Search results for: novel object recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2777

Search results for: novel object recognition

2057 Structure-Constructivism in the Philosophy of Mathematics

Authors: Jeansou Moun

Abstract:

This study argues that constructivism and structuralism, which have been the two important schools of mathematical philosophy since the mid-19th century, can and should be synthesized into structure-constructivism. In fact, the philosophy of mathematics is divided into more than ten schools depending on the point of view. However, the biggest trend is Platonism which claims that mathematical objects are "abstract entities" that exists independently of the human mind and material objects. Its opposite is constructivism. According to the latter, mathematical objects are products of the construction of the human mind. However, whether the basis of the construction is a logical device, a symbolic system, or an empirical perception, it is subdivided into logicism, formalism, and intuitionism. However, these three schools themselves are further subdivided into various variants, and among them, structuralism, which emerged in the mid-20th century, is receiving the most attention. On the other hand, structuralism which emphasizes structure instead of individual objects, is divided into non-eliminative structuralism, which supports the a priori of structure, and non-eliminative structuralism, which rejects any abstract entity. In this context, it is believed that the structure itself is not an a priori entity but a result of the construction of the cognitive subject and that no object has ever been given to us in its full meaning from the outset. In other words, concepts are progressively structured through a dialectical cycle between sensory perception, imagination (abstraction), concepts, judgments, and reasoning. Symbols are needed for formal operation. However, without concrete manipulation, the formal operation cannot have any meaning. However, when formal structurization is achieved, the reality (object) itself is also newly structured. This is the "structure-constructivism".

Keywords: philosophy of mathematics, platonism, logicism, formalism, constructivism, structuralism, structure-constructivism

Procedia PDF Downloads 95
2056 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery

Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori

Abstract:

The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.

Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS

Procedia PDF Downloads 190
2055 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring

Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau

Abstract:

The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.

Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems

Procedia PDF Downloads 200
2054 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning

Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor

Abstract:

Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.

Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH

Procedia PDF Downloads 174
2053 3D Object Retrieval Based on Similarity Calculation in 3D Computer Aided Design Systems

Authors: Ahmed Fradi

Abstract:

Nowadays, recent technological advances in the acquisition, modeling, and processing of three-dimensional (3D) objects data lead to the creation of models stored in huge databases, which are used in various domains such as computer vision, augmented reality, game industry, medicine, CAD (Computer-aided design), 3D printing etc. On the other hand, the industry is currently benefiting from powerful modeling tools enabling designers to easily and quickly produce 3D models. The great ease of acquisition and modeling of 3D objects make possible to create large 3D models databases, then, it becomes difficult to navigate them. Therefore, the indexing of 3D objects appears as a necessary and promising solution to manage this type of data, to extract model information, retrieve an existing model or calculate similarity between 3D objects. The objective of the proposed research is to develop a framework allowing easy and fast access to 3D objects in a CAD models database with specific indexing algorithm to find objects similar to a reference model. Our main objectives are to study existing methods of similarity calculation of 3D objects (essentially shape-based methods) by specifying the characteristics of each method as well as the difference between them, and then we will propose a new approach for indexing and comparing 3D models, which is suitable for our case study and which is based on some previously studied methods. Our proposed approach is finally illustrated by an implementation, and evaluated in a professional context.

Keywords: CAD, 3D object retrieval, shape based retrieval, similarity calculation

Procedia PDF Downloads 262
2052 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems

Authors: Hala Zaghloul, Taymoor Nazmy

Abstract:

One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.

Keywords: cognitive system, image processing, segmentation, PCNN kernels

Procedia PDF Downloads 280
2051 Learning Gains and Constraints Resulting from Haptic Sensory Feedback among Preschoolers' Engagement during Science Experimentation

Authors: Marios Papaevripidou, Yvoni Pavlou, Zacharias Zacharia

Abstract:

Embodied cognition and additional (touch) sensory channel theories indicate that physical manipulation is crucial to learning since it provides, among others, touch sensory input, which is needed for constructing knowledge. Given these theories, the use of Physical Manipulatives (PM) becomes a prerequisite for learning. On the other hand, empirical research on Virtual Manipulatives (VM) (e.g., simulations) learning has provided evidence showing that the use of PM, and thus haptic sensory input, is not always a prerequisite for learning. In order to investigate which means of experimentation, PM or VM, are required for enhancing student science learning at the kindergarten level, an empirical study was conducted that sought to investigate the impact of haptic feedback on the conceptual understanding of pre-school students (n=44, age mean=5,7) in three science domains: beam balance (D1), sinking/floating (D2) and springs (D3). The participants were equally divided in two groups according to the type of manipulatives used (PM: presence of haptic feedback, VM: absence of haptic feedback) during a semi-structured interview for each of the domains. All interviews followed the Predict-Observe-Explain (POE) strategy and consisted of three phases: initial evaluation, experimentation, final evaluation. The data collected through the interviews were analyzed qualitatively (open-coding for identifying students’ ideas in each domain) and quantitatively (use of non-parametric tests). Findings revealed that the haptic feedback enabled students to distinguish heavier to lighter objects when held in hands during experimentation. In D1 the haptic feedback did not differentiate PM and VM students' conceptual understanding of the function of the beam as a mean to compare the mass of objects. In D2 the haptic feedback appeared to have a negative impact on PM students’ learning. Feeling the weight of an object strengthen PM students’ misconception that heavier objects always sink, whereas the scientifically correct idea that the material of an object determines its sinking/floating behavior in the water was found to be significantly higher among the VM students than the PM ones. In D3 the PM students outperformed significantly the VM students with regard to the idea that the heavier an object is the more the spring will expand, indicating that the haptic input experienced by the PM students served as an advantage to their learning. These findings point to the fact that PMs, and thus touch sensory input, might not always be a requirement for science learning and that VMs could be considered, under certain circumstances, as a viable means for experimentation.

Keywords: haptic feedback, physical and virtual manipulatives, pre-school science learning, science experimentation

Procedia PDF Downloads 136
2050 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions

Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez

Abstract:

In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.

Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval

Procedia PDF Downloads 232
2049 Kinoform Optimisation Using Gerchberg- Saxton Iterative Algorithm

Authors: M. Al-Shamery, R. Young, P. Birch, C. Chatwin

Abstract:

Computer Generated Holography (CGH) is employed to create digitally defined coherent wavefronts. A CGH can be created by using different techniques such as by using a detour-phase technique or by direct phase modulation to create a kinoform. The detour-phase technique was one of the first techniques that was used to generate holograms digitally. The disadvantage of this technique is that the reconstructed image often has poor quality due to the limited dynamic range it is possible to record using a medium with reasonable spatial resolution.. The kinoform (phase-only hologram) is an alternative technique. In this method, the phase of the original wavefront is recorded but the amplitude is constrained to be constant. The original object does not need to exist physically and so the kinoform can be used to reconstruct an almost arbitrary wavefront. However, the image reconstructed by this technique contains high levels of noise and is not identical to the reference image. To improve the reconstruction quality of the kinoform, iterative techniques such as the Gerchberg-Saxton algorithm (GS) are employed. In this paper the GS algorithm is described for the optimisation of a kinoform used for the reconstruction of a complex wavefront. Iterations of the GS algorithm are applied to determine the phase at a plane (with known amplitude distribution which is often taken as uniform), that satisfies given phase and amplitude constraints in a corresponding Fourier plane. The GS algorithm can be used in this way to enhance the reconstruction quality of the kinoform. Different images are employed as the reference object and their kinoform is synthesised using the GS algorithm. The quality of the reconstructed images is quantified to demonstrate the enhanced reconstruction quality achieved by using this method.

Keywords: computer generated holography, digital holography, Gerchberg-Saxton algorithm, kinoform

Procedia PDF Downloads 533
2048 Neuroprotective Effect of Chrysin on Thioacetamide-Induced Hepatic Encephalopathy in Rats: Role of Oxidative Stress and TLR-4/NF-κB Pathway

Authors: S. A. El-Marasy, S. A. El Awdan, R. M. Abd-Elsalam

Abstract:

This study aimed to investigate the possible neuroprotective effect of chrysin on thioacetamide (TAA)-induced hepatic encephalopathy in rats. Also, the effect of chrysin on motor impairment, cognitive deficits, oxidative stress, neuroinflammation, apoptosis and histopathological damage was assessed. Male Wistar rats were randomly allocated into five groups. The first group received the vehicle (distilled water) for 21 days and is considered as normal group. While the second one received intraperitoneal dose of TAA (200 mg/kg) at three alternative days during the third week of the experiment to induce HE and is considered as control group. The other three groups were orally administered chrysin for 21 days (25, 50, 100 mg/kg) and starting from day 17; rats received intraperitoneal dose of TAA (200 mg/kg) at three alternative days. Then behavioral, biochemical, histopathological and immunohistochemical analyses were assessed. Then behavioral, biochemical, histopathological and immunohistochemical analyses were assessed. Chrysin reversed TAA-induced motor coordination in rotarod test, cognitive deficits in object recognition test (ORT) and attenuated serum ammonia, hepatic liver enzymes, reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), reduced nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) brain contents. Chrysin administration also reduced Toll-4 receptor (TLR-4) gene expression, caspase-3 protein expression, hepatic necrosis and astrocyte swelling. This study depicts that chrysin exerted neuroprotective effect in TAA-induced HE rats, evidenced by improvement of cognitive deficits, motor incoordination and histopathological changes such as astrocyte swelling and vacuolization; hallmarks in HE, via reducing hyperammonemia, ameliorating hepatic function, in addition to its anti-oxidant, inactivation of TLR-4/NF-κB inflammatory pathway, and anti-apoptotic effects.

Keywords: chrysin, hepatic encephalopathy, oxidative stress, rats, thioacetamide, TLR4/NF-κB pathway

Procedia PDF Downloads 161
2047 Co-Design of Accessible Speech Recognition for Users with Dysarthric Speech

Authors: Elizabeth Howarth, Dawn Green, Sean Connolly, Geena Vabulas, Sara Smolley

Abstract:

Through the EU Horizon 2020 Nuvoic Project, the project team recruited 70 individuals in the UK and Ireland to test the Voiceitt speech recognition app and provide user feedback to developers. The app is designed for people with dysarthric speech, to support communication with unfamiliar people and access to speech-driven technologies such as smart home equipment and smart assistants. Participants with atypical speech, due to a range of conditions such as cerebral palsy, acquired brain injury, Down syndrome, stroke and hearing impairment, were recruited, primarily through organisations supporting disabled people. Most had physical or learning disabilities in addition to dysarthric speech. The project team worked with individuals, their families and local support teams, to provide access to the app, including through additional assistive technologies where needed. Testing was user-led, with participants asked to identify and test use cases most relevant to their daily lives over a period of three months or more. Ongoing technical support and training were provided remotely and in-person throughout the testing period. Structured interviews were used to collect feedback on users' experiences, with delivery adapted to individuals' needs and preferences. Informal feedback was collected through ongoing contact between participants, their families and support teams and the project team. Focus groups were held to collect feedback on specific design proposals. User feedback shared with developers has led to improvements to the user interface and functionality, including faster voice training, simplified navigation, the introduction of gamification elements and of switch access as an alternative to touchscreen access, with other feature requests from users still in development. This work offers a case-study in successful and inclusive co-design with the disabled community.

Keywords: co-design, assistive technology, dysarthria, inclusive speech recognition

Procedia PDF Downloads 110
2046 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 455
2045 The Recognition of Exclusive Choice of Court Agreements: United Arab Emirates Perspective and the 2005 Hague Convention on Choice of Court Agreements

Authors: Hasan Alrashid

Abstract:

The 2005 Hague Convention seeks to ensure legal certainty and predictability between parties in international business transactions. It harmonies exclusive choice of court agreements at the international level between parties to commercial transactions and to govern the recognition and enforcement of judgments resulting from proceedings based on such agreements to promote international trade and investment. Although the choice of court agreements is significant in international business transactions, the United Arab Emirates refuse to recognise it by Article 24 of the Federal Law No. 11 of 1992 of the Civil Procedure Code. A review of judicial judgments in United Arab Emirates up to the present day has revealed that several cases appeared before the Court in different states of United Arab Emirates regarding the recognition of exclusive choice of court agreements. In all the cases, the courts regarded the exclusive choice of court agreements as a direct assault on state authority and sovereignty and refused categorically to recognize choice of court agreements by refusing to stay proceedings in favor of the foreign chosen court. This has created uncertainty and unpredictability in international business transaction in the United Arab Emirates. In June 2011, the first Gulf Judicial Seminar on Cross-Frontier Legal Cooperation in Civil and Commercial Matters was held in Doha, Qatar. The Permanent Bureau of the Hague Conference attended the conference and invited the states of the Gulf Cooperation Council (GCC) namely, The United Arab Emirates, Bahrain, Saudi Arabia, Oman, Qatar and Kuwait to adopt some of the Hague Conventions, one of which was the Hague Convention on Choice of Court Agreements. One of the recommendations of the conference was that the GCC states should research ‘the benefits of predictability and legal certainty provided by the 2005 Convention on Choice of Court Agreements and its resulting advantages for cross-border trade and investment’ for possible adoption of the Hague Convention. Up to today, no further step has been taken by the any of the GCC states to adapt the Hague Convention nor did they conduct research on the benefits of predictability and legal certainty in international business transactions. This paper will argue that the approach regarding the recognition of choice of court agreements in United Arab Emirates states can be improved in order to help the parties in international business transactions avoid parallel litigation and ensure legal certainty and predictability. The focus will be the uncertainty and gaps regarding the choice of court agreements in the United Arab Emirates states. The Hague Convention on choice of court agreements and the importance of harmonisation of the rules of choice of court agreements at international level will also be discussed. Finally, The feasibility and desirability of recognizing choice of court agreements in United Arab Emirates legal system by becoming a party to the Hague Convention will be evaluated.

Keywords: choice of court agreements, party autonomy, public authority, sovereignty

Procedia PDF Downloads 246
2044 Novel Marketing Strategy To Increase Sales Revenue For SMEs Through Social Media

Authors: Kruti Dave

Abstract:

Social media marketing is an essential component of 21st-century business. Social media platforms enable small and medium-sized businesses to enhance brand recognition, generate leads and sales. However, the research on social media marketing is still fragmented and focuses on specific topics, such as effective communication techniques. Since the various ways in which social media impacts individuals and companies alike, the authors of this article focus on the origin, impacts, and current state of Social Media, emphasizing their significance as customer empowerment agents. It illustrates their potential and current responsibilities as part of the corporate business strategy and also suggests several methods to engage them as marketing tools. The focus of social media marketing ranges from defenders to explorers, the culture of Social media marketing encompasses the poles of conservatism and modernity, social media marketing frameworks lie between hierarchies and networks, and its management goes from autocracy to anarchy. This research proposes an integrative framework for small and medium-sized businesses through social media, and the influence of the same will be measured. This strategy will help industry experts to understand this new era. We propose an axiom: Social Media is always a function of marketing as a revenue generator.

Keywords: social media, marketing strategy, media marketing, brand awareness, customer engagement, revenue generator, brand recognition

Procedia PDF Downloads 197
2043 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System

Authors: Kay Thinzar Phu, Lwin Lwin Oo

Abstract:

In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.

Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection

Procedia PDF Downloads 313
2042 Challenges and Recommendations for Medical Device Tracking and Traceability in Singapore: A Focus on Nursing Practices

Authors: Zhuang Yiwen

Abstract:

The paper examines the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. One of the major challenges identified is the lack of a standard coding system for medical devices, which makes it difficult to track them effectively. The paper suggests the use of the Unique Device Identifier (UDI) as a single standard for medical devices to improve tracking and reduce errors. The paper also explores the use of barcoding and image recognition to identify and document medical devices in nursing practices. In nursing practices, the use of barcodes for identifying medical devices is common. However, the information contained in these barcodes is often inconsistent, making it challenging to identify which segment contains the model identifier. Moreover, the use of barcodes may be improved with the use of UDI, but many subsidized accessories may still lack barcodes. The paper suggests that the readiness for UDI and barcode standardization requires standardized information, fields, and logic in electronic medical record (EMR), operating theatre (OT), and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. Nursing workflow and data flow also need to be taken into account. The paper also explores the use of image recognition, specifically the Tesseract OCR engine, to identify and document implants in public hospitals due to limitations in barcode scanning. The study found that the solution requires an implant information database and checking output against the database. The solution also requires customization of the algorithm, cropping out objects affecting text recognition, and applying adjustments. The solution requires additional resources and costs for a mobile/hardware device, which may pose space constraints and require maintenance of sterile criteria. The integration with EMR is also necessary, and the solution require changes in the user's workflow. The paper suggests that the long-term use of Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) as a supporting terminology to improve clinical documentation and data exchange in healthcare. SNOMED CT provides a standardized way of documenting and sharing clinical information with respect to procedure, patient and device documentation, which can facilitate interoperability and data exchange. In conclusion, the paper highlights the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. The paper suggests the use of UDI and barcode standardization to improve tracking and reduce errors. It also explores the use of image recognition to identify and document medical devices in nursing practices. The paper emphasizes the importance of standardized information, fields, and logic in EMR, OT, and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. These recommendations could help the Singapore healthcare system to improve tracking and traceability of medical devices and ultimately enhance patient safety.

Keywords: medical device tracking, unique device identifier, barcoding and image recognition, systematized nomenclature of medicine clinical terms

Procedia PDF Downloads 77
2041 Pattern Recognition Approach Based on Metabolite Profiling Using In vitro Cancer Cell Line

Authors: Amanina Iymia Jeffree, Reena Thriumani, Mohammad Iqbal Omar, Ammar Zakaria, Yumi Zuhanis Has-Yun Hashim, Ali Yeon Md Shakaff

Abstract:

Metabolite profiling is a strategy to be approached in the pattern recognition method focused on three types of cancer cell line that driving the most to death specifically lung, breast, and colon cancer. The purpose of this study was to discriminate the VOCs pattern among cancerous and control group based on metabolite profiling. The sampling was executed utilizing the cell culture technique. All culture flasks were incubated till 72 hours and data collection started after 24 hours. Every running sample took 24 minutes to be completed accordingly. The comparative metabolite patterns were identified by the implementation of headspace-solid phase micro-extraction (HS-SPME) sampling coupled with gas chromatography-mass spectrometry (GCMS). The optimizations of the main experimental variables such as oven temperature and time were evaluated by response surface methodology (RSM) to get the optimal condition. Volatiles were acknowledged through the National Institute of Standards and Technology (NIST) mass spectral database and retention time libraries. To improve the reliability of significance, it is of crucial importance to eliminate background noise which data from 3rd minutes to 17th minutes were selected for statistical analysis. Targeted metabolites, of which were annotated as known compounds with the peak area greater than 0.5 percent were highlighted and subsequently treated statistically. Volatiles produced contain hundreds to thousands of compounds; therefore, it will be optimized by chemometric analysis, such as principal component analysis (PCA) as a preliminary analysis before subjected to a pattern classifier for identification of VOC samples. The volatile organic compound profiling has shown to be significantly distinguished among cancerous and control group based on metabolite profiling.

Keywords: in vitro cancer cell line, metabolite profiling, pattern recognition, volatile organic compounds

Procedia PDF Downloads 366
2040 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks

Authors: Jérémie Ochin

Abstract:

Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.

Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition

Procedia PDF Downloads 23
2039 Preliminary Analysis on Land Use-Land Cover Assessment of Post-Earthquake Geohazard: A Case Study in Kundasang, Sabah

Authors: Nur Afiqah Mohd Kamal, Khamarrul Azahari Razak

Abstract:

The earthquake aftermath has become a major concern, especially in high seismicity region. In Kundasang, Sabah, the earthquake on 5th June 2015 resulted in several catastrophes; landslides, rockfalls, mudflows and major slopes affected regardless of the series of the aftershocks. Certainly, the consequences of earthquake generate and induce the episodic disaster, not only life-threatening but it also affects infrastructure and economic development. Therefore, a need for investigating the change in land use and land cover (LULC) of post-earthquake geohazard is essential for identifying the extent of disastrous effects towards the development in Kundasang. With the advancement of remote sensing technology, post-earthquake geohazards (landslides, mudflows, rockfalls, debris flows) assessment can be evaluated by the employment of object-based image analysis in investigating the LULC change which consists of settlements, public infrastructure and vegetation cover. Therefore, this paper discusses the preliminary results on post-earthquakes geohazards distribution in Kundasang and evaluates the LULC classification effect upon the occurrences of geohazards event. The result of this preliminary analysis will provide an overview to determine the extent of geohazard impact on LULC. This research also provides beneficial input to the local authority in Kundasang about the risk of future structural development on the geohazard area.

Keywords: geohazard, land use land cover, object-based image analysis, remote sensing

Procedia PDF Downloads 245
2038 Impact of Environmental Rule of Law towards Positive Environmental Outcomes in Nigeria

Authors: Kate N. Okeke

Abstract:

The ever-growing needs of man requiring satisfaction have pushed him strongly towards industrialization which has and is still leaving environmental degradation and its attendant negative impacts in its wake. It is, therefore, not surprising that the enjoyment of fundamental rights like food supply, security of lives and property, freedom of worship, health and education have been drastically affected by such degradation. In recognition of the imperative need to protect the environment and human rights, many global instruments and constitutions have recognized the right to a healthy and sustainable environment. Some environmental advocates and quite a number of literatures on the subject matter call for the recognition of environmental rights via rule of law as a vital means of achieving positive outcomes on the subject matter. However, although there are numerous countries with constitutional environmental provisions, most of them such as Nigeria, have shown poor environmental performance. A notable problem is the fact that the constitution which recognizes environmental rights appears in its other provisions to contradict its provisions by making enforceability of the environmental rights unattainable. While adopting a descriptive, analytical, comparative and explanatory study design in reviewing a successful positive environmental outcome via the rule of law, this article argues that rule of law on a balance of scale, weighs more than just environmental rights recognition and therefore should receive more attention by environmental lawyers and advocates. This is because with rule of law, members of a society are sure of getting the most out of the environmental rights existing in their legal system. Members of Niger-Delta communities of Nigeria will benefit from the environmental rights existing in Nigeria. They are exposed to environmental degradation and pollution with effects such as acidic rainfall, pollution of farmlands and clean water sources. These and many more are consequences of oil and gas exploration. It will also pave way for solving the violence between cattle herdsmen and farmers in the Middle Belt and other regions of Nigeria. Their clashes are over natural resource control. Having seen that environmental rule of law is vital to sustainable development, this paper aims to contribute to discussions on how best the vehicle of rule law can be driven towards achieving positive environmental outcomes. This will be in reliance on other enforceable provisions in the Nigerian Constitution. Other domesticated international instruments will also be considered to attain sustainable environment and development.

Keywords: environment, rule of law, constitution, sustainability

Procedia PDF Downloads 156
2037 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.

Keywords: computer vision, human motion analysis, random forest, machine learning

Procedia PDF Downloads 36
2036 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: visual search, deep learning, convolutional neural network, machine learning

Procedia PDF Downloads 215
2035 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.

Keywords: high value crop, LiDAR, OBIA, precision agriculture

Procedia PDF Downloads 402
2034 Symo-syl: A Meta-Phonological Intervention to Support Italian Pre-Schoolers’ Emergent Literacy Skills

Authors: Tamara Bastianello, Rachele Ferrari, Marinella Majorano

Abstract:

The adoption of the syllabic approach in preschool programmes could support and reinforce meta-phonological awareness and literacy skills in children. The introduction of a meta-phonological intervention in preschool could facilitate the transition to primary school, especially for children with learning fragilities. In the present contribution, we want to investigate the efficacy of "Simo-syl" intervention in enhancing emergent literacy skills in children (especially for reading). Simo-syl is a 12 weeks multimedia programme developed for children to improve their language and communication skills and later literacy development in preschool. During the intervention, Simo-syl, an invented character, leads children in a series of meta-phonological games. Forty-six Italian preschool children (i.e., the Simo-syl group) participated in the programme; seventeen preschool children (i.e., the control group) did not participate in the intervention. Children in the two groups were between 4;10 and 5;9 years. They were assessed on their vocabulary, morpho-syntactical, meta-phonological, phonological, and phono-articulatory skills twice: 1) at the beginning of the last year of the preschool through standardised paper-based assessment tools and 2) one week after the intervention. All children in the Simo-syl group took part in the meta-phonological programme based on the syllabic approach. The intervention lasted 12 weeks (three activities per week; week 1: activities focused on syllable blending and spelling and a first approach to the written code; weeks 2-11: activities focused on syllables recognition; week 12: activities focused on vowels recognition). Very few children (Simo-syl group = 21, control group = 9) were tested again (post-test) one week after the intervention. Before starting the intervention programme, the Simo-syl and the control groups had similar meta-phonological, phonological, lexical skills (all ps > .05). One week after the intervention, a significant difference emerged between the two groups in their meta-phonological skills (syllable blending, p = .029; syllable spelling, p = .032), in their vowel recognition ability (p = .032) and their word reading skills (p = .05). An ANOVA confirmed the effect of the group membership on the developmental growth for the word reading task (F (1,28) = 6.83, p = .014, ηp2 = .196). Taking part in the Simo-syl intervention has a positive effect on the ability to read in preschool children.

Keywords: intervention programme, literacy skills, meta-phonological skills, syllabic approach

Procedia PDF Downloads 162
2033 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study

Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman

Abstract:

Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.

Keywords: artificial neural network, data mining, classification, students’ evaluation

Procedia PDF Downloads 613
2032 Text as Reader Device Improving Subjectivity on the Role of Attestation between Interpretative Semiotics and Discursive Linguistics

Authors: Marco Castagna

Abstract:

Proposed paper is aimed to inquire about the relation between text and reader, focusing on the concept of ‘attestation’. Indeed, despite being widely accepted in semiotic research, even today the concept of text remains uncertainly defined. So, it seems to be undeniable that what is called ‘text’ offers an image of internal cohesion and coherence, that makes it possible to analyze it as an object. Nevertheless, this same object remains problematic when it is pragmatically activated by the act of reading. In fact, as for the T.A.R:D.I.S., that is the unique space-temporal vehicle used by the well-known BBC character Doctor Who in his adventures, every text appears to its own readers not only “bigger inside than outside”, but also offering spaces that change according to the different traveller standing in it. In a few words, as everyone knows, this singular condition raises the questions about the gnosiological relation between text and reader. How can a text be considered the ‘same’, even if it can be read in different ways by different subjects? How can readers can be previously provided with knowledge required for ‘understanding’ a text, but at the same time learning something more from it? In order to explain this singular condition it seems useful to start thinking about text as a device more than an object. In other words, this unique status is more clearly understandable when ‘text’ ceases to be considered as a box designed to move meaning from a sender to a recipient (marking the semiotic priority of the “code”) and it starts to be recognized as performative meaning hypothesis, that is discursively configured by one or more forms and empirically perceivable by means of one or more substances. Thus, a text appears as a “semantic hanger”, potentially offered to the “unending deferral of interpretant", and from time to time fixed as “instance of Discourse”. In this perspective, every reading can be considered as an answer to the continuous request for confirming or denying the meaning configuration (the meaning hypothesis) expressed by text. Finally, ‘attestation’ is exactly what regulates this dynamic of request and answer, through which the reader is able to confirm his previous hypothesis on reality or maybe acquire some new ones.Proposed paper is aimed to inquire about the relation between text and reader, focusing on the concept of ‘attestation’. Indeed, despite being widely accepted in semiotic research, even today the concept of text remains uncertainly defined. So, it seems to be undeniable that what is called ‘text’ offers an image of internal cohesion and coherence, that makes it possible to analyze it as an object. Nevertheless, this same object remains problematic when it is pragmatically activated by the act of reading. In fact, as for the T.A.R:D.I.S., that is the unique space-temporal vehicle used by the well-known BBC character Doctor Who in his adventures, every text appears to its own readers not only “bigger inside than outside”, but also offering spaces that change according to the different traveller standing in it. In a few words, as everyone knows, this singular condition raises the questions about the gnosiological relation between text and reader. How can a text be considered the ‘same’, even if it can be read in different ways by different subjects? How can readers can be previously provided with knowledge required for ‘understanding’ a text, but at the same time learning something more from it? In order to explain this singular condition it seems useful to start thinking about text as a device more than an object. In other words, this unique status is more clearly understandable when ‘text’ ceases to be considered as a box designed to move meaning from a sender to a recipient (marking the semiotic priority of the “code”) and it starts to be recognized as performative meaning hypothesis, that is discursively configured by one or more forms and empirically perceivable by means of one or more substances. Thus, a text appears as a “semantic hanger”, potentially offered to the “unending deferral of interpretant", and from time to time fixed as “instance of Discourse”. In this perspective, every reading can be considered as an answer to the continuous request for confirming or denying the meaning configuration (the meaning hypothesis) expressed by text. Finally, ‘attestation’ is exactly what regulates this dynamic of request and answer, through which the reader is able to confirm his previous hypothesis on reality or maybe acquire some new ones.

Keywords: attestation, meaning, reader, text

Procedia PDF Downloads 237
2031 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 200
2030 The Connection between De Minimis Rule and the Effect on Trade

Authors: Pedro Mario Gonzalez Jimenez

Abstract:

The novelties introduced by the last Notice on agreements of minor importance tighten the application of the ‘De minimis’ safe harbour in the European Union. However, the undetermined legal concept of effect on trade between the Member States becomes importance at the same time. Therefore, the current analysis that the jurist should carry out in the European Union to determine if an agreement appreciably restrict competition under Article 101 of the Treaty on the Functioning of the European Union is double. Hence, it is necessary to know how to balance the significance in competition and the significance in effect on trade between the Member States. It is a crucial issue due to the negative delimitation of restriction of competition affects the positive one. The methodology of this research is rather simple. Beginning with a historical approach to the ‘De Minimis Rule’, their main problems and uncertainties will be found. So, after the analysis of normative documents and the jurisprudence of the Court of Justice of the European Union some proposals of ‘Lege ferenda’ will be offered. These proposals try to overcome the contradictions and questions that currently exist in the European Union as a consequence of the current legal regime of agreements of minor importance. The main findings of this research are the followings: Firstly, the effect on trade is another way to analyze the importance of an agreement different from the ‘De minimis rule’. In point of fact, this concept is singularly adapted to go through agreements that have as object the prevention, restriction or distortion of competition, as it is observed in the most famous European Union case-law. Thanks to the effect on trade, as long as the proper requirements are met there is no a restriction of competition under article 101 of the Treaty on the Functioning of the European Union, even if the agreement had an anti-competitive object. These requirements are an aggregate market share lower than 5% on any of the relevant markets affected by the agreement and turnover lower than 40 million of Euros. Secondly, as the Notice itself says ‘it is also intended to give guidance to the courts and competition authorities of the Member States in their application of Article 101 of the Treaty, but it has no binding force for them’. This reality makes possible the existence of different statements among the different Member States and a confusing perception of what a restriction of competition is. Ultimately, damage on trade between the Member States could be observed for this reason. The main conclusion is that the significant effect on trade between Member States is irrelevant in agreements that restrict competition because of their effects but crucial in agreements that restrict competition because of their object. Thus, the Member States should propose the incorporation of a similar concept in their legal orders in order to apply the content of the Notice. Otherwise, the significance of the restrictive agreement on competition would not be properly assessed.

Keywords: De minimis rule, effect on trade, minor importance agreements, safe harbour

Procedia PDF Downloads 180
2029 Locating Speed Limit Signs for Highway Tunnel Entrance and Exit

Authors: Han Bai, Lemei Yu, Tong Zhang, Doudou Xie, Liang Zhao

Abstract:

The brightness changes at highway tunnel entrance and exit have an effect on the physical and psychological conditions of drivers. It is more conducive for examining driving safety with quantitative analysis of the physical and psychological characteristics of drivers to determine the speed limit sign locations at the tunnel entrance and exit sections. In this study, the physical and psychological effects of tunnels on traffic sign recognition of drivers are analyzed; subsequently, experiments with the assistant of Eyelink-II Type eye movement monitoring system are conducted in the typical tunnels in Ji-Qing freeway and Xi-Zha freeway, to collect the data of eye movement indexes “Fixation Duration” and “Eyeball Rotating Speed”, which typically represent drivers' mental load and visual characteristics. On this basis, the paper establishes a visual recognition model for the speed limit signs at the highway tunnel entrances and exits. In combination with related standards and regulations, it further presents the recommended values for locating speed limit signs under different tunnel conditions. A case application on Panlong tunnel in Ji-Qing freeway is given to generate the helpful improvement suggestions.

Keywords: driver psychological load, eye movement index, speed limit sign location, tunnel entrance and exit

Procedia PDF Downloads 295
2028 Bird-Adapted Filter for Avian Species and Individual Identification Systems Improvement

Authors: Ladislav Ptacek, Jan Vanek, Jan Eisner, Alexandra Pruchova, Pavel Linhart, Ludek Muller, Dana Jirotkova

Abstract:

One of the essential steps of avian song processing is signal filtering. Currently, the standard methods of filtering are the Mel Bank Filter or linear filter distribution. In this article, a new type of bank filter called the Bird-Adapted Filter is introduced; whereby the signal filtering is modifiable, based upon a new mathematical description of audiograms for particular bird species or order, which was named the Avian Audiogram Unified Equation. According to the method, filters may be deliberately distributed by frequency. The filters are more concentrated in bands of higher sensitivity where there is expected to be more information transmitted and vice versa. Further, it is demonstrated a comparison of various filters for automatic individual recognition of chiffchaff (Phylloscopus collybita). The average Equal Error Rate (EER) value for Linear bank filter was 16.23%, for Mel Bank Filter 18.71%, the Bird-Adapted Filter gave 14.29%, and Bird-Adapted Filter with 1/3 modification was 12.95%. This approach would be useful for practical use in automatic systems for avian species and individual identification. Since the Bird-Adapted Filter filtration is based on the measured audiograms of particular species or orders, selecting the distribution according to the avian vocalization provides the most precise filter distribution to date.

Keywords: avian audiogram, bird individual identification, bird song processing, bird species recognition, filter bank

Procedia PDF Downloads 387