Search results for: robust%20optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1399

Search results for: robust%20optimization

679 Assessment of Music Performance Anxiety in Portuguese Children and Adolescents

Authors: Pedro Dias, Lurdes Verissimo, Maria Joao Baptista, Ana Pinheiro, Patricia Oliveira-Silva, Sofia Serra, Daniela Coimbra

Abstract:

To achieve a high standard in performance, a musician must be well in all aspects of health (physical, mental and social). Anxiety in performance is related to the high level of coordination and skill needed in performance, as well as to the public evaluation of the performer. It affects some key elements of performance, such as concentration, memory, motor coordination, and relaxation. This work presents two studies focused on the adaptation and evaluation of the psychometric properties of the Music Performance Anxiety Inventory (MPAI-A) in young Portuguese music students. The first study was conducted with a sample of 161 adolescent music students, who responded to the Portuguese version of this instrument, and to the State-Trait Anxiety Inventory for Children (STAIC-c2). Validity and reliability were examined, and this measure revealed robust psychometric properties in this sample. The second study aimed to adapt the MPAI to a younger population (one hundred 8-10 years-old music students). Again, the MPAI and the STAIC c-2 were used in this study. Exploratory factor analysis, correlations, and internal consistency were used to evaluate the final children version of the instrument (MPAI-C), presenting a different factor structure compared to the adolescent version (10 items organized in 2 factors) and high levels of reliability and convergent validity.

Keywords: anxiety, assessment, children and adolescents, music performance

Procedia PDF Downloads 183
678 Computational Fluid Dynamics Analysis of Convergent–Divergent Nozzle and Comparison against Theoretical and Experimental Results

Authors: Stewart A. Keir, Faik A. Hamad

Abstract:

This study aims to use both analytical and experimental methods of analysis to examine the accuracy of Computational Fluid Dynamics (CFD) models that can then be used for more complex analyses, accurately representing more elaborate flow phenomena such as internal shockwaves and boundary layers. The geometry used in the analytical study and CFD model is taken from the experimental rig. The analytical study is undertaken using isentropic and adiabatic relationships and the output of the analytical study, the 'shockwave location tool', is created. The results from the analytical study are then used to optimize the redesign an experimental rig for more favorable placement of pressure taps and gain a much better representation of the shockwaves occurring in the divergent section of the nozzle. The CFD model is then optimized through the selection of different parameters, e.g. turbulence models (Spalart-Almaras, Realizable k-epsilon & Standard k-omega) in order to develop an accurate, robust model. The results from the CFD model can then be directly compared to experimental and analytical results in order to gauge the accuracy of each method of analysis. The CFD model will be used to visualize the variation of various parameters such as velocity/Mach number, pressure and turbulence across the shock. The CFD results will be used to investigate the interaction between the shock wave and the boundary layer. The validated model can then be used to modify the nozzle designs which may offer better performance and ease of manufacture and may present feasible improvements to existing high-speed flow applications.

Keywords: CFD, nozzle, fluent, gas dynamics, shock-wave

Procedia PDF Downloads 229
677 Design of Liquid Crystal Based Interface to Study the Interaction of Gram Negative Bacterial Endotoxin with Milk Protein Lactoferrin

Authors: Dibyendu Das, Santanu Kumar Pal

Abstract:

Milk protein lactoferrin (Lf) exhibits potent antibacterial activity due to its interaction with Gram-negative bacterial cell membrane component, lipopolysaccharide (LPS). This paper represents fabrication of new Liquid crystals (LCs) based biosensors to explore the interaction between Lf and LPS. LPS self-assembled at aqueous/LCs interface and orients interfacial nematic 4-cyano-4’- pentylbiphenyl (5CB) LCs in a homeotropic fashion (exhibiting dark optical image under polarized optical microscope). Interestingly, on the exposure of Lf on LPS decorated aqueous/LCs interface, an optical image of LCs changed from dark to bright indicating an ordering alteration of interfacial LCs from homeotropic to tilted/planar state. The ordering transition reflects strong binding between Lf and interfacial LPS that, in turn, perturbs the orientation of LCs. With the help of epifluorescence microscopy, we further affirmed the interfacial LPS-Lf binding event by imaging the presence of FITC tagged Lf at the LPS laden aqueous/LCs interface. Finally, we have investigated the conformational behavior of Lf in solution as well as in the presence of LPS using Circular Dichroism (CD) spectroscopy and further reconfirmed with Vibrational Circular Dichroism (VCD) spectroscopy where we found that Lf undergoes alpha-helix to random coil-like structure in the presence of LPS. As a whole the entire results described in this paper establish a robust approach to envisage the interaction between LPS and Lf through the ordering transitions of LCs at aqueous/LCs interface.

Keywords: endotoxin, interface, lactoferrin, lipopolysaccharide

Procedia PDF Downloads 258
676 Dynamic Compensation for Environmental Temperature Variation in the Coolant Refrigeration Cycle as a Means of Increasing Machine-Tool Precision

Authors: Robbie C. Murchison, Ibrahim Küçükdemiral, Andrew Cowell

Abstract:

Thermal effects are the largest source of dimensional error in precision machining, and a major proportion is caused by ambient temperature variation. The use of coolant is a primary means of mitigating these effects, but there has been limited work on coolant temperature control. This research critically explored whether CNC-machine coolant refrigeration systems adapted to actively compensate for ambient temperature variation could increase machining accuracy. Accuracy data were collected from operators’ checklists for a CNC 5-axis mill and statistically reduced to bias and precision metrics for observations of one day over a sample period of 27 days. Temperature data were collected using three USB dataloggers in ambient air, the chiller inflow, and the chiller outflow. The accuracy and temperature data were analysed using Pearson correlation, then the thermodynamics of the system were described using system identification with MATLAB. It was found that 75% of thermal error is reflected in the hot coolant temperature but that this is negligibly dependent on ambient temperature. The effect of the coolant refrigeration process on hot coolant outflow temperature was also found to be negligible. Therefore, the evidence indicated that it would not be beneficial to adapt coolant chillers to compensate for ambient temperature variation. However, it is concluded that hot coolant outflow temperature is a robust and accessible source of thermal error data which could be used for prevention strategy evaluation or as the basis of other thermal error strategies.

Keywords: CNC manufacturing, machine-tool, precision machining, thermal error

Procedia PDF Downloads 83
675 UV-Vis Spectroscopy as a Tool for Online Tar Measurements in Wood Gasification Processes

Authors: Philip Edinger, Christian Ludwig

Abstract:

The formation and control of tars remain one of the major challenges in the implementation of biomass gasification technologies. Robust, on-line analytical methods are needed to investigate the fate of tar compounds when different measures for their reduction are applied. This work establishes an on-line UV-Vis method, based on a liquid quench sampling system, to monitor tar compounds in biomass gasification processes. Recorded spectra from the liquid phase were analyzed for their tar composition by means of a classical least squares (CLS) and partial least squares (PLS) approach. This allowed for the detection of UV-Vis active tar compounds with detection limits in the low part per million by volume (ppmV) region. The developed method was then applied to two case studies. The first involved a lab-scale reactor, intended to investigate the decomposition of a limited number of tar compounds across a catalyst. The second study involved a gas scrubber as part of a pilot scale wood gasification plant. Tar compound quantification results showed good agreement with off-line based reference methods (GC-FID) when the complexity of tar composition was limited. The two case studies show that the developed method can provide rapid, qualitative information on the tar composition for the purpose of process monitoring. In cases with a limited number of tar species, quantitative information about the individual tar compound concentrations provides an additional benefit of the analytical method.

Keywords: biomass gasification, on-line, tar, UV-Vis

Procedia PDF Downloads 251
674 Zebrafish Larvae Model: A High Throughput Screening Tool to Study Autism

Authors: Shubham Dwivedi, Raghavender Medishetti, Rita Rani, Aarti Sevilimedu, Pushkar Kulkarni, Yogeeswari Perumal

Abstract:

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder of early onset, characterized by impaired sociability, cognitive function and stereotypies. There is a significant urge to develop and establish new animal models with ASD-like characteristics for better understanding of underlying mechanisms. The aim of the present study was to develop a cost and time effective zebrafish model with quantifiable parameters to facilitate mechanistic studies as well as high-throughput screening of new molecules for autism. Zebrafish embryos were treated with valproic acid and a battery of behavioral tests (anxiety, inattentive behavior, irritability and social impairment) was performed on larvae at 7th day post fertilization, followed by study of molecular markers of autism. This model shows a significant behavioural impairment in valproic acid treated larvae in comparison to control which was again supported by alteration in few marker genes and proteins of autism. The model also shows a rescue of behavioural despair with positive control drugs. The model shows robust parameters to study behavior, molecular mechanism and drug screening approach in a single frame. Thus we postulate that our 7 days zebrafish larval model for autism can help in high throughput screening of new molecules on autism.

Keywords: autism, zebrafish, valproic acid, neurodevelopment, behavioral assay

Procedia PDF Downloads 155
673 Electro-Fenton Degradation of Erythrosine B Using Carbon Felt as a Cathode: Doehlert Design as an Optimization Technique

Authors: Sourour Chaabane, Davide Clematis, Marco Panizza

Abstract:

This study investigates the oxidation of Erythrosine B (EB) food dye by a homogeneous electro-Fenton process using iron (II) sulfate heptahydrate as a catalyst, carbon felt as cathode, and Ti/RuO2. The treated synthetic wastewater contains 100 mg L⁻¹ of EB and has a pH = 3. The effects of three independent variables have been considered for process optimization, such as applied current intensity (0.1 – 0.5 A), iron concentration (1 – 10 mM), and stirring rate (100 – 1000 rpm). Their interactions were investigated considering response surface methodology (RSM) based on Doehlert design as optimization method. EB removal efficiency and energy consumption were considered model responses after 30 minutes of electrolysis. Analysis of variance (ANOVA) revealed that the quadratic model was adequately fitted to the experimental data with R² (0.9819), adj-R² (0.9276) and low Fisher probability (< 0.0181) for EB removal model, and R² (0.9968), adj-R² (0.9872) and low Fisher probability (< 0.0014) relative to the energy consumption model reflected a robust statistical significance. The energy consumption model significantly depends on current density, as expected. The foregoing results obtained by RSM led to the following optimal conditions for EB degradation: current intensity of 0.2 A, iron concentration of 9.397 mM, and stirring rate of 500 rpm, which gave a maximum decolorization rate of 98.15 % with a minimum energy consumption of 0.74 kWh m⁻³ at 30 min of electrolysis.

Keywords: electrofenton, erythrosineb, dye, response serface methdology, carbon felt

Procedia PDF Downloads 68
672 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations

Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher

Abstract:

In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.

Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps

Procedia PDF Downloads 122
671 Study of Sustainability Indicators in a Milk Production Process

Authors: E. Lacasa, J. L. Santolaya, I. Millán

Abstract:

The progress toward sustainability implies maintaining and preferably improving both, human and ecosystem well-being, according to a triple bottom line that includes the environmental, economic and social dimensions. The life cycle assessment (LCA) is a method applicable to all production sectors that aims to quantify the environmental pressures and the benefits related to goods and services, as well as the trade-offs and the scope for improving areas of the production process. While using LCA to measure the environmental dimension of sustainability is widespread, similar approaches for the economic and the social dimensions still have limited application worldwide and there is a need for consistent and robust methods and indicators. This paper focuses on the milk production process and presents the analysis of the flows exchanged by an industrial installation through accounting all the energy and material inputs and the associated emissions and waste outputs at this stage of its life cycle. The functional unit is one litre of milk produced. Different metrics and indicators are used to assess the three dimensions of sustainability. Metrics considered useful to assess the production activities are the total water and energy consumptions and the milk production volume of each cow. The global warming, the value added and the working hours are indicators used to measure each sustainability dimension. The study is performed with two types of feeding of the cows, which includes a change in percentages of components as well. Nutritional composition of the milk obtained is almost kept. It is observed that environmental and social improvements involve high economic costs.

Keywords: milk production, sustainability, indicators, life cycle assessment

Procedia PDF Downloads 429
670 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns

Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract:

In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.

Keywords: binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition

Procedia PDF Downloads 221
669 Approaches to Ethical Hacking: A Conceptual Framework for Research

Authors: Lauren Provost

Abstract:

The digital world remains increasingly vulnerable, making the development of effective cybersecurity approaches even more critical in supporting the success of the digital economy and national security. Although approaches to cybersecurity have shifted and improved in the last decade with new models, especially with cloud computing and mobility, a record number of high severity vulnerabilities were recorded in the National Institute of Standards and Technology (NIST), and its National Vulnerability Database (NVD) in 2020. This is due, in part, to the increasing complexity of cyber ecosystems. Security must be approached with a more comprehensive, multi-tool strategy that addresses the complexity of cyber ecosystems, including the human factor. Ethical hacking has emerged as such an approach: a more effective, multi-strategy, comprehensive approach to cyber security's most pressing needs, especially understanding the human factor. Research on ethical hacking, however, is limited in scope. The two main objectives of this work are to (1) provide highlights of case studies in ethical hacking, (2) provide a conceptual framework for research in ethical hacking that embraces and addresses both technical and nontechnical security measures. Recommendations include an improved conceptual framework for research centered on ethical hacking that addresses many factors and attributes of significant attacks that threaten computer security; a more robust, integrative multi-layered framework embracing the complexity of cybersecurity ecosystems.

Keywords: ethical hacking, literature review, penetration testing, social engineering

Procedia PDF Downloads 207
668 Smart Disassembly of Waste Printed Circuit Boards: The Role of IoT and Edge Computing

Authors: Muhammad Mohsin, Fawad Ahmad, Fatima Batool, Muhammad Kaab Zarrar

Abstract:

The integration of the Internet of Things (IoT) and edge computing devices offers a transformative approach to electronic waste management, particularly in the dismantling of printed circuit boards (PCBs). This paper explores how these technologies optimize operational efficiency and improve environmental sustainability by addressing challenges such as data security, interoperability, scalability, and real-time data processing. Proposed solutions include advanced machine learning algorithms for predictive maintenance, robust encryption protocols, and scalable architectures that incorporate edge computing. Case studies from leading e-waste management facilities illustrate benefits such as improved material recovery efficiency, reduced environmental impact, improved worker safety, and optimized resource utilization. The findings highlight the potential of IoT and edge computing to revolutionize e-waste dismantling and make the case for a collaborative approach between policymakers, waste management professionals, and technology developers. This research provides important insights into the use of IoT and edge computing to make significant progress in the sustainable management of electronic waste

Keywords: internet of Things, edge computing, waste PCB disassembly, electronic waste management, data security, interoperability, machine learning, predictive maintenance, sustainable development

Procedia PDF Downloads 18
667 Co-Immobilization of Palladium Nanoparticles and Polyoxometalate into the Cavities of the Mesocellular Foams: A Biomimetic Cooperative Catalytic System for Aerobic Oxidation of Alcohols under Green Conditions

Authors: Saeed Chehri, Sirvan Moradi, Amin Rostami

Abstract:

Cooperative catalyst systems have been developed as highly promising sustainable alternatives to traditional catalysts. In these catalysts, two or more catalytic centers cooperate to reduce the energy of chemical transformations. In nature, such systems are abundantly seen in metalloenzymes that use metal and an organic cofactor. We have designed a reusable cooperative catalyst oxidation system consisting of palladium nanoparticles and polyoxometalate. This biomimetic cooperative catalytic system was synthesized by the stepwise immobilization of palladium nanoparticlesandpolyoxometalateinto the same cavity of siliceous mesocellularfoams (Pd-POM@MCF)and wascharacterizedby SEM, EDX, FT-IR, TGAand ICP techniques. POM-Pd@MCF/HQexhibits high activity toward aerobic oxidation of alcohols to the corresponding carbonyl compoundsin water solvent at room temperature. The major novelties and advantages of this oxidation method are as follows: (i) this is the first report of the co-immobilization of polyoxometalateand palladium for use as a robust and highlyefficient heterogeneouscooperative oxidative nanocatalyst system for aerobic oxidation of alcohols, (ii) oxidation of alcoholswere performed using an ideal oxidant with good to high yields in a green solvent at ambient temperature and (iii) the immobilization of the oxygen-activating catalyst(polyoxometalate) and oxidizing catalyst (Pd) onto MCF provide practical cooperative catalyst the system that can be reused several times without a significant loss of activity (vi) the methodsconform to several of the guiding principles of green chemistry.

Keywords: palladium nanoparticles, polyoxometalate, reusable cooperative catalytic system, biomimetic oxidation reaction

Procedia PDF Downloads 112
666 Protecting Labor Rights in the Platform Economy: Legal Challenges and Innovative Explorations

Authors: Ruwen Pei

Abstract:

In the rapidly evolving landscape of the digital economy, platform employment has emerged as a transformative labor force, fundamentally altering the traditional paradigms of the employer-employee relationship. This paper provides a comprehensive analysis of the unique dynamics and intricate legal challenges associated with platform work, where workers often navigate precarious labor conditions without the robust safety nets typically afforded in traditional industries. It underscores the limitations of current labor regulations, particularly in addressing pressing concerns such as income volatility and disparate benefits. By drawing insights from diverse global case studies, this study emphasizes the compelling need for platform companies to shoulder their social welfare responsibilities, ensuring fair treatment and security for their workers. Moreover, it critically examines the profound influence of socio-cultural factors and educational awareness on the platform economy, shedding light on the complexities of this emerging labor landscape. Advocating for a harmonious equilibrium between flexibility and security, this paper calls for substantial legal reforms and innovative policy initiatives that can adapt to the evolving nature of work in the digital age. Finally, it anticipates forthcoming trends in the digital economy and platform labor relations, underscoring the significance of proactive adaptation to foster equitable and inclusive employment practices.

Keywords: platform employment, labor protections, social welfare, legal reforms, digital economy

Procedia PDF Downloads 55
665 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 68
664 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms

Authors: Neha Ahirwar

Abstract:

In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.

Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree

Procedia PDF Downloads 54
663 Mindfulness as a Predictor of School Results and Well-Being in Adolescence: The Mediating Role of Emotional Intelligence

Authors: Ines Vieira, Luisa Faria

Abstract:

Globally, half of all mental disorders begin by age 14 and the current gap of poorly addressed adolescent mental health has future consequences in adulthood. Schoolwork pressure to achieve good performance in secondary education might lead to lower levels of life satisfaction in youth and individual emotional competencies are crucial in this life stage. The present study aimed to determine how mindfulness relates to school achievements and well-being in adolescence and whether such a relationship might be mediated by emotional intelligence. We also studied the moderation interaction effects of gender and the involvement in non-curricular activities. A sample of 597 Portuguese adolescents aged 15 to 17 years old (N=597; 292 girls; 298 boys), enrolled in secondary education completed self-report measures of mindfulness (CAMM), emotional intelligence (TEIQue-ASF) and well-being (SWLS) in their Portuguese versions. Using SPSS and AMOS, the results were obtained through path analyses and multiple linear regression. A Confirmatory Factor Analysis was also conducted. The correlation coefficients reported a positive and statistically significant relationship between mindfulness, emotional intelligence and well-being. Regression analysis indicated that mindfulness reduced its influence on well-being and on school results when emotional intelligence was added to the model. Overall, our results provided further evidence supporting the development of robust hypotheses by perceiving the relevance of mindfulness and individual emotional competencies to school achievements and well-being in a way of improving adolescents’ health, wellness, and school success.

Keywords: mindfulness, emotional intelligence, well-being, adolescence, school

Procedia PDF Downloads 68
662 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor

Authors: Chiraz Ben Jabeur, Hassene Seddik

Abstract:

In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.

Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance

Procedia PDF Downloads 130
661 Using Systems Theory and Collective Impact Approaches to Increase the Retention and Success of University Student Stem Majors

Authors: Araceli Martínez Ortiz

Abstract:

An educational research effort is analyzed using systems theory to document the power of collective impact when addressing multiple factors contributing towards the retention of students majoring in science, technology, engineering and mathematics (STEM) academic programs. This research promotes understanding on how networked communities may work effectively toward a shared vision and mutually aligned activities that result in sustained, large scale change. The actions of a team of researchers in their third year of collaboration are presented to describe a model that positively aligns work efforts resulting in greater total gains. The goals of the multiple programs managed by the funded program team are to: 1) expand the number of students who choose to study a STEM field of study; 2) promote student collaborative learning; 3) support faculty understanding of the funds of knowledge of diverse students and 4) establish innovative and robust STEM education research that will lead to the development of nationally replicable, scalable models for broadening participation in STEM. The impacts of this research effort are measured through quantitative statistical analysis of the changes in second-year STEM undergraduate student retention rates and representation rates of women, Hispanics and African American STEM majors.

Keywords: collaborative impact, diversity, student retention, systems theory, STEM education

Procedia PDF Downloads 252
660 Engineered Reactor Components for Durable Iron Flow Battery

Authors: Anna Ivanovskaya, Alexandra E. L. Overland, Swetha Chandrasekaran, Buddhinie S. Jayathilake

Abstract:

Iron-based redox flow batteries (IRFB) are promising for grid-scale storage because of their low-cost and environmental safety. Earth-abundant iron can enable affordable grid-storage to meet DOE’s target material cost <$20/kWh and levelized cost for storage $0.05/kWh. In conventional redox flow batteries, energy is stored in external electrolyte tanks and electrolytes are circulated through the cell units to achieve electrochemical energy conversions. However, IRFBs are hybrid battery systems where metallic iron deposition at the negative side of the battery controls the storage capacity. This adds complexity to the design of a porous structure of 3D-electrodes to achieve a desired high storage capacity. In addition, there is a need to control parasitic hydrogen evolution reaction which accompanies the metal deposition process, increases the pH, lowers the energy efficiency, and limits the durability. To achieve sustainable operation of IRFBs, electrolyte pH, which affects the solubility of reactants and the rate of parasitic reactions, needs to be dynamically readjusted. In the present study we explore the impact of complexing agents on maintaining solubility of the reactants and find the optimal electrolyte conditions and battery operating regime, which are specific for IRFBs with additives, and demonstrate the robust operation.

Keywords: flow battery, iron-based redox flow battery, IRFB, energy storage, electrochemistry

Procedia PDF Downloads 72
659 Numerical Simulation of Lifeboat Launching Using Overset Meshing

Authors: Alok Khaware, Vinay Kumar Gupta, Jean Noel Pederzani

Abstract:

Lifeboat launching from marine vessel or offshore platform is one of the important areas of research in offshore applications. With the advancement of computational fluid dynamic simulation (CFD) technology to solve fluid induced motions coupled with Six Degree of Freedom (6DOF), rigid body dynamics solver, it is now possible to predict the motion of the lifeboat precisely in different challenging conditions. Traditionally dynamic remeshing approach is used to solve this kind of problems, but remeshing approach has some bottlenecks to control good quality mesh in transient moving mesh cases. In the present study, an overset method with higher-order interpolation is used to simulate a lifeboat launched from an offshore platform into calm water, and volume of fluid (VOF) method is used to track free surface. Overset mesh consists of a set of overlapping component meshes, which allows complex geometries to be meshed with lesser effort. Good quality mesh with local refinement is generated at the beginning of the simulation and stay unchanged throughout the simulation. Overset mesh accuracy depends on the precise interpolation technique; the present study includes a robust and accurate least square interpolation method and results obtained with overset mesh shows good agreement with experiment.

Keywords: computational fluid dynamics, free surface flow, lifeboat launching, overset mesh, volume of fluid

Procedia PDF Downloads 268
658 Efficient Delivery of Biomaterials into Living Organism by Using Noble Metal Nanowire Injector

Authors: Kkochorong Park, Keun Cheon Kim, Hyoban Lee, Eun Ju Lee, Bongsoo Kim

Abstract:

Introduction of biomaterials such as DNA, RNA, proteins is important for many research areas. There are many methods to introduce biomaterials into living organisms like tissue and cells. To introduce biomaterials, several indirect methods including virus‐mediated delivery, chemical reagent (i.e., lipofectamine), electrophoresis have been used. Such methods are passive delivery using an endocytosis process of cell, reducing an efficiency of delivery. Unlike the indirect delivery method, it has been reported that a direct delivery of exogenous biomolecules into nucleus have been more efficient to expression or integration of biomolecules. Nano-sized material is beneficial for detect signal from cell or deliver stimuli/materials into the cell at cellular and molecular levels, due to its similar physical scale. Especially, because 1 dimensional (1D) nanomaterials such as nanotube, nanorod and nanowire with high‐aspect ratio have nanoscale geometry and excellent mechanical, electrical, and chemical properties, they could play an important role in molecular and cellular biology. In this study, by using single crystalline 1D noble metal nanowire, we fabricated nano-sized 1D injector which can successfully interface with living cells and directly deliver biomolecules into several types of cell line (i.e., stem cell, mammalian embryo) without inducing detrimental damages on living cell. This nano-bio technology could be a promising and robust tool for introducing exogenous biomaterials into living organism.

Keywords: DNA, gene delivery, nanoinjector, nanowire

Procedia PDF Downloads 268
657 Functionalized Carbon-Base Fluorescent Nanoparticles for Emerging Contaminants Targeted Analysis

Authors: Alexander Rodríguez-Hernández, Arnulfo Rojas-Perez, Liz Diaz-Vazquez

Abstract:

The rise in consumerism over the past century has resulted in the creation of higher amounts of plasticizers, personal care products and other chemical substances, which enter and accumulate in water systems. Other sources of pollutants in Neotropical regions experience large inputs of nutrients with these pollutants resulting in eutrophication of water which consume large quantities of oxygen, resulting in high fish mortality. This dilemma has created a need for the development of targeted detection in complex matrices and remediation of emerging contaminants. We have synthesized carbon nanoparticles from macro algae (Ulva fasciata) by oxidizing the graphitic carbon network under extreme acidic conditions. The resulting material was characterized by STEM, yielding a spherical 12 nm average diameter nanoparticles, which can be fixed into a polysaccharide aerogel synthesized from the same macro algae. Spectrophotometer analyses show a pH dependent fluorescent behavior varying from 450-620 nm in aqueous media. Heavily oxidized edges provide for easy functionalization with enzymes for a more targeted analysis and remediation technique. Given the optical properties of the carbon base nanoparticles and the numerous possibilities of functionalization, we have developed a selective and robust targeted bio-detection and bioremediation technique for the treatment of emerging contaminants in complex matrices like estuarine embayment.

Keywords: aerogels, carbon nanoparticles, fluorescent, targeted analysis

Procedia PDF Downloads 235
656 Saudi Arabia Border Security Informatics: Challenges of a Harsh Environment

Authors: Syed Ahsan, Saleh Alshomrani, Ishtiaq Rasool, Ali Hassan

Abstract:

In this oral presentation, we will provide an overview of the technical and semantic architecture of a desert border security and critical infrastructure protection security system. Modern border security systems are designed to reduce the dependability and intrusion of human operators. To achieve this, different types of sensors are use along with video surveillance technologies. Application of these technologies in a harsh desert environment of Saudi Arabia poses unique challenges. Environmental and geographical factors including high temperatures, desert storms, temperature variations and remoteness adversely affect the reliability of surveillance systems. To successfully implement a reliable, effective system in a harsh desert environment, the following must be achieved: i) Selection of technology including sensors, video cameras, and communication infrastructure that suit desert environments. ii) Reduced power consumption and efficient usage of equipment to increase the battery life of the equipment. iii) A reliable and robust communication network with efficient usage of bandwidth. Also, to reduce the expert bottleneck, an ontology-based intelligent information systems needs to be developed. Domain knowledge unique and peculiar to Saudi Arabia needs to be formalized to develop an expert system that can detect abnormal activities and any intrusion.

Keywords: border security, sensors, abnormal activity detection, ontologies

Procedia PDF Downloads 475
655 The Functional-Engineered Product-Service System Model: An Extensive Review towards a Unified Approach

Authors: Nicolas Haber

Abstract:

The study addresses the design process of integrated product-service offerings as a measure of answering environmental sustainability concerns by replacing stand-alone physical artefacts with comprehensive solutions relying on functional results rather than conventional product sales. However, views regarding this transformation are dissimilar and differentiated: The study discusses the importance and requirements of product-service systems before analysing the theoretical studies accomplished in the extent of their design and development processes. Based on this, a framework, built on a design science approach, is proposed, where the distinct approaches from the literature are merged towards a unified structure serving as a generic methodology to designing product-service systems. Each stage of this model is then developed to present a holistic design proposal called the Functional Engineered Product-Service System (FEPSS) model. Product-service systems are portrayed as customisable solutions tailored to specific settings and defined circumstances. Moreover, the approaches adopted to guide the design process are diversified. A thorough analysis of the design strategies and development processes however, allowed the extraction of a design backbone, valid to varied situations and contexts whether they are product-oriented, use-oriented or result-oriented. The goal is to guide manufacturers towards an eased adoption of these integrated offerings, given their inherited environmental benefits, by proposing a robust all-purpose design process.

Keywords: functional product, integrated product-service offerings, product-service systems, sustainable design

Procedia PDF Downloads 287
654 Monocular Depth Estimation Benchmarking with Thermal Dataset

Authors: Ali Akyar, Osman Serdar Gedik

Abstract:

Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.

Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers

Procedia PDF Downloads 27
653 reconceptualizing the place of empire in european women’s travel writing through the lens of iberian texts

Authors: Gayle Nunley

Abstract:

Between the mid-nineteenth and early twentieth century, a number of Western European women broke with gender norms of their time and undertook to write and publish accounts of their own international journeys. In addition to contributing to their contemporaries’ progressive reimagining of the space and place of female experience within the public sphere, these often orientalism-tinged texts have come to provide key source material for the analysis of gendered voice in the narration of Empire, particularly with regard to works associated with Europe’s then-ascendant imperial powers, Britain and France. Incorporation of contemporaneous writings from the once-dominant Empires of Iberian Europe introduces an important additional lens onto this process. By bringing to bear geographic notions of placedness together with discourse analysis, the examination of works by Iberian Europe’s female travelers in conjunction with those of their more celebrated Northern European peers reveals a pervasive pattern of conjoined belonging and displacement traceable throughout the broader corpus, while also underscoring the insufficiency of binary paradigms of gendered voice. The re-situating of women travelers’ participation in the European imperial project to include voices from the Iberian south creates a more robust understanding of these writers’ complex, and often unexpectedly modern, engagement with notions of gender, mobility, ‘otherness’ and contact-zone encounter acted out both within and against the imperial paradigm.

Keywords: colonialism, orientalism, Spain, travel writing, women travelers

Procedia PDF Downloads 105
652 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation

Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam

Abstract:

Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.

Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model

Procedia PDF Downloads 105
651 Evaluating the Performance of 28 EU Member Countries on Health2020: A Data Envelopment Analysis Evaluation of the Successful Implementation of Policies

Authors: Elias K. Maragos, Petros E. Maravelakis, Apostolos I. Linardis

Abstract:

Health2020 is a promising framework of policies provided by the World Health Organization (WHO) and aiming to diminish the health and well-being inequalities among the citizens of the European Union (EU) countries. The major demographic, social and environmental changes, in addition to the resent economic crisis prevent the unobstructed and successful implementation of this framework. The unemployment rates and the percentage of people at risk of poverty have increased among the citizens of EU countries. At the same time, the adopted fiscal, economic policies do not help governments to serve their social role and mitigate social and health inequalities. In those circumstances, there is a strong pressure to organize all health system resources efficiently and wisely. In order to provide a unified and value-based framework of valuation, we propose a valuation framework using data envelopment analysis (DEA) and dynamic DEA. We believe that the adopted methodology could provide a robust tool which can capture the degree of success with which policies have been implemented and is capable to determine which of the countries developed the requested policies efficiently and which of the countries have been lagged. Using the proposed methodology, we evaluated the performance of 28 EU member-countries in relation to the Health2020 peripheral targets. We adopted several versions of evaluation, measuring the effectiveness and the efficiency of EU countries from 2011 to 2016. Our results showed stability in technological changes and revealed a group of countries which were benchmarks in most of the years for the inefficient countries.

Keywords: DEA, Health2020, health inequalities, malmquist index, policies evaluation, well-being

Procedia PDF Downloads 140
650 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.

Keywords: algorithm, LiDAR, object recognition, OBIA

Procedia PDF Downloads 238