically analyze the performance of a vertical mill and a Bond ball mill. The breakage parameters obtained for both grinding mills are compared to determine the possibility of predicting the product size distribution of a vertical mill based on the results obtained from the Bond ball mill. The biggest advantage of this methodology is that most of the minerals processing laboratories already have a Bond ball mill to perform the tests suggested in this study. Preliminary results show the possibility of predicting the performance of a laboratory vertical stirred mill using a Bond ball mill.Keywords: bond ball mill, population balance model, product size distribution, vertical stirred mill
Procedia PDF Downloads 2925361 Numerical Simulation of Solar Reactor for Water Disinfection
Authors: A. Sebti Bouzid, S. Igoud, L. Aoudjit, H. Lebik
Abstract:
Mathematical modeling and numerical simulation have emerged over the past two decades as one of the key tools for design and optimize performances of physical and chemical processes intended to water disinfection. Water photolysis is an efficient and economical technique to reduce bacterial contamination. It exploits the germicidal effect of solar ultraviolet irradiation to inactivate pathogenic microorganisms. The design of photo-reactor operating in continuous disinfection system, required tacking in account the hydrodynamic behavior of water in the reactor. Since the kinetic of disinfection depends on irradiation intensity distribution, coupling the hydrodynamic and solar radiation distribution is of crucial importance. In this work we propose a numerical simulation study for hydrodynamic and solar irradiation distribution in a tubular photo-reactor. We have used the Computational Fluid Dynamic code Fluent under the assumption of three-dimensional incompressible flow in unsteady turbulent regimes. The results of simulation concerned radiation, temperature and velocity fields are discussed and the effect of inclination angle of reactor relative to the horizontal is investigated.Keywords: solar water disinfection, hydrodynamic modeling, solar irradiation modeling, CFD Fluent
Procedia PDF Downloads 3505360 Study of Aging Behavior of Parallel-Series Connection Batteries
Authors: David Chao, John Lai, Alvin Wu, Carl Wang
Abstract:
For lithium-ion batteries with multiple cell configurations, some use scenarios can cause uneven aging effects to each cell within the battery because of uneven current distribution. Hence the focus of the study is to explore the aging effect(s) on batteries with different construction designs. In order to systematically study the influence of various factors in some key battery configurations, a detailed analysis of three key battery construction factors is conducted. And those key factors are (1) terminal position; (2) cell alignment matrix; and (3) interconnect resistance between cells. In this study, the 2S2P circuitry has been set as a model multi-cell battery to set up different battery samples, and the aging behavior is studied by a cycling test to analyze the current distribution and recoverable capacity. According to the outcome of aging tests, some key findings are: (I) different cells alignment matrices can have an impact on the cycle life of the battery; (II) symmetrical structure has been identified as a critical factor that can influence the battery cycle life, and unbalanced resistance can lead to inconsistent cell aging status; (III) the terminal position has been found to contribute to the uneven current distribution, that can cause an accelerated battery aging effect; and (IV) the internal connection resistance increase can actually result in cycle life increase; however, it is noteworthy that such increase in cycle life is accompanied by a decline in battery performance. In summary, the key findings from the study can help to identify the key aging factor of multi-cell batteries, and it can be useful to effectively improve the accuracy of battery capacity predictions.Keywords: multiple cells battery, current distribution, battery aging, cell connection
Procedia PDF Downloads 815359 Observations on the Eastern Red Sea Elasmobranchs: Data on Their Distribution and Ecology
Authors: Frappi Sofia, Nicolas Pilcher, Sander DenHaring, Royale Hardenstine, Luis Silva, Collin Williams, Mattie Rodrigue, Vincent Pieriborne, Mohammed Qurban, Carlos M. Duarte
Abstract:
Nowadays, elasmobranch populations are disappearing at a dangerous rate, mainly due to overexploitation, extensive fisheries, as well as climate change. The decline of these species can trigger a cascade effect, which may eventually lead to detrimental impacts on local ecosystems. The Elasmobranch in the Red Sea is facing one of the highest risks of extinction, mainly due to unregulated fisheries activities. Thus, it is of paramount importance to assess their current distribution and unveil their environmental preferences in order to improve conservation measures. Important data have been collected throughout the whole red Sea during the Red Sea Decade Expedition (RSDE) to achieve this goal. Elasmobranch sightings were gathered through the use of submarines, remotely operated underwater vehicles (ROV), scuba diving operations, and helicopter surveys. Over a period of 5 months, we collected 891 sightings, 52 with submarines, 138 with the ROV, 67 with the scuba diving teams, and 634 from helicopters. In total, we observed 657 and 234 individuals from the superorder Batoidea and Selachimorpha, respectively. The most common shark encountered was Iago omanensis, a deep-water shark of the order Carcharhiniformes. To each sighting, data on temperature, salinity density, and dissolved oxygen were integrated to reveal favorable conditions for each species. Additionally, an extensive literature review on elasmobranch research in the Eastern Red Sea has been carried out in order to obtain more data on local populations and to be able to highlight patterns of their distribution.Keywords: distribution, elasmobranchs, habitat, rays, red sea, sharks
Procedia PDF Downloads 855358 An Evaluation Model for Automatic Map Generalization
Authors: Quynhan Tran, Hong Fan, Quockhanh Pham
Abstract:
Automatic map generalization is a well-known problem in cartography. The development of map generalization research accompanied the development of cartography. The traditional map is plotted manually by cartographic experts. The paper studies none-scale automation generalization of resident polygons and house marker symbol, proposes methodology to evaluate the result maps based on minimal spanning tree. In this paper, the minimal spanning tree before and after map generalization is compared to evaluate whether the generalization result maintain the geographical distribution of features. The minimal spanning tree in vector format is firstly converted into a raster format and the grid size is 2mm (distance on the map). The statistical number of matching grid before and after map generalization and the ratio of overlapping grid to the total grids is calculated. Evaluation experiments are conduct to verify the results. Experiments show that this methodology can give an objective evaluation for the feature distribution and give specialist an hand while they evaluate result maps of none-scale automation generalization with their eyes.Keywords: automatic cartography generalization, evaluation model, geographic feature distribution, minimal spanning tree
Procedia PDF Downloads 6365357 Effect of Tube Backward Extrusion (TBE) Process on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy
Authors: H. Abdolvand, M. Riazat, H. Sohrabi, G. Faraji
Abstract:
An experimental investigation into the Tube Backward Extrusion (TBE) process on AZ31 magnesium alloy is studied. Microstructures and grain size distribution of the specimens before and after TBE process are investigated by optical microscopy. Tensile and Vickers microhardness tests along extrusion direction were performed at room temperature. It is found that the average grain size is refined remarkably from the initial 33 µm down to 3.5 µm after TBE process. Also, the microhardness increased significantly to 58 HV after the process from an initial value of 36 HV.Keywords: tube backward extrusion, AZ31, grain size distribution, grain refinement
Procedia PDF Downloads 4995356 Semi-Supervised Learning Using Pseudo F Measure
Authors: Mahesh Balan U, Rohith Srinivaas Mohanakrishnan, Venkat Subramanian
Abstract:
Positive and unlabeled learning (PU) has gained more attention in both academic and industry research literature recently because of its relevance to existing business problems today. Yet, there still seems to be some existing challenges in terms of validating the performance of PU learning, as the actual truth of unlabeled data points is still unknown in contrast to a binary classification where we know the truth. In this study, we propose a novel PU learning technique based on the Pseudo-F measure, where we address this research gap. In this approach, we train the PU model to discriminate the probability distribution of the positive and unlabeled in the validation and spy data. The predicted probabilities of the PU model have a two-fold validation – (a) the predicted probabilities of reliable positives and predicted positives should be from the same distribution; (b) the predicted probabilities of predicted positives and predicted unlabeled should be from a different distribution. We experimented with this approach on a credit marketing case study in one of the world’s biggest fintech platforms and found evidence for benchmarking performance and backtested using historical data. This study contributes to the existing literature on semi-supervised learning.Keywords: PU learning, semi-supervised learning, pseudo f measure, classification
Procedia PDF Downloads 2355355 Conflation Methodology Applied to Flood Recovery
Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong
Abstract:
Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.Keywords: community resilience, conflation, flood risk, nuisance flooding
Procedia PDF Downloads 1035354 Survival Data with Incomplete Missing Categorical Covariates
Authors: Madaki Umar Yusuf, Mohd Rizam B. Abubakar
Abstract:
The survival censored data with incomplete covariate data is a common occurrence in many studies in which the outcome is survival time. With model when the missing covariates are categorical, a useful technique for obtaining parameter estimates is the EM by the method of weights. The survival outcome for the class of generalized linear model is applied and this method requires the estimation of the parameters of the distribution of the covariates. In this paper, we propose some clinical trials with ve covariates, four of which have some missing values which clearly show that they were fully censored data.Keywords: EM algorithm, incomplete categorical covariates, ignorable missing data, missing at random (MAR), Weibull Distribution
Procedia PDF Downloads 4065353 Iterative White Balance Adjustment Process in Production Line
Authors: Onur Onder, Celal Tanuca, Mahir Ozil, Halil Sen, Alkım Ozkan, Engin Ceylan, Ali Istek, Ozgur Saglam
Abstract:
White balance adjustment of LCD TVs is an important procedure which has a direct influence on quality perception. Existing methods adjust RGB gain and offset values in different white levels during production. This paper suggests an iterative method in which the gamma is pre-adjusted during the design stage, and only 80% white is adjusted during production by modifying only RGB gain values (offset values are not modified). This method reduces the white balance adjustment time, contributing to the total efficiency of the production. Experiment shows that the adjustment results are well within requirements.Keywords: color temperature, LCD panel deviation, LCD TV manufacturing, white balance
Procedia PDF Downloads 2185352 An Inventory Management Model to Manage the Stock Level for Irregular Demand Items
Authors: Riccardo Patriarca, Giulio Di Gravio, Francesco Costantino, Massimo Tronci
Abstract:
An accurate inventory management policy acquires a crucial role in the several high-availability sectors. In these sectors, due to the high-cost of spares and backorders, an (S-1, S) replenishment policy is necessary for high-availability items. The policy enables the shipment of a substitute efficient item anytime the inventory size decreases by one. This policy can be modelled following the Multi-Echelon Technique for Recoverable Item Control (METRIC). The METRIC is a system-based technique that allows defining the optimum stock level in a multi-echelon network, adopting measures in line with the decision-maker’s perspective. The METRIC defines an availability-cost function with inventory costs and required service levels, using as inputs data about the demand trend, the supplying and maintenance characteristics of the network and the budget/availability constraints. The traditional METRIC relies on the hypothesis that a Poisson distribution well represents the demand distribution in case of items with a low failure rate. However, in this research, we will explore the effects of using a Poisson distribution to model the demand of low failure rate items characterized by an irregular demand trend. This characteristic of a demand is not included in the traditional METRIC formulation leading to the need of revising its traditional formulation. Using the CV (Coefficient of Variation) and ADI (Average inter-Demand Interval) classification, we will define the inherent flaws of Poisson-based METRIC for irregular demand items, defining an innovative ad hoc distribution which can better fit the irregular demands. This distribution will allow defining proper stock levels to reduce stocking and backorder costs due to the high irregularities in the demand trend. A case study in the aviation domain will clarify the benefits of this innovative METRIC approach.Keywords: METRIC, inventory management, irregular demand, spare parts
Procedia PDF Downloads 3475351 Multifractal Behavior of the Perturbed Cerbelli-Giona Map: Numerical Computation of ω-Measure
Authors: Ibrahim Alsendid, Rob Sturman, Benjamin Sharp
Abstract:
In this paper, we consider a family of 2-dimensional nonlinear area-preserving transformations on the torus. A single parameter η varies between 0 and 1, taking the transformation from a hyperbolic toral automorphism to the “Cerbelli-Giona” map, a system known to exhibit multifractal properties. Here we study the multifractal properties of the family of maps. We apply a box-counting method by defining a grid of boxes Bi(δ), where i is the index and δ is the size of the boxes, to quantify the distribution of stable and unstable manifolds of the map. When the parameter is in the range 0.51< η <0.58 and 0.68< η <1 the map is ergodic; i.e., the unstable and stable manifolds eventually cover the whole torus, although not in a uniform distribution. For accurate numerical results, we require correspondingly accurate construction of the stable and unstable manifolds. Here we use the piecewise linearity of the map to achieve this, by computing the endpoints of line segments that define the global stable and unstable manifolds. This allows the generalized fractal dimension Dq, and spectrum of dimensions f(α), to be computed with accuracy. Finally, the intersection of the unstable and stable manifold of the map will be investigated and compared with the distribution of periodic points of the system.Keywords: Discrete-time dynamical systems, Fractal geometry, Multifractal behaviour of the Perturbed map, Multifractal of Dynamical systems
Procedia PDF Downloads 2115350 Assessing the Nutritional Characteristics and Habitat Modeling of the Comorian’s Yam (Dioscorea comorensis) in a Fragmented Landscape
Authors: Mounir Soule, Hindatou Saidou, Razafimahefa, Mohamed Thani Ibouroi
Abstract:
High levels of habitat fragmentation and loss are the main drivers of plant species extinction. They reduce the habitat quality, which is a determining factor for the reproduction of plant species, and generate strong selective pressures for habitat selection, with impacts on the reproduction and survival of individuals. The Comorian’s yam (Dioscorea comorensis) is one of the most threatened plant species of the Comoros archipelago. The species faces one of the highest rates of habitat loss worldwide (9.3 % per year) and is classified as Endangered in the IUCN red list. Despite the nutritional potential of this tuber, the Comorian’s yam cultivation remains neglected by local populations due probably to lack of knowledge on its nutritional importance and the factors driving its spatial distribution and development. In this study, we assessed the nutritional characteristics of Dioscorea comorensis and the drivers of spatial distribution and abundance to propose conservation measures and improve crop yields. To determine the nutritional characteristics, the Kjeldahl method, the Soxhlet method, and Atwater's specific calorific coefficients methods were applied for analyzing proteins, lipids, and caloric energy respectively. In addition, atomic absorption spectrometry was used to measure mineral particles. By combining species occurrences with ecological (habitat types), climatic (temperature, rainfall, etc.), and physicochemical (soil types and quality) variables, we assessed habitat suitability and spatial distribution of the species and the factors explaining the origin, persistence, distribution and competitive capacity of a species using a Species Distribution Modeling (SDM) method. The results showed that the species contains 83.37% carbohydrates, 6.37% protein, and 0.45% lipids. In 100 grams, the quantities of Calcium, Sodium, Zinc, Iron, Copper, Potassium, Phosphorus, Magnesium, and Manganese are respectively 422.70, 599.41, 223.11, 252.32, 332.20, 780.41, 444.17, 287.71 and 220.73 mg. Its PRAL index is negative (- 9.80 mEq/100 g), and its Ca/P (0.95) and Na/K (0.77) ratios are less than 1. This species provides an energy value of 357.46 Kcal per 100 g, thanks to its carbohydrates and minerals and is distinguished from others by its high protein content, offering benefits for cardiovascular health. According to our SDM, the species has a very limited distribution, restricted to forests with higher biomass, humidity, and clay. Our findings highlight how distribution patterns are related to ecological and environmental factors. They also emphasize how the Comoros yam is beneficial in terms of nutritional quality. Our results represent a basic knowledge that will help scientists and decision-makers to develop conservation strategies and to improve crop yields.Keywords: Dioscorea comorensis, nutritional characteristics, species distribution modeling, conservation strategies, crop yields improvement
Procedia PDF Downloads 31