Search results for: plastic fisher
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1121

Search results for: plastic fisher

401 Cyclic Plastic Deformation of 20MN-MO-NI 55 Steel in Dynamic Strain Ageing Regime

Authors: Ashok Kumar, Sarita Sahu, H. N. Bar

Abstract:

Low cycle fatigue behavior of a ferritic, martensitic pressure vessel steel at dynamic strain ageing regime of 250°C to 280°C has been investigated. Dynamic strain ageing is a mechanism that has attracted interests of researchers due to its fascinating inexplicable repetitive nature for quite a long time. The interaction of dynamic strain ageing and cyclic plasticity has been studied from the mechanistic point of view. Dynamic strain ageing gives rise to identical serrated flow behavior in tensile and compressive halves of hysteresis loops and this has been found to gives rise to initial cyclic hardening followed by softening behavior, where as in non-DSA regime continuous cyclic softening has been found to be the dominant mechanism. An appreciable sensitivity towards nature of serrations has been observed due to degree of hardening of stable loop. The increase in degree of hardening with strain amplitude in the regime where only A type serrations are present and it decreases with strain amplitude where A+B type of serrations are present. Masing type of locus has been found in the behavior of metal at 280°C. Cyclic Stress Strain curve and Master curve has been constructed to decipher among the fatigue strength and ductility coefficients. Fractographic examinations have also shown a competition between progression of striations and secondary cracking.

Keywords: dynamic strain ageing, hardening, low cycle fatigue, softening

Procedia PDF Downloads 287
400 Art Market in Oran: Emergence and Contraintes

Authors: Hirreche Baghdad Mohamed

Abstract:

Our research is linked to cultural policies because the initiation to taste and beauty is a matter for all cultural and educational institutions. It's done by a downstream process (programs, actions, lessons, etc.) that begins at a young age in order to inscribe aesthetic values in memories, imaginations, and practices. Preparing future art lovers probably takes a lot of time. Upstream, continuity is ensured by the "cultural industries" which make cultural products available to actors in the "art market" through professional training, production, dissemination, and sales processes. It turns out that the cultural industries borrow from the "classical" industries the same processes and logic: product, production, marketing, diffusion, profit and profits, supply and demand, the market, the creation of wealth, the entrepreneurship. Today, culture has become a product almost like the others. In the cultural industries system, we protect the rights of authors (owners) and the rights of intermediaries (entrepreneurs of culture), and we provide consumers with an accessible product that meets their needs and expectations. We aim to present an inventory and to reveal, through the speeches of the actors themselves, the processes and modes of operation and deployment of the plastic arts market by showing how it is perceived, imagined, and lived in the city of 'Oran from the 2000s to the present day. However, it is possible to clarify this field of research by looking at previous periods; and even to make comparisons with other regions in Algeria in order to give meaning to practices in various contexts.

Keywords: Oran, Algeria, fine art, art market

Procedia PDF Downloads 113
399 Polyacrylates in Poly (Lactic Acid) Matrix, New Biobased Polymer Material

Authors: Irena Vuković-Kwiatkowska, Halina Kaczmarek

Abstract:

Poly (lactic acid) is well known polymer, often called green material because of its origin (renewable resources) and biodegradability. This biopolymer can be used in the packaging industry very often. Poor resistance to permeation of gases is the disadvantage of poly (lactic acid). The permeability of gases and vapor through the films applied for packages and bottles generally should be very low to prolong products shelf-life. We propose innovation method of PLA gas barrier modification using electromagnetic radiation in ultraviolet range. Poly (lactic acid) (PLA) and multifunctional acrylate monomers were mixed in different composition. Final films were obtained by photochemical reaction (photocrosslinking). We tested permeability to water vapor and carbon dioxide through these films. Also their resistance to UV radiation was also studied. The samples were conditioned in the activated sludge and in the natural soil to test their biodegradability. An innovative method of PLA modification allows to expand its usage, and can reduce the future costs of waste management what is the result of consuming such materials like PET and HDPE. Implementation of our material for packaging will contribute to the protection of the environment from the harmful effects of extremely difficult to biodegrade materials made from PET or other plastic

Keywords: interpenetrating polymer network, packaging films, photocrosslinking, polyacrylates dipentaerythritol pentaacrylate DPEPA, poly (lactic acid), polymer biodegradation

Procedia PDF Downloads 468
398 Evaluation of Green Logistics Performance: An Application of Analytic Hierarchy Process Method for Ranking Environmental Indicators

Authors: Eduarda Dutra De Souza, Gabriela Hammes, Marina Bouzon, Carlos M. Taboada Rodriguez

Abstract:

The search for minimizing harmful impacts on the environment has become the focus of global society, affecting mainly how to manage organizations. Thus, companies have sought to transform their activities into environmentally friendly initiatives by applying green practices throughout their supply chains. In the logistics domain, the implementation of environmentally sound practices is still in its infancy in emerging countries such as Brazil. Given the need to reduce these environmental damages, this study aims to evaluate the performance of green logistics (GL) in the plastics industry sector in order to help to improve environmental performance within organizations and reduce the impact caused by their activities. The performance tool was based on theoretical research and the use of experts in the field. The Analytic Hierarchy Process (AHP) was used to prioritize green practices and assign weight to the indicators contained in the proposed tool. The tool also allows the co-production of a single indicator. The developed tool was applied in an industry of the plastic packaging sector. However, this tool may be applied in different industry sectors, and it is adaptable to different sizes of companies. Besides the contributions to the literature, this work also presents future paths of research in the field of green logistics.

Keywords: AHP, green logistics, green supply chain, performance evaluation

Procedia PDF Downloads 149
397 NENU2PHAR: PHA-Based Materials from Micro-Algae for High-Volume Consumer Products

Authors: Enrique Moliner, Alba Lafarga, Isaac Herraiz, Evelina Castellana, Mihaela Mirea

Abstract:

NENU2PHAR (GA 887474) is an EU-funded project aimed at the development of polyhydroxyalkanoates (PHAs) from micro-algae. These biobased and biodegradable polymers are being tested and validated in different high-volume market applications including food packaging, cosmetic packaging, 3D printing filaments, agro-textiles and medical devices, counting on the support of key players like Danone, BEL Group, Sofradim or IFG. At the moment the project has achieved to produce PHAs from micro-algae with a cumulated yield around 17%, i.e. 1 kg PHAs produced from 5.8 kg micro-algae biomass, which in turn capture 11 kg CO₂ for growing up. These algae-based plastics can therefore offer the same environmental benefits than current bio-based plastics (reduction of greenhouse gas emissions and fossil resource depletion), using a 3rd generation biomass feedstock that avoids the competition with food and the environmental impacts of agricultural practices. The project is also dealing with other sustainability aspects like the ecodesign and life cycle assessment of the plastic products targeted, considering not only the use of the biobased plastics but also many other ecodesign strategies. This paper will present the main progresses and results achieved to date in the project.

Keywords: NENU2PHAR, Polyhydroxyalkanoates, micro-algae, biopolymer, ecodesign, life cycle assessment

Procedia PDF Downloads 77
396 Effect of 17α-Methyltestosterone Hormone on Haematological Profiles of the Sex Reversed, Sarotherodon Melanotheron

Authors: Ayoola, Simeon Oluwatoyin, Omogoriola Hannah Omoloye

Abstract:

The effects of 17α-Methyltestosterone Hormone on blood composition of the Sex Reversed Sarotherodon melanotheron were investigated. S. melanotheron fry were reared in six (6) plastic tanks for three (3) months, of which three (3) tanks served as treatment tanks while the other three (3) served as the control. The fry were fed with 17α-methyl testosterone enzyme, which functions as a sex reversal hormone. The fry were administered this hormone for 30 days, to ensure complete sex reversal. All the S. melanotheron fry were reared to table size for duration of three (3) months, after which, blood samples were taken from both the control and treatment fishes. The blood parameters showed no significant differences with the same values of White Blood Cell count (WBC) and Total plasma protein for the control and experimental fishes. A total protein value for sex reversed specimens was 3.99g/dL, while urea and creatinine values were 0.2g/dL. Alkaline Phosphatase, Aspartate transaminase and Alanine transaminase for the treatment specimen were 183nm/mg protein/min, 98nm/mg protein/min and 105nm/mg protein/min respectively. A total protein value for control specimens was 2.81g/dL, while urea and creatinine values were 0.2g/dL. Alkaline Phosphatase, Aspartate transaminase and Alanine transaminase for the control species were 174nm/mg protein/min, 93nm/mg protein/min and 106nm/mg protein/min respectively. The safety of MT on S. melanotheron is therefore proved since there is no adverse effect on the fish.

Keywords: 17α-Methyltestosterone, haematology, sex reversal, sarotherodon melanotheron

Procedia PDF Downloads 480
395 Investigating Anti-bacterial and Anti-Covid-19 Virus Properties and Mode of Action of Mg(Oh)₂ and Copper-Infused Mg(Oh)₂ Nanoparticles on Coated Polypropylene Surfaces

Authors: Saleh Alkarri, Melinda Frame, Dimple Sharma, John Cairney, Lee Maddan, Jin H. Kim, Jonathan O. Rayner, Teresa M. Bergholz, Muhammad Rabnawaz

Abstract:

Reported herein is an investigation of anti-bacterial and anti-virus properties, mode of action of Mg(OH)₂ and copper-infused Mg(OH)₂ nanoplatelets (NPs) on melt-compounded and thermally embossed polypropylene (PP) surfaces. The anti-viral activity for the NPs was studied in aqueous liquid suspensions against SARS-CoV-2, and the mode of action was investigated on neat NPs and PP samples that were thermally embossed with NPs. Anti-bacterial studies for melt-compounded NPs in PP confirmed approximately 1 log reduction of E. coli populations in 24 h, while for thermally embossed NPs, an 8 log reduction of E. coli populations was observed. In addition, the NPs exhibit anti-viral activity against SARS-CoV-2. Fluorescence microscopy revealed that reactive oxygen species (ROS) is the main mode of action through which Mg(OH)₂ and Cu-Infused Mg(OH)₂act against microbes. Plastics with anti-microbial surfaces from where biocides are non-leachable are highly desirable. This work provides a general fabrication strategy for developing anti-microbial plastic surfaces.

Keywords: anti-microbial activity, E. coli K-12 MG1655, anti-viral activity, SARS-CoV-2, copper-infused magnesium hydroxide, non-leachable, ROS, compounding, surface embossing, dyes

Procedia PDF Downloads 55
394 Investigation of Leakage, Cracking and Warpage Issues Observed on Composite Valve Cover in Development Phase through FEA Simulation

Authors: Ashwini Shripatwar, Mayur Biyani, Nikhil Rao, Rajendra Bodake, Sachin Sane

Abstract:

This paper documents the correlation of valve cover sealing, cracking, and warpage Finite Element Modelling with observations on engine test development. The valve cover is a component mounted on engine head with a gasket which provides sealing against oil which flows around camshaft, valves, rockers, and other overhead components. Material nonlinearity and contact nonlinearity characteristics are taken into consideration because the valve cover is made of a composite material having temperature dependent elastic-plastic properties and because the gasket load-deformation curve is also nonlinear. The leakage is observed between the valve cover and the engine head due to the insufficient contact pressure. The crack is observed on the valve cover due to force application at a region with insufficient stiffness and with elevated temperature. The valve cover shrinkage is observed during the disassembly process on hot exhaust side bolt holes after the engine has been running. In this paper, an analytical approach is developed to correlate a Finite Element Model with the observed failures and to address the design issues associated with the failure modes in question by making design changes in the model.

Keywords: cracking issue, gasket sealing analysis, nonlinearity of contact and material, valve cover

Procedia PDF Downloads 128
393 Use of Misoprostol in Pregnancy Termination in the Third Trimester: Oral versus Vaginal Route

Authors: Saimir Cenameri, Arjana Tereziu, Kastriot Dallaku

Abstract:

Introduction: Intra-uterine death is a common problem in obstetrical practice, and can lead to complications if left to resolve spontaneously. The cervix is unprepared, making inducing of labor difficult. Misoprostol is a synthetic prostaglandin E1 analogue, inexpensive, and is presented valid thanks to its ability to bring about changes in the cervix that lead to the induction of uterine contractions. Misoprostol is quickly absorbed when taken orally, resulting in high initial peak serum concentrations compared with the vaginal route. The vaginal misoprostol peak serum concentration is not as high and demonstrates a more gradual serum concentration decline. This is associated with many benefits for the patient; fast induction of labor; smaller doses; and fewer side effects (dose-depended). Mostly it has been used the regime of 50 μg/4 hour, with a high percentage of success and limited side effects. Objective: Evaluation of the efficiency of the use of oral and vaginal misoprostol in inducing labor, and comparing it with its use not by a previously defined protocol. Methods: Participants in this study included patients at U.H.O.G. 'Koco Gliozheni', Tirana from April 2004-July 2006, presenting with an indication for inducing labor in the third trimester for pregnancy termination. A total of 37 patients were randomly admitted for birth inducing activity, according to protocol (26), oral or vaginal protocol (10 vs. 16), and a control group (11), not subject to the protocol, was created. Oral or vaginal misoprostol was administered at a dose of 50 μg/4 h, while the fourth group participants were treated individually by the members of the medical staff. The main result of interest was the time between induction of labor to birth. Kruskal-Wallis test was used to compare the average age, parity, women weight, gestational age, Bishop's score, the size of the uterus and weight of the fetus between the four groups in the study. The Fisher exact test was used to compare day-stay and causes in the four groups. Mann-Whitney test was used to compare the time of the expulsion and the number of doses between oral and vaginal group. For all statistical tests used, the value of P ≤ 0.05 was considered statistically significant. Results: The four groups were comparable with regard to woman age and weight, parity, abortion indication, Bishop's score, fetal weight and the gestational age. There was significant difference in the percentage of deliveries within 24 hours. The average time from induction to birth per route (vaginal, oral, according to protocol and not according to the protocol) was respectively; 10.43h; 21.10h; 15.77h, 21.57h. There was no difference in maternal complications in groups. Conclusions: Use of vaginal misoprostol for inducing labor in the third trimester for termination of pregnancy appears to be more effective than the oral route, and even more to uses not according to the protocols approved before, where complications are greater and unjustified.

Keywords: inducing labor, misoprostol, pregnancy termination, third trimester

Procedia PDF Downloads 167
392 Role of Nano Gelatin and Hydrogel Based Scaffolds in Odontogenic Differentiation of Human Dental Pulp Stem Cells

Authors: Husain S. Yawer, Vasim Raja Panwar, Nidhi Priya

Abstract:

The objective of this study is to evaluate and compare the role of nano-gelatin and Bioengineered Scaffolds on the attachment, proliferation, and osteogenic differentiation of human dental pulp stem cells (DPSCs). Tooth decay and early fall have each been one of the most prevailing dental disorders which cause physical and emotional suffering and compromise the patient's quality of life. The design of novel scaffolding materials will be based on mimicking the architecture of natural dental extracellular matrix which may provide as in vivo environments for proper cell growth. This methodology will involve the combination of nano-fibred gelatin as well as biodegradable hydrogel based tooth scaffold. We have measured and optimized the Dental Pulp Stem Cells growth profile in cultures carried out on collagen-coated plastic surface, however, for tissue regeneration study, we aim to develop an enhanced microenvironment for stem cell growth and dental tissue regeneration. We believe biomimetic cell adhesion and scaffolds might provide a near in vivo growth environment for proper growth and differentiation of human DPSCs, which further help in dentin/pulp tissue regeneration.

Keywords: nano-gelatin, stem cells, dental pulp, scaffold

Procedia PDF Downloads 320
391 Surface Integration Effect on Mechanical and Piezoelectric Properties of ZnO

Authors: A. Khan, M. Hussain, S. Afgun

Abstract:

In the present work, the effect of the surface integration on the piezoelectric properties of zinc oxide (ZnO) nanorods has been investigated. ZnO nanorods were grown by using aqueous chemical growth method on two samples of graphene coated pet plastic substrate. First substrate’s surface was integrated with ZnO nanoparticles while the other substrate was used without ZnO nanoparticles. Various important parameters were analyzed, the growth density and morphological analysis were taken into account through surface scanning electron microscopy; it was observed that the growth density of nanorods on the integrated surface was much higher than the nonintegrated substrate. The crystal quality of growth orientation was analyzed by X-ray diffraction technique. Mechanical stability of ZnO nanorods on an integrated substrate was more appropriate than the nonintegrated substrate. The generated amount of piezoelectric potential from the integrated substrate was two times higher than the nonintegrated substrate. This shows that the layer of nanoparticles plays a crucial role in the enhancement of piezoelectric potential. Besides this, it also improves the performance of fabricated devices like its mechanical stability and piezoelectric properties. Additionally, the obtained results were compared with the other two samples used for the growth of ZnO nanorods on silver coated glass substrates for similar measurement. The consistency of the results verified the importance of surface integration effect. This study will help us to fabricate improved performance devices by using surface integrated substrates.

Keywords: ZnO nanorods, surface integration, mechanical properties, harvesting piezoelectricity

Procedia PDF Downloads 121
390 Characterization of Waste Thermocol Modified Bitumen by Spectroscopy, Microscopic Technique, and Dynamic Shear Rheometer

Authors: Supriya Mahida, Sangita, Yogesh U. Shah, Shanta Kumar

Abstract:

The global production of thermocol increasing day by day, due to vast applications of the use of thermocole in many sectors. Thermocol being non-biodegradable and more toxic than plastic leads towards a number of problems like its management into value-added products, environmental damage and landfill problems due to weight to volume ratio. Utilization of waste thermocol for modification of bitumen binders resulted in waste thermocol modified bitumen (WTMB) used in road construction and maintenance technology. Modification of bituminous mixes through incorporating thermocol into bituminous mixes through a dry process is one of the new options besides recycling process which consumes lots of waste thermocol. This process leads towards waste management and remedies against thermocol waste disposal. The present challenge is to dispose the thermocol waste under different forms in road infrastructure, either through the dry process or wet process to be developed in future. This paper focuses on the use of thermocol wastes which is mixed with VG 10 bitumen in proportions of 0.5%, 1%, 1.5%, and 2% by weight of bitumen. The physical properties of neat bitumen are evaluated and compared with modified VG 10 bitumen having thermocol. Empirical characterization like penetration, softening, and viscosity of bitumen has been carried out. Thermocol and waste thermocol modified bitumen (WTMB) were further analyzed by Fourier Transform Infrared Spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and Dynamic Shear Rheometer (DSR).

Keywords: DSR, FESEM, FT-IR, thermocol wastes

Procedia PDF Downloads 156
389 Microplastic Accumulation in Native and Invasive Sea Urchin Populations on Lipsi Island (Aegean Sea)

Authors: Ella Zahra

Abstract:

Sea urchins are keystone species in many global benthic ecosystems. The concentration of microplastics (MPs) in sea urchin organs was quantified in 120 individuals of 2 different species and from 4 sites across the Greek island Lipsi, with special interest in the differences between the native Arbacia lixula and the invasive Diadema setosum. Over 93% of MPs observed in both species were fibrous. MP abundance was found to correlate with exposure to open sea and harsh prevailing winds, irrespective of proximity to urban activities. The MP abundance in the invasive species was not found to be significantly dependent on site. Interestingly, the smaller native species contained significantly larger sized MPs than the invasive, possibly as a result of a greater feeding rate in A. lixula individuals. Sexually immature urchins may also have a higher feeding rate, giving rise to the negative correlation between gonad index and MPs per individual. The size of MPs ranged from 10µm to 24210µm, heavily skewed towards smaller particles. Few differences in colour were noted between the species and sites. MPs were detected in 100% of the samples with abundance ranging from 19.27 ± 6.77 to 26.83 ± 8.15 items per individual, or 3.55 ± 3.73 to 7.34 ± 10.51 items per gram of wet organ weight. This high value could lead to health risks in East Asia and the Mediterranean, where sea urchin is widely consumed, due to toxins adsorbed to the MPs.

Keywords: microplastics, plastic pollution, invertebrate ecology, invasive marine species

Procedia PDF Downloads 93
388 Effects of Variable Properties and Double Dispersion on Magnetohydrodynamic (MHD) Mixed Convection in a Power-Law Fluid Saturated Non-Darcy Porous Medium

Authors: Pranitha Janapatla, Venkata Suman Gontla

Abstract:

The present paper investigates the effects of MHD, double dispersion and variable properties on mixed convection flow from a vertical surface in a power-law fluid saturated non-Darcy porous medium. The governing non-linear partial differential equations are reduced to a system of ordinary differential equations by using a special form of Lie group transformations viz. scaling group of transformations. These ordinary differential equations are solved numerically by using Shooting technique. The influence of relevant parameters on the non-dimensional velocity, temperature, concentration for pseudo-plastic fluid, Newtonian and dilatant fluid are discussed and displayed graphically. The behavior of heat and mass transfer coefficients are shown in tabular form. Comparisons with the published works are performed and are found to be in very good agreement. From this analysis, it is observed that an increase in variable viscosity causes to decrease in velocity profile and increase the temperature and concentration distributions. It is also concluded that increase in the solutal dispersion decreases the velocity and concentration but raises the temperature profile.

Keywords: power-law fluid, thermal conductivity, thermal dispersion, solutal dispersion, variable viscosity

Procedia PDF Downloads 214
387 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

Authors: Rangoli Goyal, Rama Bhargava

Abstract:

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

Keywords: FEM, thermophoresis, diffusiophoresis, Brownian motion

Procedia PDF Downloads 406
386 Local Buckling of Web-Core and Foam-Core Sandwich Panels

Authors: Ali N. Suri, Ahmad A. Al-Makhlufi

Abstract:

Sandwich construction is widely accepted as a method of construction especially in the aircraft industry. It is a type of stressed skin construction formed by bonding two thin faces to a thick core, the faces resist all of the applied edge loads and provide all or nearly all of the required rigidities, the core spaces the faces to increase cross section moment of inertia about common neutral axis and transmit shear between them provides a perfect bond between core and faces is made. Material for face sheets can be of metal or reinforced plastics laminates, core material can be metallic cores of thin sheets forming corrugation or honeycomb, or non-metallic core of Balsa wood, plastic foams, or honeycomb made of reinforced plastics. For in plane axial loading web core and web-foam core Sandwich panels can fail by local buckling of plates forming the cross section with buckling wave length of the order of length of spacing between webs. In this study local buckling of web core and web-foam core Sandwich panels is carried out for given materials of facing and core, and given panel overall dimension for different combinations of cross section geometries. The Finite Strip Method is used for the analysis, and Fortran based computer program is developed and used.

Keywords: local buckling, finite strip, sandwich panels, web and foam core

Procedia PDF Downloads 339
385 Design and Fabrication of a Parabolic trough Collector and Experimental Investigation of Direct Steam Production in Tehran

Authors: M. Bidi, H. Akhbari, S. Eslami, A. Bakhtiari

Abstract:

Due to the high potential of solar energy utilization in Iran, development of related technologies is of great necessity. Linear parabolic collectors are among the most common and most efficient means to harness the solar energy. The main goal of this paper is design and construction of a parabolic trough collector to produce hot water and steam in Tehran. To provide precise and practical plans, 3D models of the collector under consideration were developed using Solidworks software. This collector was designed in a way that the tilt angle can be adjusted manually. To increase concentraion ratio, a small diameter absorber tube is selected and to enhance solar absorbtion, a shape of U-tube is used. One of the outstanding properties of this collector is its simple design and use of low cost metal and plastic materials in its manufacturing procedure. The collector under consideration was installed in Shahid Beheshti University of Tehran and the values of solar irradiation, ambient temperature, wind speed and collector steam production rate were measured in different days and hours of July. Results revealed that a 1×2 m parabolic trough collector located in Tehran is able to produce steam by the rate of 300ml/s under the condition of atmospheric pressure and without using a vacuum cover over the absorber tube.

Keywords: desalination, parabolic trough collector, direct steam production, solar water heater, design and construction

Procedia PDF Downloads 301
384 Extracting Polyhydroxyalkanoates from Waste Sludge of Husbandry Industry Wastewater Treatment Plants

Authors: M. S. Lu, Y. P. Tsai, H. Shu, K. F. Chen, L. L. Lai

Abstract:

This study used sodium hypochlorite/sodium dodecyl sulfate method to successfully extract polyhydroxyalkanoates (PHA) from the wasted sludge of a husbandry industry wastewater treatment plant. We investigated the optimum operational conditions of three key factors with respect to effectively extract PHAs from husbandry industry wastewater sludge, including the sodium hypochlorite concentration, liquid-solid ratio, and reaction time. The experimental results showed the optimum operational conditions for polyhydroxyalkanoate recovery as follows: (1) being digested by the sodium hypochlorite/sodium dodecyl sulfate solution with 15% (v/v) of hypochlorite concentration, (2) being operated at the condition of 1.25 mLmg-1 of liquid-solid ratio, and (3) being reacted for more than 60 min. Under these conditions, the content of the recovered PHAs was about 53.2±0.66 mgPHAs/gVSS, and the purity of the recovered PHAs was about 78.5±6.91 wt%. The recovered PHAs were further used to produce biodegradable plastics for decomposition test buried in soils. The decomposition test showed 66.5% of the biodegradable plastics produced in the study remained after being buried in soils for 49 days. The cost for extracting PHAs is about 10.3 US$/kgPHAs and is lower than those produced by pure culture methods (12-15 US$/kgPHAs).

Keywords: biodegradable plastic, biopolymers, polyhydroxyalkanoates (PHAs), waste sludge

Procedia PDF Downloads 333
383 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging

Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi

Abstract:

Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.

Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA

Procedia PDF Downloads 268
382 Cladding Technology for Metal-Hybrid Composites with Network-Structure

Authors: Ha-Guk Jeong, Jong-Beom Lee

Abstract:

Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.

Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics

Procedia PDF Downloads 167
381 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method

Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar

Abstract:

In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.

Keywords: stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method

Procedia PDF Downloads 342
380 Solar Calculations of Modified Arch (Semi-Spherical) Type Greenhouse System for Bayburt City

Authors: Uğur Çakir, Erol Şahin, Kemal Çomakli, Ayşegül Çokgez Kuş

Abstract:

Solar energy is thought as main source of all energy sources on the world and it can be used in many applications like agricultural areas, heating cooling or direct electricity production directly or indirectly. Greenhousing is the first one of the agricultural activities that solar energy can be used directly in. Greenhouses offer us suitable conditions which can be controlled easily for the growth of the plant and they are made by using a covering material that allows the sun light entering into the system. Covering material can be glass, fiber glass, plastic or another transparent element. This study investigates the solar energy usability rates and solar energy benefiting rates of a semi-spherical (modified arch) type greenhouse system according to different orientations and positions which exists under climatic conditions of Bayburt. In the concept of this study it is tried to determine the best direction and best sizes of a semi-spherical greenhouse to get best solar benefit from the sun. To achieve this aim a modeling study is made by using MATLAB. However this modeling study is running for some determined shapes and greenhouses it can be used for different shaped greenhouses or buildings. The basic parameters are determined as greenhouse azimuth angle, the rate of size of long edge to short and seasonal solar energy gaining of greenhouse.

Keywords: greenhousing, solar energy, direct radiation, renewable energy

Procedia PDF Downloads 466
379 Occurrence of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae), on Maize in Katsina State, Nigeria and preliminary study of its Developmental Characteristics under Laboratory Conditions

Authors: Ibrahim Sani, Suleiman Mohammed., Salisu Sulaiman, Aminu Musa

Abstract:

The fall army worm (FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) has recently become one of the major threats to maize production in the world. It is native to tropical and subtropical America and began to spread to many African and a few Asian Countries. A survey for the observation of infestation and collection of fall armyworm was conducted in field planted with maize in the northern part of Katsina state. Eggs and immature stages were collected, place in a plastic container and brought to the laboratory for observation and study of developmental stages. FAW was identified based on the morphological characteristics, i.e. the “Y” inverted shape on the head capsule and the patterns of black spots on the abdominal segments (square and trapezoidal forms). Different growing stage of maize are affected by fall armyworm, but the damage is greatest during the early growing phase of corn. Heavy infestation on the leaves also cause defoliation. Four developmental stages (eggs larvae, pupae and adults) of the FAW were studied when fed with young corn under laboratory conditions. Furthermore, effective scouting or monitoring of FAW could be practice at early stage of growth of maize.

Keywords: infestation, katsina, maize, fall armyworm

Procedia PDF Downloads 55
378 Absorbed Dose Measurements for Teletherapy Prediction of Superficial Dose Using Halcyon Linear Accelerator

Authors: Raymond Limen Njinga, Adeneye Samuel Olaolu, Akinyode Ojumoola Ajimo

Abstract:

Introduction: Measurement of entrance dose and dose at different depths is essential to avoid overdose and underdose of patients. The aim of this study is to verify the variation in the absorbed dose using a water-equivalent material. Materials and Methods: The plastic phantom was arranged on the couch of the halcyon linear accelerator by Varian, with the farmer ionization chamber inserted and connected to the electrometer. The image of the setup was taken using the High-Quality Single 1280x1280x16 higher on the service mode to check the alignment with the isocenter. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was done to check the beam quality of the machine at a field size of 10 cm x 10 cm. The calibration was done using SAD type set-up at a depth of 5 cm. This process was repeated for ten consecutive weeks, and the values were recorded. Results: The results of the beam output for the teletherapy machine were satisfactory and accepted in comparison with the commissioned measurement of 0.62. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was reasonable with respect to the beam quality of the machine at a field size of 10 cm x 10 cm. Conclusion: The results of the beam quality and the absorbed dose rate showed a good consistency over the period of ten weeks with the commissioned measurement value.

Keywords: linear accelerator, absorbed dose rate, isocenter, phantom, ionization chamber

Procedia PDF Downloads 46
377 Numerical Simulations on the Torsional Behavior of Multistory Concrete Masonry Buildings

Authors: Alvaro Jose Cordova, Hsuan Teh Hu

Abstract:

The use of concrete masonry constructions in developing countries has become very frequent, especially for domestic purpose. Most of them with asymmetric wall configurations in plan resulting in significant torsional actions when subjected to seismic loads. The study consisted on the finding of a material model for hollow unreinforced concrete masonry and a validation with experimental data found in literature. Numerical simulations were performed to 20 buildings with variations in wall distributions and heights. Results were analyzed by inspection and with a non-linear static method. The findings revealed that eccentricities as well as structure rigidities have a strong influence on the overall response of concrete masonry buildings. In addition, slab rotations depicted more accurate information about the torsional behavior than maximum versus average displacement ratios. The failure modes in low buildings were characterized by high tensile strains in the first floor. Whereas in tall buildings these strains were lowered significantly by higher compression stresses due to a higher self-weight. These tall buildings developed multiple plastic hinges along the height. Finally, the non-linear static analysis exposed a brittle response for all masonry assemblies. This type of behavior is undesired in any construction and the need for a material model for reinforced masonry is pointed out.

Keywords: concrete damaged plasticity, concrete masonry, macro-modeling, nonlinear static analysis, torsional capacity

Procedia PDF Downloads 283
376 Baby Bed Sheets with a Nanofiber Membrane

Authors: Roman Knizek, Denisa Knizkova, Vladimir Bajzik

Abstract:

Nowadays there are countless kinds of bedsheets or mattress covers for little children which should stop any liquid getting into the mattress. It is quite easy to wash the cover of the mattress, but it is almost impossible to clean the body of a mattress which is made of latex foam, wool or synthetic materials. Children bedsheets or mattress covers are often made with plastic coating which is not steam or air permeable and therefore is not very hygienic. This is our goal: by laminating a nanofiber membrane to a suitable bedsheet textile material, we can create a bedsheet which is waterproof but at the same time steam permeable and also partially breathable, thanks to the membrane. For the same reason, nanofiber membranes are widely used in outdoor clothing. The comfort properties and durability of the new nano-membrane bedsheet were studied. The following comfort properties were investigated: steam permeability - measured in accordance with Standard ISO 11902 hydrostatic resistances - measured in accordance with Standard ISO 811 and air permeability - measured in accordance with Standard ISO 9237. The durability or more precisely the wash resistance of the nano-membrane bedsheet was also measured by submitting the sheet to 30 washing cycles. The result of our work is a children's bedsheet with a nano-membrane. The nano-membrane is made of polyurethane to keep maximum flexibility and elasticity which are essential for this product. The comfort properties of this new bedsheet are very good especially its steam permeability and hydrostatic resistance.

Keywords: bed sheet, hydrostatic resistance, nanofiber membrane, water vapour permeable

Procedia PDF Downloads 201
375 Study on the Thermal Conductivity about Porous Materials in Wet State

Authors: Han Yan, Jieren Luo, Qiuhui Yan, Xiaoqing Li

Abstract:

The thermal conductivity of porous materials is closely related to the thermal and moisture environment and the overall energy consumption of the building. The study of thermal conductivity of porous materials has great significance for the realization of low energy consumption building and economic construction building. Based on the study of effective thermal conductivity of porous materials at home and abroad, the thermal conductivity under a variety of different density of polystyrene board (EPS), plastic extruded board (XPS) and polyurethane (PU) and phenolic resin (PF) in wet state through theoretical analysis and experimental research has been studied. Initially, the moisture absorption and desorption properties of specimens had been discussed under different density, which led a result indicates the moisture absorption of four porous materials all have three stages, fast, stable and gentle. For the moisture desorption, there are two types. One is the existence of the rapid phase of the stage, such as XPS board, PU board. The other one does not have the fast desorption, instead, it is more stabilized, such as XPS board, PF board. Furthermore, the relationship between water content and thermal conductivity of porous materials had been studied and fitted, which figured out that in the wake of the increasing water content, the thermal conductivity of porous material is continually improving. At the same time, this result also shows, in different density, when the same kind of materials decreases, the saturated moisture content increases. Finally, the moisture absorption and desorption properties of the four kinds of materials are compared comprehensively, and it turned out that the heat preservation performance of PU board is the best, followed by EPS board, XPS board, PF board.

Keywords: porous materials, thermal conductivity, moisture content, transient hot-wire method

Procedia PDF Downloads 172
374 China’s Scientific Research of the Arctic (Historical Aspect)

Authors: Cui Long (Allen)

Abstract:

China's attention to the Arctic began in 1925, when the country joined the Svalbard Treaty. China's participation in Arctic exploration was determined by the second and third articles of the treaty, according to which the country could conduct scientific activities in the adjacent waters of Svalbard. The first studies of the New China began in the 50s of the twentieth century. The first scientific projects on Arctic exploration began in the 80s of the twentieth century. During these years, the "National Committee of the People's Republic of China for Arctic Expeditions" and the "Institute of Polar Research" in Shanghai were established. The beginning of Deng Xiaoping's policy of openness and reform has opened a new page in China's scientific research of the Arctic. Since the 90s, the first Chinese scientific programs have been developed with foreign partners. The Chinese Academy of Sciences and its subordinate scientific institutions are actively involved in scientific activities: the Institute of Aerophysics, the Institute of Geographical Sciences and Natural Resources, the Institute of Oceanology, etc. An important event for the development of scientific research in the Arctic was China's entry into the Arctic Council in 2013 as an observer. By 2018, China had conducted nine Arctic expeditions, their purpose was to study the melting of ice and its effects on the world's climate system, as well as the impact of the Arctic climate on China and the presence of plastic waste in the Arctic was monitored. At the beginning of the new millennium, China considers the Arctic as the most important region of a geopolitical and geostrategic nature, for its further logistical and economic development.

Keywords: Arctic, China, history of Arctic research, arctic science, Chinese scientific research in the Arctic, scientific expeditions

Procedia PDF Downloads 39
373 Influence of Cucurbitacin-Containing Phytonematicides on Growth of Rough Lemon (Citrus jambhiri)

Authors: Raisibe V. Mathabatha, Phatu W. Mashela, Nehemiah M. Mokgalong

Abstract:

Occasional incidence of phytotoxicity in Nemarioc-BL and Nemafric-AL phytonematicides to crops raises credibility challenges that could negate their registration as commercial products. Responses of plants to phytonematicides are characterized by the existence of stimulation, neutral and inhibition phases, with the mid-point of the former being referred to as the Mean Concentration Stimulation Point (MSCP = Dm + Rh/2). The objective of this study was to determine the MCSP and the overall sensitivity (∑k) of Nemarioc-AL and Nemafric-BL phytonematicides to rough lemon seedling rootstocks using the Curve-fitting Allelochemical Response Dosage (CARD) computer-based model. Two parallel greenhouse experiments were initiated, with seven dilutions of each phytonematicide arranged in a randomised complete block design, replicated nine times. Six-month-old rough lemon seedlings were transplanted into 20-cm-diameter plastic pots, filled with steam-pasteurised river sand (300°C for 3 h) and Hygromix-T growing mixture. Treatments at 0, 2, 4, 8, 16, 32 and 164% dilutions were applied weekly at 300 ml/plant. At 84 days after the treatments, analysis of variance-significant plant variables was subjected to the CARD model to generate appropriate biological indices. Computed MCSP values for Nemarioc-AL and Nemafric-BL phytonematicides on rough lemon were 29 and 38%, respectively, whereas ∑k values were 1 and 0, respectively. At the applied concentrations, rough lemon seedlings were highly sensitive to Nemarioc-AL and Nemafric-BL phytonematicides.

Keywords: crude extracts, cucurbitacins, effective microbes, fruit extracts

Procedia PDF Downloads 138
372 Use of Yeast-Chitosan Bio-Microcapsules with Ultrafiltration Membrane to Remove Ammonia Nitrogen and Organic Matter in Raw Water

Authors: Chao Ding, Jun Shi, Huiping Deng

Abstract:

This study reports the preparation of a new type yeast-chitosan bio-microcapsule coating sodium alginate and chitosan, with good biocompatibility and mechanical strength. Focusing on the optimum preparation conditions of bio-microcapsule, a dynamic test of yeast-chitosan bio-microcapsule combined with ultrafiltration membrane was established to evaluate both the removal efficiency of major pollutants from raw water and the applicability of this system. The results of orthogonal experiments showed that the optimum preparation procedure are as follows: mix sodium alginate solution (3%) with bacteria liquid in specific proportion, drop in calcium chloride solution (4%) and solidify for 30 min; put the plastic beads into chitosan liquid (1.8%) to overlay film for 10 min and then into glutaraldehyde solution (1%) to get cross-linked for 5 min. In dynamic test, the microcapsules were effective as soon as were added in the system, without any start-up time. The removal efficiency of turbidity, ammonia nitrogen and organic matter was 60%, 80%, and 40%. Besides, the bio-microcapsules were prospective adsorbent for heavy metal; they adsorb Pb and Cr⁶⁺ in water while maintaining high biological activity to degrade ammonia nitrogen and small molecular organics through assimilation. With the presence of bio-microcapsules, the internal yeast strains’ adaptability on the external environment and resistance ability on toxic pollutants will be increased.

Keywords: ammonia nitrogen, bio-microcapsules, ultrafiltration membrane, yeast-chitosan

Procedia PDF Downloads 332