Search results for: smart healthcare
2158 Vaccination against Hepatitis B in Tunisian Health Care Workers
Authors: Asma Ammar, Nabiha Bouafia , Asma BenCheikh, Mohamed Mahjoub, Olfa Ezzi, Wadiaa Bannour, Radhia Helali, Mansour Njah
Abstract:
Background: The objective of the present study was to identify factors associated with vaccination against Hepatitis B virus (HBV) among healthcare workers (HWs) in the University Hospital Center (UHC) Farhat Hached Sousse, Tunisia. Methods: We conducted a descriptive cross-sectional study all licensed physicians (n= 206) and a representative sample of paramedical staff (n= 372) exercising at UHC Hached Sousse (Tunisia) during two months (January and February 2014). Data were collected using a self-administered and pre-tested questionnaire, which composed by 21 questions. In order to determinate factors associated with vaccination against hepatitis B among HWs, this questionnaire was based on the Health Belief Model, one of the most classical behavior theories. Logistic regression with the stepwise method of Hosmer and Lemeshow was used to identify the determinants of the use of vaccination against HBV. Results: The response rates were 79.8%. Fifty two percent believe that HBV is frequent in our healthcare units and 60.6% consider it a severe infection. The prevalence of HWs vaccination was 39%, 95% CI [34.49%; 43.5%]. In multivariate analysis, determinants of the use of vaccination against HBV among HWs were young age (p=10-4), male gender (p = 0. 006), high or very high importance accorded to health (p = 0.035), perception membership in a risk group for HBV infection (p = 0.038) and very favorable or favorable opinion about vaccination against HVB (p=10-4). Conclusion: The results of our study should be considered in any strategy for preventing VHB infection in HWs. In the mean time, coverage with standard vaccines should be improved also by supplying complete information on the risks of VHB infection and on the safety and efficacy of vaccination.Keywords: Hepatitis B virus, healthcare workers, prevalence, vaccination
Procedia PDF Downloads 3512157 Eliciting and Confirming Data, Information, Knowledge and Wisdom in a Specialist Health Care Setting - The Wicked Method
Authors: Sinead Impey, Damon Berry, Selma Furtado, Miriam Galvin, Loretto Grogan, Orla Hardiman, Lucy Hederman, Mark Heverin, Vincent Wade, Linda Douris, Declan O'Sullivan, Gaye Stephens
Abstract:
Healthcare is a knowledge-rich environment. This knowledge, while valuable, is not always accessible outside the borders of individual clinics. This research aims to address part of this problem (at a study site) by constructing a maximal data set (knowledge artefact) for motor neurone disease (MND). This data set is proposed as an initial knowledge base for a concurrent project to develop an MND patient data platform. It represents the domain knowledge at the study site for the duration of the research (12 months). A knowledge elicitation method was also developed from the lessons learned during this process - the WICKED method. WICKED is an anagram of the words: eliciting and confirming data, information, knowledge, wisdom. But it is also a reference to the concept of wicked problems, which are complex and challenging, as is eliciting expert knowledge. The method was evaluated at a second site, and benefits and limitations were noted. Benefits include that the method provided a systematic way to manage data, information, knowledge and wisdom (DIKW) from various sources, including healthcare specialists and existing data sets. Limitations surrounded the time required and how the data set produced only represents DIKW known during the research period. Future work is underway to address these limitations.Keywords: healthcare, knowledge acquisition, maximal data sets, action design science
Procedia PDF Downloads 3612156 Holistic Development of Children through Performing Classical Art Forms: A Study in Tamil Nadu, India
Authors: Meera Rajeev Kumar
Abstract:
An overall social, emotional, and cultural development in a child is what a parent expects. There is no point in comparing the generations of 70’s or 80’s with that of the children of today as the trends are changing drastically. Technology has enabled them to become smart as well as over smart in one way or the other. Children today are quite ignorant of today’s values or ethics and are imbibing different cultures around them and ultimately confused on what to follow. The researcher has gained experience in transmitting or imparting the traditional culture through performing arts. It is understood that the children undergo a transformation from what they knew to what the truth is, through learning and experience. Through performing arts, the child develops an emotional, quick learning, abundant creativity, and ultimately self-realisation on what is right and wrong. The child also gains good organising skills, good decision making skills, therefore summing up to a holistic development. The sample study is 50, and a random sampling technique is adopted to differentiate between a normal child and a child learning an art. The study is conducted in Tamil Nadu, in India.Keywords: creativity, cultural, emotional, empower
Procedia PDF Downloads 2022155 Modeling Water Resources Carrying Capacity, Optimizing Water Treatment, Smart Water Management, and Conceptualizing a Watershed Management Approach
Authors: Pius Babuna
Abstract:
Sustainable water use is important for the existence of the human race. Water resources carrying capacity (WRCC) measures the sustainability of water use; however, the calculation and optimization of WRCC remain challenging. This study used a mathematical model (the Logistics Growth of Water Resources -LGWR) and a linear objective function to model water sustainability. We tested the validity of the models using data from Ghana. Total freshwater resources, water withdrawal, and population data were used in MATLAB. The results show that the WRCC remains sustainable until the year 2132 ±18, when half of the total annual water resources will be used. The optimized water treatment cost suggests that Ghana currently wastes GHȼ 1115.782± 50 cedis (~$182.21± 50) per water treatment plant per month or ~ 0.67 million gallons of water in an avoidable loss. Adopting an optimized water treatment scheme and a watershed management approach will help sustain the WRCC.Keywords: water resources carrying capacity, smart water management, optimization, sustainable water use, water withdrawal
Procedia PDF Downloads 872154 A Study on the Korean Connected Industrial Parks Smart Logistics It Financial Enterprise Architecture
Authors: Ilgoun Kim, Jongpil Jeong
Abstract:
Recently, a connected industrial parks (CIPs) architecture using new technologies such as RFID, cloud computing, CPS, Big Data, 5G 5G, IIOT, VR-AR, and ventral AI algorithms based on IoT has been proposed. This researcher noted the vehicle junction problem (VJP) as a more specific detail of the CIPs architectural models. The VJP noted by this researcher includes 'efficient AI physical connection challenges for vehicles' through ventilation, 'financial and financial issues with complex vehicle physical connections,' and 'welfare and working conditions of the performing personnel involved in complex vehicle physical connections.' In this paper, we propose a public solution architecture for the 'electronic financial problem of complex vehicle physical connections' as a detailed task during the vehicle junction problem (VJP). The researcher sought solutions to businesses, consumers, and Korean social problems through technological advancement. We studied how the beneficiaries of technological development can benefit from technological development with many consumers in Korean society and many small and small Korean company managers, not some specific companies. In order to more specifically implement the connected industrial parks (CIPs) architecture using the new technology, we noted the vehicle junction problem (VJP) within the smart factory industrial complex and noted the process of achieving the vehicle junction problem performance among several electronic processes. This researcher proposes a more detailed, integrated public finance enterprise architecture among the overall CIPs architectures. The main details of the public integrated financial enterprise architecture were largely organized into four main categories: 'business', 'data', 'technique', and 'finance'.Keywords: enterprise architecture, IT Finance, smart logistics, CIPs
Procedia PDF Downloads 1672153 Relationship Between Health Coverage and Emergency Disease Burden
Authors: Karim Hajjar, Luis Lillo, Diego Martinez, Manuel Hermosilla, Nicholas Risko
Abstract:
Objectives: This study examines the relationship between universal health coverage (UCH) and the burden of emergency diseases at a global level. Methods: Data on Disability-Adjusted Life Years (DALYs) from emergency conditions were extracted from the Institute for Health Metrics and Evaluation (IHME) database for the years 2015 and 2019. Data on UHC, measured using two variables, 1) coverage of essential health services and 2) proportion of population spending more than 10% of household income on out-of-pocket health care expenditure, was extracted from the World Bank Database for years preceding our outcome of interest. Linear regression was performed, analyzing the effect of the UHC variables on the DALYs of emergency diseases, controlling for other variables. Results: A total of 133 countries were included. 44.4% of the analyzed countries had coverage of essential health services index of at least 70/100, and 35.3% had at least 10% of their population spend greater than 10% of their household income on healthcare. For every point increase in the coverage of essential health services index, there was a 13-point reduction in DALYs of emergency medical diseases (95% CI -16, -11). Conversely, for every percent decrease in the population with large household expenditure on healthcare, there was a 0.48 increase in DALYs of emergency medical diseases (95% CI -5.6, 4.7). Conclusions: After adjusting for multiple variables, an increase in coverage of essential health services was significantly associated with improvement in DALYs for emergency conditions. There was, however, no association between catastrophic health expenditure and DALYs.Keywords: emergency medicine, universal healthcare, global health, health economics
Procedia PDF Downloads 922152 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision
Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias
Abstract:
Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.Keywords: healthcare, fall detection, transformer, transfer learning
Procedia PDF Downloads 1482151 Ethical Decision-Making by Healthcare Professionals during Disasters: Izmir Province Case
Authors: Gulhan Sen
Abstract:
Disasters could result in many deaths and injuries. In these difficult times, accessible resources are limited, demand and supply balance is distorted, and there is a need to make urgent interventions. Disproportionateness between accessible resources and intervention capacity makes triage a necessity in every stage of disaster response. Healthcare professionals, who are in charge of triage, have to evaluate swiftly and make ethical decisions about which patients need priority and urgent intervention given the limited available resources. For such critical times in disaster triage, 'doing the greatest good for the greatest number of casualties' is adopted as a code of practice. But there is no guide for healthcare professionals about ethical decision-making during disasters, and this study is expected to use as a source in the preparation of the guide. This study aimed to examine whether the qualities healthcare professionals in Izmir related to disaster triage were adequate and whether these qualities influence their capacity to make ethical decisions. The researcher used a survey developed for data collection. The survey included two parts. In part one, 14 questions solicited information about socio-demographic characteristics and knowledge levels of the respondents on ethical principles of disaster triage and allocation of scarce resources. Part two included four disaster scenarios adopted from existing literature and respondents were asked to make ethical decisions in triage based on the provided scenarios. The survey was completed by 215 healthcare professional working in Emergency-Medical Stations, National Medical Rescue Teams and Search-Rescue-Health Teams in Izmir. The data was analyzed with SPSS software. Chi-Square Test, Mann-Whitney U Test, Kruskal-Wallis Test and Linear Regression Analysis were utilized. According to results, it was determined that 51.2% of the participants had inadequate knowledge level of ethical principles of disaster triage and allocation of scarce resources. It was also found that participants did not tend to make ethical decisions on four disaster scenarios which included ethical dilemmas. They stayed in ethical dilemmas that perform cardio-pulmonary resuscitation, manage limited resources and make decisions to die. Results also showed that participants who had more experience in disaster triage teams, were more likely to make ethical decisions on disaster triage than those with little or no experience in disaster triage teams(p < 0.01). Moreover, as their knowledge level of ethical principles of disaster triage and allocation of scarce resources increased, their tendency to make ethical decisions also increased(p < 0.001). In conclusion, having inadequate knowledge level of ethical principles and being inexperienced affect their ethical decision-making during disasters. So results of this study suggest that more training on disaster triage should be provided on the areas of the pre-impact phase of disaster. In addition, ethical dimension of disaster triage should be included in the syllabi of the ethics classes in the vocational training for healthcare professionals. Drill, simulations, and board exercises can be used to improve ethical decision making abilities of healthcare professionals. Disaster scenarios where ethical dilemmas are faced should be prepared for such applied training programs.Keywords: disaster triage, medical ethics, ethical principles of disaster triage, ethical decision-making
Procedia PDF Downloads 2452150 Evaluating Urban City Indices: A Study for Investigating Functional Domains, Indicators and Integration Methods
Authors: Fatih Gundogan, Fatih Kafali, Abdullah Karadag, Alper Baloglu, Ersoy Pehlivan, Mustafa Eruyar, Osman Bayram, Orhan Karademiroglu, Wasim Shoman
Abstract:
Nowadays many cities around the world are investing their efforts and resources for the purpose of facilitating their citizen’s life and making cities more livable and sustainable by implementing newly emerged phenomena of smart city. For this purpose, related research institutions prepare and publish smart city indices or benchmarking reports aiming to measure the city’s current ‘smartness’ status. Several functional domains, various indicators along different selection and calculation methods are found within such indices and reports. The selection criteria varied for each institution resulting in inconsistency in the ranking and evaluating. This research aims to evaluate the impact of selecting such functional domains, indicators and calculation methods which may cause change in the rank. For that, six functional domains, i.e. Environment, Mobility, Economy, People, Living and governance, were selected covering 19 focus areas and 41 sub-focus (variable) areas. 60 out of 191 indicators were also selected according to several criteria. These were identified as a result of extensive literature review for 13 well known global indices and research and the ISO 37120 standards of sustainable development of communities. The values of the identified indicators were obtained from reliable sources for ten cities. The values of each indicator for the selected cities were normalized and standardized to objectively investigate the impact of the chosen indicators. Moreover, the effect of choosing an integration method to represent the values of indicators for each city is investigated by comparing the results of two of the most used methods i.e. geometric aggregation and fuzzy logic. The essence of these methods is assigning a weight to each indicator its relative significance. However, both methods resulted in different weights for the same indicator. As a result of this study, the alternation in city ranking resulting from each method was investigated and discussed separately. Generally, each method illustrated different ranking for the selected cities. However, it was observed that within certain functional areas the rank remained unchanged in both integration method. Based on the results of the study, it is recommended utilizing a common platform and method to objectively evaluate cities around the world. The common method should provide policymakers proper tools to evaluate their decisions and investments relative to other cities. Moreover, for smart cities indices, at least 481 different indicators were found, which is an immense number of indicators to be considered, especially for a smart city index. Further works should be devoted to finding mutual indicators representing the index purpose globally and objectively.Keywords: functional domain, urban city index, indicator, smart city
Procedia PDF Downloads 1472149 Digital Twin Strategies and Technologies for Modern Supply Chains
Authors: Mayank Sharma, Anubhaw Kumar, Siddharth Desai, Ankit Tomar
Abstract:
With the advent of cost-effective hardware and communication technologies, the scope of digitalising operations within a supply chain has tremendously increased. This has provided the opportunity to create digital twins of entire supply chains through the use of Internet-of-Things (IoT) and communication technologies. Adverse events like the COVID-19 pandemic and unpredictable geo-political situations have further warranted the importance of digitalization and remote operability of day-to-day operations at critical nodes. Globalisation, rising consumerism & e-commerce has exponentially increased the complexities of existing supply chains. We discuss here a scalable, future-ready and inclusive framework for creating digital twins developed along with the industry leaders from Cisco, Bosch, Accenture, Intel, Deloitte & IBM. We have proposed field-tested key technologies and frameworks required for creating digital twins. We also present case studies of real-life stable deployments done by us in the supply chains of a few marquee industry leaders.Keywords: internet-of-things, digital twins, smart factory, industry 4.0, smart manufacturing
Procedia PDF Downloads 962148 The Impact of Health Tourism on Companies’ Performance: A Cross Country Analysis
Authors: Anna Paola Micheli, Carmelo Intrisano, Anna Maria Calce
Abstract:
This research focused on the capability of health tourism to improve the economic and financial performance of healthcare companies. It is assumed that health tourism companies have better profitability and financial efficiency because they can also count on cross-border demand differently from no health tourism companies. A three-level gap analysis was conducted: the first concerns health tourism companies located in Italy and in the other EU28 states; in the second Italian and EU28, no health tourism companies were compared; the third level is about the Italian system with a comparison between health tourism and no health tourism companies. Findings highlighted that Italian healthcare companies have better profitability performance if compared to European ones, but they present weaknesses in the financial position given the illiquidity and excessive leverage. Furthermore, studying the Italian system, we found that health tourism companies are more profitable than no health tourism companies.Keywords: financial performance, gap analysis, health tourism, profitability performance, value creation
Procedia PDF Downloads 2282147 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design
Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong
Abstract:
This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring
Procedia PDF Downloads 872146 Design and Implementation of a Nano-Power Wireless Sensor Device for Smart Home Security
Authors: Chia-Chi Chang
Abstract:
Most battery-driven wireless sensor devices will enter in sleep mode as soon as possible to extend the overall lifetime of a sensor network. It is necessary to turn off unnecessary radio and peripheral functions, especially the radio unit always consumes more energy than other components during wireless communication. The microcontroller is the most important part of the wireless sensor device. It is responsible for the manipulation of sensing data and communication protocols. The microcontroller always has different sleep modes, each with a different level of energy usage. The deeper the sleep, the lower the energy consumption. Most wireless sensor devices can only enter the sleep mode: the external low-frequency oscillator is still running to wake up the sleeping microcontroller when the sleep timer expires. In this paper, our sensor device can enter the extended sleep mode: none of the oscillator is running and the wireless sensor device has the nanoampere consumption and self-awaking ability. Finally, these wireless sensor devices were deployed in a smart home security network.Keywords: wireless sensor network, battery-driven, sleep mode, home security
Procedia PDF Downloads 3072145 A Case Study on Indian Translation Ecosystem of Point-Of-Care Solutions
Authors: Tripta Dixit, Smita Sahu, William Selvamurthy, Sadhana Srivastava
Abstract:
The translation of healthcare technologies is an expensive, complex affair, current healthcare challenges in Asian countries and their efforts to meet Millennium Development Goals (MDGs), necessitates continuous technology advancement to save countless lives, improve the quality of life and for socio-economic development. India’s consistently improving global innovation index (57) demonstrates its innovation potential, but access to health care is asymmetric and lacks priority in India. Therefore, there is utmost need of a robust translation system for point-of-care (POC) solutions, inexpensive, low-maintenance, reliable, and easy-to-use diagnostic technologies. Few cases of POC technologies viz. Elisa based diagnostic kits for regional viral disease, a device for detection of cancerous lesions were studied to understand the process and challenges involved in their translation. Accordingly, the entire translation ecosystem was summarized proposing a nexus of various actors such as technology developer, technology transferor technology receiver, funding entities, government/regulatory bodies and their effect on translation of different medical technologies. This study highlights the role and concerns pertaining to these actors for POC such as unsystematic and unvalidated research roadmap, low profit preposition, unfocused approach of up-scaling, low market acceptability and multiple window regulatory framework, etc. This provides an opportunity to devise solutions to overcome problem areas in translation path.Keywords: healthcare technologies, point-of-care solutions, public health, translation
Procedia PDF Downloads 1722144 Cybersecurity for Digital Twins in the Built Environment: Research Landscape, Industry Attitudes and Future Direction
Authors: Kaznah Alshammari, Thomas Beach, Yacine Rezgui
Abstract:
Technological advances in the construction sector are helping to make smart cities a reality by means of cyber-physical systems (CPS). CPS integrate information and the physical world through the use of information communication technologies (ICT). An increasingly common goal in the built environment is to integrate building information models (BIM) with the Internet of Things (IoT) and sensor technologies using CPS. Future advances could see the adoption of digital twins, creating new opportunities for CPS using monitoring, simulation, and optimisation technologies. However, researchers often fail to fully consider the security implications. To date, it is not widely possible to assimilate BIM data and cybersecurity concepts, and, therefore, security has thus far been overlooked. This paper reviews the empirical literature concerning IoT applications in the built environment and discusses real-world applications of the IoT intended to enhance construction practices, people’s lives and bolster cybersecurity. Specifically, this research addresses two research questions: (a) how suitable are the current IoT and CPS security stacks to address the cybersecurity threats facing digital twins in the context of smart buildings and districts? and (b) what are the current obstacles to tackling cybersecurity threats to the built environment CPS? To answer these questions, this paper reviews the current state-of-the-art research concerning digital twins in the built environment, the IoT, BIM, urban cities, and cybersecurity. The results of these findings of this study confirmed the importance of using digital twins in both IoT and BIM. Also, eight reference zones across Europe have gained special recognition for their contributions to the advancement of IoT science. Therefore, this paper evaluates the use of digital twins in CPS to arrive at recommendations for expanding BIM specifications to facilitate IoT compliance, bolster cybersecurity and integrate digital twin and city standards in the smart cities of the future.Keywords: BIM, cybersecurity, digital twins, IoT, urban cities
Procedia PDF Downloads 1692143 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 642142 Using Computer Vision and Machine Learning to Improve Facility Design for Healthcare Facility Worker Safety
Authors: Hengameh Hosseini
Abstract:
Design of large healthcare facilities – such as hospitals, multi-service line clinics, and nursing facilities - that can accommodate patients with wide-ranging disabilities is a challenging endeavor and one that is poorly understood among healthcare facility managers, administrators, and executives. An even less-understood extension of this problem is the implications of weakly or insufficiently accommodative design of facilities for healthcare workers in physically-intensive jobs who may also suffer from a range of disabilities and who are therefore at increased risk of workplace accident and injury. Combine this reality with the vast range of facility types, ages, and designs, and the problem of universal accommodation becomes even more daunting and complex. In this study, we focus on the implication of facility design for healthcare workers suffering with low vision who also have physically active jobs. The points of difficulty are myriad and could span health service infrastructure, the equipment used in health facilities, and transport to and from appointments and other services can all pose a barrier to health care if they are inaccessible, less accessible, or even simply less comfortable for people with various disabilities. We conduct a series of surveys and interviews with employees and administrators of 7 facilities of a range of sizes and ownership models in the Northeastern United States and combine that corpus with in-facility observations and data collection to identify five major points of failure common to all the facilities that we concluded could pose safety threats to employees with vision impairments, ranging from very minor to severe. We determine that lack of design empathy is a major commonality among facility management and ownership. We subsequently propose three methods for remedying this lack of empathy-informed design, to remedy the dangers posed to employees: the use of an existing open-sourced Augmented Reality application to simulate the low-vision experience for designers and managers; the use of a machine learning model we develop to automatically infer facility shortcomings from large datasets of recorded patient and employee reviews and feedback; and the use of a computer vision model fine tuned on images of each facility to infer and predict facility features, locations, and workflows, that could again pose meaningful dangers to visually impaired employees of each facility. After conducting a series of real-world comparative experiments with each of these approaches, we conclude that each of these are viable solutions under particular sets of conditions, and finally characterize the range of facility types, workforce composition profiles, and work conditions under which each of these methods would be most apt and successful.Keywords: artificial intelligence, healthcare workers, facility design, disability, visually impaired, workplace safety
Procedia PDF Downloads 1162141 Smart Services for Easy and Retrofittable Machine Data Collection
Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum
Abstract:
This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data
Procedia PDF Downloads 732140 Applying Lean Six Sigma in an Emergency Department, of a Private Hospital
Authors: Sarah Al-Lumai, Fatima Al-Attar, Nour Jamal, Badria Al-Dabbous, Manal Abdulla
Abstract:
Today, many commonly used Industrial Engineering tools and techniques are being used in hospitals around the world for the goal of producing a more efficient and effective healthcare system. A common quality improvement methodology known as Lean Six-Sigma has been successful in manufacturing industries and recently in healthcare. The objective of our project is to use the Lean Six-Sigma methodology to reduce waiting time in the Emergency Department (ED), in a local private hospital. Furthermore, a comprehensive literature review was conducted to evaluate the success of Lean Six-Sigma in the ED. According to the study conducted by Ibn Sina Hospital, in Morocco, the most common problem that patients complain about is waiting time. To ensure patient satisfaction many hospitals such as North Shore University Hospital were able to reduce waiting time up to 37% by using Lean Six-Sigma. Other hospitals, such as John Hopkins’s medical center used Lean Six-Sigma successfully to enhance the overall patient flow that ultimately decreased waiting time. Furthermore, it was found that capacity constraints, such as staff shortages and lack of beds were one of the main reasons behind long waiting time. With the use of Lean Six-Sigma and bed management, hospitals like Memorial Hermann Southwest Hospital were able to reduce patient delays. Moreover, in order to successfully implement Lean Six-Sigma in our project, two common methodologies were considered, DMAIC and DMADV. After the assessment of both methodologies, it was found that DMAIC was a more suitable approach to our project because it is more concerned with improving an already existing process. With many of its successes, Lean Six-Sigma has its limitation especially in healthcare; but limitations can be minimized if properly approached.Keywords: lean six sigma, DMAIC, hospital, methodology
Procedia PDF Downloads 4962139 Digital Platform for Psychological Assessment Supported by Sensors and Efficiency Algorithms
Authors: Francisco M. Silva
Abstract:
Technology is evolving, creating an impact on our everyday lives and the telehealth industry. Telehealth encapsulates the provision of healthcare services and information via a technological approach. There are several benefits of using web-based methods to provide healthcare help. Nonetheless, few health and psychological help approaches combine this method with wearable sensors. This paper aims to create an online platform for users to receive self-care help and information using wearable sensors. In addition, researchers developing a similar project obtain a solid foundation as a reference. This study provides descriptions and analyses of the software and hardware architecture. Exhibits and explains a heart rate dynamic and efficient algorithm that continuously calculates the desired sensors' values. Presents diagrams that illustrate the website deployment process and the webserver means of handling the sensors' data. The goal is to create a working project using Arduino compatible hardware. Heart rate sensors send their data values to an online platform. A microcontroller board uses an algorithm to calculate the sensor heart rate values and outputs it to a web server. The platform visualizes the sensor's data, summarizes it in a report, and creates alerts for the user. Results showed a solid project structure and communication from the hardware and software. The web server displays the conveyed heart rate sensor's data on the online platform, presenting observations and evaluations.Keywords: Arduino, heart rate BPM, microcontroller board, telehealth, wearable sensors, web-based healthcare
Procedia PDF Downloads 1262138 Effort-Reward-Imbalance and Self-Rated Health Among Healthcare Professionals in the Gambia
Authors: Amadou Darboe, Kuo Hsien-Wen
Abstract:
Background/Objective: The Effort-Reward Imbalance (ERI) model by Siegrist et al (1986) have been widely used to examine the relationship between psychosocial factors at work and health. It claimed that failed reciprocity in terms of high efforts and low rewards elicits strong negative emotions in combination with sustained autonomic activation and is hazardous to health. The aim of this study is to identify the association between Self-rated Health and Effort-reward Imbalance (ERI) among Nurses and Environmental Health officers in the Gambia. Method: a cross-sectional study was conducted using a multi-stage random sampling of 296 healthcare professionals (206 nurses and 90 environmental health officers) working in public health facilities. The 22 items Effort-reward imbalance questionnaire (ERI-L version 22.11.2012) will be used to collect data on the psychosocial factors defined by the model. In addition, self-rated health will be assessed by using structured questionnaires containing Likert scale items. Results: We found that self-rated health among environmental health officers has a significant negative correlation with extrinsic effort and a positive significant correlations with occupational reward and job satisfaction. However, among the nurses only job satisfaction was significantly correlated with self-rated health and was positive. Overall, Extrinsic effort has a significant negative correlation with reward and job satisfaction but a positive correlation with over-commitment. Conclusion: Because low reward and high over-commitment among the nursing group, It is necessary to modify working conditions through improving psychosocial factors, such as reasonable allocation of resources to increase pay or rewards from government.Keywords: effort-reward imbalance model, healthcare professionals, self-rated health
Procedia PDF Downloads 4072137 The Effectiveness of Men Who Have Sex with Men (MSM) Sensitivity Training for Nigerian Health Care Providers (HCPs)
Authors: Chiedu C. Ifekandu, Olusegun Sangowawa, Jean E. Njab
Abstract:
Background: Health care providers (HCPs) in Nigeria receive little or no training of the healthcare needs of men who have sex with men (MSM) limiting the quality and effectiveness of comprehensive HIV prevention and treatment services. Consequently, most MSM disguise themselves to access services which limit the quality of care provided partly due to challenges related to stigma and discrimination, and breach of confidentiality. Objective: To assess the knowledge of healthcare providers on effective intervention for MSM. Methods: We trained 122 HIV focal persons drawn from 60 health facilities from twelve Nigerian states. , the participants were requested to complete a pre-training questionnaire to assess their level of working experience with key populations as a baseline. Participants included male and female doctors, nurses and counselors/testers. A test was administered to measure their knowledge on MSM sexual risk practices, HIV prevention and healthcare needs and also to assess their attitudes (including homophobia) and beliefs and how it affects service uptake by key populations particularly MSM prior and immediately after the training to ascertain the impact of the training. Results: The mean age of the HCP was 38 years +/- SD Of the 122 HCPs (45 % female, 55 % male; 85 % counsellor/testers; 15 % doctors and nurses; 92 % working in government facilities) from 42 health facilities were trained, of which 105 attempted the test questions. At the baseline, few HCPs reported any prior sensitivity training on MSM. Most of the HCPs had limited knowledge of MSM sexual health needs. Over 90% of the HCPs believed that homosexuality is a mental illness. 8 % do not consider MSM, FSW and PWID as key populations for HIV infection. 45 % lacked knowledge on MSM anal sexual practices. The post-test showed that homophobic attitudes had decreased significantly by the end of the training; the health care providers have acquired basic knowledge compared to the pre-test. Conclusions: Scaling up MSM sensitivity training for Nigerian HCPs is likely to be a timely and effective means to improve their understanding of MSM-related health issues, reduce homophobic sentiments and enhance their capacity to provide responsive HIV prevention, treatment and care services in a supportive and non-stigmatizing environment.Keywords: healthcare providers, key population, men who have sex with men, HCT
Procedia PDF Downloads 3552136 Models, Methods and Technologies for Protection of Critical Infrastructures from Cyber-Physical Threats
Authors: Ivan Župan
Abstract:
Critical infrastructure is essential for the functioning of a country and is designated for special protection by governments worldwide. Due to the increase in smart technology usage in every facet of the industry, including critical infrastructure, the exposure to malicious cyber-physical attacks has grown in the last few years. Proper security measures must be undertaken in order to defend against cyber-physical threats that can disrupt the normal functioning of critical infrastructure and, consequently the functioning of the country. This paper provides a review of the scientific literature of models, methods and technologies used to protect from cyber-physical threats in industries. The focus of the literature was observed from three aspects. The first aspect, resilience, concerns itself with the robustness of the system’s defense against threats, as well as preparation and education about potential future threats. The second aspect concerns security risk management for systems with cyber-physical aspects, and the third aspect investigates available testbed environments for testing developed models on scaled models of vulnerable infrastructure.Keywords: critical infrastructure, cyber-physical security, smart industry, security methodology, security technology
Procedia PDF Downloads 772135 Game Space Program: Therapy for Children with Autism Spectrum Disorder
Authors: Khodijah Salimah
Abstract:
Game Space Program is the program design and development game for therapy the autistic child who had problems with sensory processing and integration. This program is the basic for game space to expand treatment therapy in many areas to help autistic's ability to think through visual perception. This problem can be treated with sensory experience and integration with visual experience to learn how to think and how to learn with visual perception. This perception can be accommodated through an understanding of visual thinking received from sensory exist in game space as virtual healthcare facilities are adjusted based on the sensory needs of children with autism. This paper aims to analyze the potential of virtual visual thinking for treatment autism with the game space program.Keywords: autism, game space program, sensory, virtual healthcare facilities, visual perception
Procedia PDF Downloads 3142134 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector
Authors: Ahmed Al-Adaileh, Souheil Khaddaj
Abstract:
Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.Keywords: smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data
Procedia PDF Downloads 1962133 Patient Agitation and Violence in Medical-Surgical Settings at BronxCare Hospital, Before and During COVID-19 Pandemic; A Retrospective Chart Review
Authors: Soroush Pakniyat-Jahromi, Jessica Bucciarelli, Souparno Mitra, Neda Motamedi, Ralph Amazan, Samuel Rothman, Jose Tiburcio, Douglas Reich, Vicente Liz
Abstract:
Violence is defined as an act of physical force that is intended to cause harm and may lead to physical and/or psychological damage. Violence toward healthcare workers (HCWs) is more common in psychiatric settings, emergency departments, and nursing homes; however, healthcare workers in medical setting are not spared from such events. Workplace violence has a huge burden in the healthcare industry and has a major impact on the physical and mental wellbeing of staff. The purpose of this study is to compare the prevalence of patient agitation and violence in medical-surgical settings in BronxCare Hospital (BCH) Bronx, New York, one year before and during the COVID-19 pandemic. Data collection occurred between June 2021 and August 2021, while the sampling time was from 2019 to 2021. The data were separated into two separate time categories: pre-COVID-19 (03/2019-03/2020) and COVID-19 (03/2020-03/2021). We created frequency tables for 19 variables. We used a chi-square test to determine a variable's statistical significance. We tested all variables against “restraint type”, determining if a patient was violent or became violent enough to restrain. The restraint types were “chemical”, “physical”, or both. This analysis was also used to determine if there was a statistical difference between the pre-COVID-19 and COVID-19 timeframes. Our data shows that there was an increase in incidents of violence in COVID-19 era (03/2020-03/2021), with total of 194 (62.8%) reported events, compared to pre COVID-19 era (03/2019-03/2020) with 115 (37.2%) events (p: 0.01). Our final analysis, completed using a chi-square test, determined the difference in violence in patients between pre-COVID-19 and COVID-19 era. We then tested the violence marker against restraint type. The result was statistically significant (p: 0.01). This is the first paper to systematically review the prevalence of violence in medical-surgical units in a hospital in New York, pre COVID-19 and during the COVID-19 era. Our data is in line with the global trend of increased prevalence of patient agitation and violence in medical settings during the COVID-19 pandemic. Violence and its management is a challenge in healthcare settings, and the COVID-19 pandemic has brought to bear a complexity of circumstances, which may have increased its incidence. It is important to identify and teach healthcare workers the best preventive approaches in dealing with patient agitation, to decrease the number of restraints in medical settings, and to create a less restrictive environment to deliver care.Keywords: COVID-19 pandemic, patient agitation, restraints, violence
Procedia PDF Downloads 1432132 Numerical Investigation of Poling Vector Angle on Adaptive Sandwich Plate Deflection
Authors: Alireza Pouladkhan, Mohammad Yavari Foroushani, Ali Mortazavi
Abstract:
This paper presents a finite element model for a sandwich plate containing a piezoelectric core. A sandwich plate with a piezoelectric core is constructed using the shear mode of piezoelectric materials. The orientation of poling vector has a significant effect on deflection and stress induced in the piezo-actuated adaptive sandwich plate. In the present study, the influence of this factor for a clamped-clamped-free-free and simple-simple-free-free square sandwich plate is investigated using Finite Element Method. The study uses ABAQUS (v.6.7) software to derive the finite element model of the sandwich plate. By using this model, the study gives the influences of the poling vector angle on the response of the smart structure and determines the maximum transverse displacement and maximum stress induced.Keywords: finite element method, sandwich plate, poling vector, piezoelectric materials, smart structure, electric enthalpy
Procedia PDF Downloads 2332131 Delivering Inclusive Growth through Information and Communication Technology: The Miracle of Internet of Everything
Authors: Olawale Johnson
Abstract:
The cry and agitation for the creation of equal opportunities is one of the major reasons behind the social menace countries of the world experience. As the poor, continue to demand for the dividends of economic growth, countries of the world are in a state of dilemma because, despite impressive growth figures, the poor are still far below the empowerment line. However, evidence from the Asian Tigers has proven that with the adoption and efficient utilization of information technology, a growth miracle is not far-fetched. With the mind-boggling pace of technological innovation, the need to ensure that the innovative products are all connected has become vital. Technologies that did not exist a few years ago have become vital equipment used to underlie every aspect of our economy from medicine to banking to sports. The need to connect things sensors, actuators and smart systems with the aim of ensuring person-to-object, object-to-object communications has promoted the need of internet of things. As developing countries struggle with delivering inclusiveness, the Internet of Everything is perceived to be the miracle that will deliver this in no time. This paper examines how the Asian Tigers have been able to promote inclusive growth through the Internet of Everything.Keywords: inclusive growth, internet of everything, innovation, embedded systems and smart technologies
Procedia PDF Downloads 3202130 Application of Medical Information System for Image-Based Second Opinion Consultations–Georgian Experience
Authors: Kldiashvili Ekaterina, Burduli Archil, Ghortlishvili Gocha
Abstract:
Introduction – Medical information system (MIS) is at the heart of information technology (IT) implementation policies in healthcare systems around the world. Different architecture and application models of MIS are developed. Despite of obvious advantages and benefits, application of MIS in everyday practice is slow. Objective - On the background of analysis of the existing models of MIS in Georgia has been created a multi-user web-based approach. This presentation will present the architecture of the system and its application for image based second opinion consultations. Methods – The MIS has been created with .Net technology and SQL database architecture. It realizes local (intranet) and remote (internet) access to the system and management of databases. The MIS is fully operational approach, which is successfully used for medical data registration and management as well as for creation, editing and maintenance of the electronic medical records (EMR). Five hundred Georgian language electronic medical records from the cervical screening activity illustrated by images were selected for second opinion consultations. Results – The primary goal of the MIS is patient management. However, the system can be successfully applied for image based second opinion consultations. Discussion – The ideal of healthcare in the information age must be to create a situation where healthcare professionals spend more time creating knowledge from medical information and less time managing medical information. The application of easily available and adaptable technology and improvement of the infrastructure conditions is the basis for eHealth applications. Conclusion - The MIS is perspective and actual technology solution. It can be successfully and effectively used for image based second opinion consultations.Keywords: digital images, medical information system, second opinion consultations, electronic medical record
Procedia PDF Downloads 4502129 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation
Authors: C. Bunsanit
Abstract:
This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.Keywords: fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband
Procedia PDF Downloads 226