Search results for: multi variable decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12433

Search results for: multi variable decision making

11713 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic

Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam

Abstract:

In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.

Keywords: decision support system, data mining, knowledge discovery, data discovery, fuzzy logic

Procedia PDF Downloads 338
11712 Review of the Model-Based Supply Chain Management Research in the Construction Industry

Authors: Aspasia Koutsokosta, Stefanos Katsavounis

Abstract:

This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of CSC modeling accommodates conceptual or process models which discuss general management frameworks and do not relate to acknowledged soft OR methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, mathematical formulation, structure, objectives, solution approach, software used and decision level. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop robust mathematical optimization models for the CSC. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without the consequential reform of generic concepts to match the unique characteristics of the construction industry.

Keywords: construction supply chain management, modeling, operations research, optimization, simulation

Procedia PDF Downloads 504
11711 Exploring Perceptions of Non-Energy Benefits and Energy Efficiency Investment in the Malaysian Industrial Sector

Authors: Siti Noor Baiti Binti Mustafa

Abstract:

Energy management studies regarding energy efficiency investments in Malaysia has yet to address the lack of empirical research that examines pro- sustainability behavior of managers in the industrial sector and how it influences energy efficiency investment decision-making. This study adopts the Theory of Planned Behavior (TPB) to examine the relationship between personal attitude, subjective norms, and perceived behavioral control (PBC), the intention of energy efficiency investments, and how perceptions of Non-Energy Benefits (NEB) influence these intentions among managers in the industrial sector in Malaysia. Managers from various sub-sectors in the industrial sector were selected from a sample of companies that are participants of the Government-led program named the Energy Audit Conditional Grant (EACG) that aimed to promote energy efficiency. Data collection was conducted through an online semi-structured, open-ended questionnaire and then later interviewed. The results of this explorative sequential qualitative study showed that perceived behavioral control was a significant predictor of energy efficiency investment intentions as compared to factors such as attitude and subjective norms. The level of awareness and perceptions towards NEB further played a significant factor in influencing energy efficiency investment decision-making as well. Various measures and policy recommendations are provided together with insights on factors that influence decision-makers intention to invest in energy efficiency, whilst new knowledge on NEB perceptions will be useful to enhance the attractiveness of energy-efficient investments.

Keywords: energy efficiency investments, non-energy benefits, theory of planned behavior, personal attitude, subjective norms, perceived behavioral control, Malaysia industrial sector

Procedia PDF Downloads 129
11710 Road Accident Blackspot Analysis: Development of Decision Criteria for Accident Blackspot Safety Strategies

Authors: Tania Viju, Bimal P., Naseer M. A.

Abstract:

This study aims to develop a conceptual framework for the decision support system (DSS), that helps the decision-makers to dynamically choose appropriate safety measures for each identified accident blackspot. An accident blackspot is a segment of road where the frequency of accident occurrence is disproportionately greater than other sections on roadways. According to a report by the World Bank, India accounts for the highest, that is, eleven percent of the global death in road accidents with just one percent of the world’s vehicles. Hence in 2015, the Ministry of Road Transport and Highways of India gave prime importance to the rectification of accident blackspots. To enhance road traffic safety and reduce the traffic accident rate, effectively identifying and rectifying accident blackspots is of great importance. This study helps to understand and evaluate the existing methods in accident blackspot identification and prediction that are used around the world and their application in Indian roadways. The decision support system, with the help of IoT, ICT and smart systems, acts as a management and planning tool for the government for employing efficient and cost-effective rectification strategies. In order to develop a decision criterion, several factors in terms of quantitative as well as qualitative data that influence the safety conditions of the road are analyzed. Factors include past accident severity data, occurrence time, light, weather and road conditions, visibility, driver conditions, junction type, land use, road markings and signs, road geometry, etc. The framework conceptualizes decision-making by classifying blackspot stretches based on factors like accident occurrence time, different climatic and road conditions and suggesting mitigation measures based on these identified factors. The decision support system will help the public administration dynamically manage and plan the necessary safety interventions required to enhance the safety of the road network.

Keywords: decision support system, dynamic management, road accident blackspots, road safety

Procedia PDF Downloads 146
11709 Simulation-based Decision Making on Intra-hospital Patient Referral in a Collaborative Medical Alliance

Authors: Yuguang Gao, Mingtao Deng

Abstract:

The integration of independently operating hospitals into a unified healthcare service system has become a strategic imperative in the pursuit of hospitals’ high-quality development. Central to the concept of group governance over such transformation, exemplified by a collaborative medical alliance, is the delineation of shared value, vision, and goals. Given the inherent disparity in capabilities among hospitals within the alliance, particularly in the treatment of different diseases characterized by Disease Related Groups (DRG) in terms of effectiveness, efficiency and resource utilization, this study aims to address the centralized decision-making of intra-hospital patient referral within the medical alliance to enhance the overall production and quality of service provided. We first introduce the notion of production utility, where a higher production utility for a hospital implies better performance in treating patients diagnosed with that specific DRG group of diseases. Then, a Discrete-Event Simulation (DES) framework is established for patient referral among hospitals, where patient flow modeling incorporates a queueing system with fixed capacities for each hospital. The simulation study begins with a two-member alliance. The pivotal strategy examined is a "whether-to-refer" decision triggered when the bed usage rate surpasses a predefined threshold for either hospital. Then, the decision encompasses referring patients to the other hospital based on DRG groups’ production utility differentials as well as bed availability. The objective is to maximize the total production utility of the alliance while minimizing patients’ average length of stay and turnover rate. Thus the parameter under scrutiny is the bed usage rate threshold, influencing the efficacy of the referral strategy. Extending the study to a three-member alliance, which could readily be generalized to multi-member alliances, we maintain the core setup while introducing an additional “which-to-refer" decision that involves referring patients with specific DRG groups to the member hospital according to their respective production utility rankings. The overarching goal remains consistent, for which the bed usage rate threshold is once again a focal point for analysis. For the two-member alliance scenario, our simulation results indicate that the optimal bed usage rate threshold hinges on the discrepancy in the number of beds between member hospitals, the distribution of DRG groups among incoming patients, and variations in production utilities across hospitals. Transitioning to the three-member alliance, we observe similar dependencies on these parameters. Additionally, it becomes evident that an imbalanced distribution of DRG diagnoses and further disparity in production utilities among member hospitals may lead to an increase in the turnover rate. In general, it was found that the intra-hospital referral mechanism enhances the overall production utility of the medical alliance compared to individual hospitals without partnership. Patients’ average length of stay is also reduced, showcasing the positive impact of the collaborative approach. However, the turnover rate exhibits variability based on parameter setups, particularly when patients are redirected within the alliance. In conclusion, the re-structuring of diagnostic disease groups within the medical alliance proves instrumental in improving overall healthcare service outcomes, providing a compelling rationale for the government's promotion of patient referrals within collaborative medical alliances.

Keywords: collaborative medical alliance, disease related group, patient referral, simulation

Procedia PDF Downloads 60
11708 CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery

Authors: Jinliang Yuan, Jong-Sung Yu, Bengt Sundén

Abstract:

A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.

Keywords: Computational Fluid Dynamics (CFD), modeling, multi-phase, transport phenomena, lithium-air battery

Procedia PDF Downloads 454
11707 Artificial Neural Networks with Decision Trees for Diagnosis Issues

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.

Keywords: neural networks, decision trees, diagnosis, behaviors

Procedia PDF Downloads 510
11706 Bridging Educational Research and Policymaking: The Development of Educational Think Tank in China

Authors: Yumei Han, Ling Li, Naiqing Song, Xiaoping Yang, Yuping Han

Abstract:

Educational think tank is agreeably regarded as significant part of a nation’s soft power to promote the scientific and democratic level of educational policy making, and it plays critical role of bridging educational research in higher institutions and educational policy making. This study explores the concept, functions and significance of educational think tank in China, and conceptualizes a three dimensional framework to analyze the approaches of transforming research-based higher institutions into effective educational think tanks to serve educational policy making in the nation wide. Since 2014, the Ministry of Education P.R. China has been promoting the strategy of developing new type of educational think tanks in higher institutions, and such a strategy has been put into the agenda for the 13th Five Year Plan for National Education Development released in 2017.In such context, increasing scholars conduct studies to put forth strategies of promoting the development and transformation of new educational think tanks to serve educational policy making process. Based on literature synthesis, policy text analysis, and analysis of theories about policy making process and relationship between educational research and policy-making, this study constructed a three dimensional conceptual framework to address the following questions: (a) what are the new features of educational think tanks in the new era comparing traditional think tanks, (b) what are the functional objectives of the new educational think tanks, (c) what are the organizational patterns and mechanism of the new educational think tanks, (d) in what approaches traditional research-based higher institutions can be developed or transformed into think tanks to effectively serve the educational policy making process. The authors adopted case study approach on five influential education policy study centers affiliated with top higher institutions in China and applied the three dimensional conceptual framework to analyze their functional objectives, organizational patterns as well as their academic pathways that researchers use to contribute to the development of think tanks to serve education policy making process.Data was mainly collected through interviews with center administrators, leading researchers and academic leaders in the institutions. Findings show that: (a) higher institution based think tanks mainly function for multi-level objectives, providing evidence, theoretical foundations, strategies, or evaluation feedbacks for critical problem solving or policy-making on the national, provincial, and city/county level; (b) higher institution based think tanks organize various types of research programs for different time spans to serve different phases of policy planning, decision making, and policy implementation; (c) in order to transform research-based higher institutions into educational think tanks, the institutions must promote paradigm shift that promotes issue-oriented field studies, large data mining and analysis, empirical studies, and trans-disciplinary research collaborations; and (d) the five cases showed distinguished features in their way of constructing think tanks, and yet they also exposed obstacles and challenges such as independency of the think tanks, the discourse shift from academic papers to consultancy report for policy makers, weakness in empirical research methods, lack of experience in trans-disciplinary collaboration. The authors finally put forth implications for think tank construction in China and abroad.

Keywords: education policy-making, educational research, educational think tank, higher institution

Procedia PDF Downloads 161
11705 Performance Management of Tangible Assets within the Balanced Scorecard and Interactive Business Decision Tools

Authors: Raymond K. Jonkers

Abstract:

The present study investigated approaches and techniques to enhance strategic management governance and decision making within the framework of a performance-based balanced scorecard. The review of best practices from strategic, program, process, and systems engineering management provided for a holistic approach toward effective outcome-based capability management. One technique, based on factorial experimental design methods, was used to develop an empirical model. This model predicted the degree of capability effectiveness and is dependent on controlled system input variables and their weightings. These variables represent business performance measures, captured within a strategic balanced scorecard. The weighting of these measures enhances the ability to quantify causal relationships within balanced scorecard strategy maps. The focus in this study was on the performance of tangible assets within the scorecard rather than the traditional approach of assessing performance of intangible assets such as knowledge and technology. Tangible assets are represented in this study as physical systems, which may be thought of as being aboard a ship or within a production facility. The measures assigned to these systems include project funding for upgrades against demand, system certifications achieved against those required, preventive maintenance to corrective maintenance ratios, and material support personnel capacity against that required for supporting respective systems. The resultant scorecard is viewed as complimentary to the traditional balanced scorecard for program and performance management. The benefits from these scorecards are realized through the quantified state of operational capabilities or outcomes. These capabilities are also weighted in terms of priority for each distinct system measure and aggregated and visualized in terms of overall state of capabilities achieved. This study proposes the use of interactive controls within the scorecard as a technique to enhance development of alternative solutions in decision making. These interactive controls include those for assigning capability priorities and for adjusting system performance measures, thus providing for what-if scenarios and options in strategic decision-making. In this holistic approach to capability management, several cross functional processes were highlighted as relevant amongst the different management disciplines. In terms of assessing an organization’s ability to adopt this approach, consideration was given to the P3M3 management maturity model.

Keywords: management, systems, performance, scorecard

Procedia PDF Downloads 323
11704 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 146
11703 Performance Improvement of Information System of a Banking System Based on Integrated Resilience Engineering Design

Authors: S. H. Iranmanesh, L. Aliabadi, A. Mollajan

Abstract:

Integrated resilience engineering (IRE) is capable of returning banking systems to the normal state in extensive economic circumstances. In this study, information system of a large bank (with several branches) is assessed and optimized under severe economic conditions. Data envelopment analysis (DEA) models are employed to achieve the objective of this study. Nine IRE factors are considered to be the outputs, and a dummy variable is defined as the input of the DEA models. A standard questionnaire is designed and distributed among executive managers to be considered as the decision-making units (DMUs). Reliability and validity of the questionnaire is examined based on Cronbach's alpha and t-test. The most appropriate DEA model is determined based on average efficiency and normality test. It is shown that the proposed integrated design provides higher efficiency than the conventional RE design. Results of sensitivity and perturbation analysis indicate that self-organization, fault tolerance, and reporting culture respectively compose about 50 percent of total weight.

Keywords: banking system, Data Envelopment Analysis (DEA), Integrated Resilience Engineering (IRE), performance evaluation, perturbation analysis

Procedia PDF Downloads 191
11702 An Analysis of Gender Competencies of Project Managers in National Capital Region, Philippines using the Mann-Whitney U Test

Authors: Ryan Vincent Teodoro, Adrian Paul Virador, Jan Christopher Cardenas

Abstract:

In the field of construction, managerial positions are completely dominated by males. The researchers conducted this study to see if there is a significant difference between the competencies of male and female project managers in the construction field. To see if there is a significant difference, they subdivided the competency of project managers into three components; decision making, organizing skills, and resiliency. The researchers conducted a five-point Likert scale survey of 28 project managers in the construction field, 18 of them are males and 10 are females. The researchers used Cronbach’s alpha to translate the raw scores of the respondents into competency scores. Then, the competency scores are analyzed using the Mann-Whitney U Test to see if there is a significant difference between the male’s and female’s competency scores. A p-value of 0.808 was calculated, which is greater than 0.05, which means that the null hypothesis is accepted. Therefore, the researchers concluded that there is no significant difference between the competencies of male and female project managers in terms of decision making, organizing skills, and resiliency in the construction field in the National Capital Region, Philippines.

Keywords: competency, resiliency, project managers, Mann-Whitney U test

Procedia PDF Downloads 136
11701 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange

Procedia PDF Downloads 334
11700 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort

Authors: Xiaohua Zou, Yongxin Su

Abstract:

The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.

Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response

Procedia PDF Downloads 92
11699 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem

Authors: Boumesbah Asma, Chergui Mohamed El-amine

Abstract:

Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.

Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search

Procedia PDF Downloads 95
11698 Awareness about Authenticity of Health Care Information from Internet Sources among Health Care Students in Malaysia: A Teaching Hospital Study

Authors: Renjith George, Preethy Mary Donald

Abstract:

Use of internet sources to retrieve health care related information among health care professionals has increased tremendously as the accessibility to internet is made easier through smart phones and tablets. Though there are huge data available at a finger touch, it is doubtful whether all the sources providing health care information adhere to evidence based practice. The objective of this survey was to study the prevalence of use of internet sources to get health care information, to assess the mind-set towards the authenticity of health care information available via internet sources and to study the awareness about evidence based practice in health care among medical and dental students in Melaka-Manipal Medical College. The survey was proposed as there is limited number of studies reported in the literature and this is the first of its kind in Malaysia. A cross sectional survey was conducted among the medical and dental students of Melaka-Manipal Medical College. A total of 521 students including medical and dental students in their clinical years of undergraduate study participated in the survey. A questionnaire consisting of 14 questions were constructed based on data available from the published literature and focused group discussion and was pre-tested for validation. Data analysis was done using SPSS. The statistical analysis of the results of the survey proved that the use of internet resources for health care information are equally preferred over the conventional resources among health care students. Though majority of the participants verify the authenticity of information from internet sources, there was considerable percentage of candidates who feels that all the information from the internet can be utilised for clinical decision making or were not aware about the need of verification of authenticity of such information. 63.7 % of the participants rely on evidence based practice in health care for clinical decision making while 34.2 % were not aware about it. A minority of 2.1% did not agree with the concept of evidence based practice. The observations of the survey reveals the increasing use of internet resources for health care information among health care students. The results warrants the need to move towards evidence based practice in health care as all health care information available online may not be reliable. The health care person should be judicious while utilising the information from such resources for clinical decision making.

Keywords: authenticity, evidence based practice, health care information, internet

Procedia PDF Downloads 449
11697 The Effect of Sustainability Reporting on Company Profitability Using Literature Review Method (Asian Sphere)

Authors: Kesya Terinda Natalie, Marcellina Natasha, Rosinta Ria Panggabean

Abstract:

Purpose: Over the last few years, the company has been implementing sustainability practices to ensure business continuity. However, there are pros and cons regarding the impact of financial reports if companies provide non-financial reports. So this paper aims to prove what the effect of Sustainability Reporting (SR) has on company profitability, as well as things that can be considered as the decision-making of SR disclosure. Methodology: This paper uses the literature review method to describe the results of published articles concerning Sustainability Reporting and Profitability. This study links and analyzes the essence of 50 previous studies related to SR on company profitability, most of which were conducted in Asia. Therefore this research is limited to only 23 studies in Asia. Findings: Sustainability Reporting does not have a significant impact on company profitability because the SR quality of each company varies based on Agency & Legitimacy Theory considerations. Stakeholders are required to focus not only on profitability but also on the long-term of the company. Thus, it is found that SR is used by companies as a sustainable investment, which can improve overall company performance by reducing capital costs and generating positive company value in increasing reputation capital. Value: This paper focuses on how sustainability reporting affects company profitability, as well as things that can be considered as the decision-making of SR disclosure.

Keywords: sustainability reporting, profitability, agency theory, legitimacy theory

Procedia PDF Downloads 91
11696 Maintenance Optimization for a Multi-Component System Using Factored Partially Observable Markov Decision Processes

Authors: Ipek Kivanc, Demet Ozgur-Unluakin

Abstract:

Over the past years, technological innovations and advancements have played an important role in the industrial world. Due to technological improvements, the degree of complexity of the systems has increased. Hence, all systems are getting more uncertain that emerges from increased complexity, resulting in more cost. It is challenging to cope with this situation. So, implementing efficient planning of maintenance activities in such systems are getting more essential. Partially Observable Markov Decision Processes (POMDPs) are powerful tools for stochastic sequential decision problems under uncertainty. Although maintenance optimization in a dynamic environment can be modeled as such a sequential decision problem, POMDPs are not widely used for tackling maintenance problems. However, they can be well-suited frameworks for obtaining optimal maintenance policies. In the classical representation of the POMDP framework, the system is denoted by a single node which has multiple states. The main drawback of this classical approach is that the state space grows exponentially with the number of state variables. On the other side, factored representation of POMDPs enables to simplify the complexity of the states by taking advantage of the factored structure already available in the nature of the problem. The main idea of factored POMDPs is that they can be compactly modeled through dynamic Bayesian networks (DBNs), which are graphical representations for stochastic processes, by exploiting the structure of this representation. This study aims to demonstrate how maintenance planning of dynamic systems can be modeled with factored POMDPs. An empirical maintenance planning problem of a dynamic system consisting of four partially observable components deteriorating in time is designed. To solve the empirical model, we resort to Symbolic Perseus solver which is one of the state-of-the-art factored POMDP solvers enabling approximate solutions. We generate some more predefined policies based on corrective or proactive maintenance strategies. We execute the policies on the empirical problem for many replications and compare their performances under various scenarios. The results show that the computed policies from the POMDP model are superior to the others. Acknowledgment: This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant no: 117M587.

Keywords: factored representation, maintenance, multi-component system, partially observable Markov decision processes

Procedia PDF Downloads 136
11695 Maintenance Alternatives Related to Costs of Wind Turbines Using Finite State Markov Model

Authors: Boukelkoul Lahcen

Abstract:

The cumulative costs for O&M may represent as much as 65%-90% of the turbine's investment cost. Nowadays the cost effectiveness concept becomes a decision-making and technology evaluation metric. The cost of energy metric accounts for the effect replacement cost and unscheduled maintenance cost parameters. One key of the proposed approach is the idea of maintaining the WTs which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating the cost of O&M is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the cost according to various options of maintenance.

Keywords: cost, finite state, Markov model, operation and maintenance

Procedia PDF Downloads 535
11694 Security Risks Assessment: A Conceptualization and Extension of NFC Touch-And-Go Application

Authors: Ku Aina Afiqah Ku Adzman, Manmeet Mahinderjit Singh, Zarul Fitri Zaaba

Abstract:

NFC operates on low-range 13.56 MHz frequency within a distance from 4cm to 10cm, and the applications can be categorized as touch and go, touch and confirm, touch and connect, and touch and explore. NFC applications are vulnerable to various security and privacy attacks such due to its physical nature; unprotected data stored in NFC tag and insecure communication between its applications. This paper aims to determine the likelihood of security risks happening in an NFC technology and application. We present an NFC technology taxonomy covering NFC standards, types of application and various security and privacy attack. Based on observations and the survey presented to evaluate the risk assessment within the touch and go application demonstrates two security attacks that are high risks namely data corruption and DOS attacks. After the risks are determined, risk countermeasures by using AHP is adopted. The guideline and solutions to these two high risks, attacks are later applied to a secure NFC-enabled Smartphone Attendance System.

Keywords: Near Field Communication (NFC), risk assessment, multi-criteria decision making, Analytical Hierarchy Process (AHP)

Procedia PDF Downloads 303
11693 Conceptualizing the Cyber Insecurity Risk in the Ethics of Automated Warfare

Authors: Otto Kakhidze, Hoda Alkhzaimi, Adam Ramey, Nasir Memon

Abstract:

This paper provides an alternative, cyber security based a conceptual framework for the ethics of automated warfare. The large body of work produced on fully or partially autonomous warfare systems tends to overlook malicious security factors as in the possibility of technical attacks on these systems when it comes to the moral and legal decision-making. The argument provides a risk-oriented justification to why technical malicious risks cannot be dismissed in legal, ethical and policy considerations when warfare models are being implemented and deployed. The assumptions of the paper are supported by providing a broader model that contains the perspective of technological vulnerabilities through the lenses of the Game Theory, Just War Theory as well as standard and non-standard defense ethics. The paper argues that a conventional risk-benefit analysis without considering ethical factors is insufficient for making legal and policy decisions on automated warfare. This approach will provide the substructure for security and defense experts as well as legal scholars, ethicists and decision theorists to work towards common justificatory grounds that will accommodate the technical security concerns that have been overlooked in the current legal and policy models.

Keywords: automated warfare, ethics of automation, inherent hijacking, security vulnerabilities, risk, uncertainty

Procedia PDF Downloads 357
11692 Multi-Wavelength Q-Switched Erbium-Doped Fiber Laser with Photonic Crystal Fiber and Multi-Walled Carbon Nanotubes

Authors: Zian Cheak Tiu, Harith Ahmad, Sulaiman Wadi Harun

Abstract:

A simple multi-wavelength passively Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using low cost multi-walled carbon nanotubes (MWCNTs) based saturable absorber (SA), which is prepared using polyvinyl alcohol (PVA) as a host polymer. The multi-wavelength operation is achieved based on nonlinear polarization rotation (NPR) effect by incorporating 50 m long photonic crystal fiber (PCF) in the ring cavity. The EDFL produces a stable multi-wavelength comb spectrum for more than 14 lines with a fixed spacing of 0.48 nm. The laser also demonstrates a stable pulse train with the repetition rate increases from 14.9 kHz to 25.4 kHz as the pump power increases from the threshold power of 69.0 mW to the maximum pump power of 133.8 mW. The minimum pulse width of 4.4 µs was obtained at the maximum pump power of 133.8 mW while the highest energy of 0.74 nJ was obtained at pump power of 69.0 mW.

Keywords: multi-wavelength Q-switched, multi-walled carbon nanotube, photonic crystal fiber

Procedia PDF Downloads 537
11691 Design Intelligence in Garment Design Between Technical Creativity and Artistic Creativity

Authors: Kanwar Varinder Pal Singh

Abstract:

Art is one of the five secondary sciences next to the social sciences. As per the single essential concept in garment design, it is the coexistence and co-creation of two aspects of reality: Ultimate reality and apparent or conventional reality. All phenomena possess two natures: That which is revealed by correct perception and that which is induced by deceptive perception. The object of correct perception is the ultimate reality, the object of deceptive perception is conventional reality. The same phenomenon, therefore, may be perceived according to its ultimate nature or its apparent nature. Ultimate reality is also called ‘emptiness’. Emptiness does not mean that all phenomena are nothing but do not exist in themselves. Although phenomena, the universe, thoughts, beings, time, and so on, seem very real in themselves, ultimately, they are not. Each one of us can perceive the changing and unpredictable nature of existence. This transitory nature of phenomena, impermanence, is the first sign of emptiness. Sometimes, the interdependence of phenomena leads to ultimate reality, which is nothing but emptiness, e.g., a rainbow, which is an effect due to the function of ‘sun rays,’ ‘rain,’ and ‘time.’ In light of the above, to achieve decision-making for the global desirability of garment design, the coexistence of artistic and technical creativity must achieve an object of correct perception, i.e., ultimate reality. This paper mentions the decision-making technique as semiotic engineering, both subjective and objective.

Keywords: global desirability, social desirability, comfort desirability, handle desirability, overall desirability

Procedia PDF Downloads 15
11690 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions

Authors: Tesfaye Mengistu

Abstract:

This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.

Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission

Procedia PDF Downloads 88
11689 Fuzzy Analytic Hierarchy Process for Determination of Supply Chain Performance Evaluation Criteria

Authors: Ibrahim Cil, Onur Kurtcu, H. Ibrahim Demir, Furkan Yener, Yusuf. S. Turkan, Muharrem Unver, Ramazan Evren

Abstract:

Fuzzy AHP (Analytic Hierarchy Process) method is decision-making way at the end of integrating the current AHP method with fuzzy structure. In this study, the processes of production planning, inventory management and purchasing department of a system were analysed and were requested to decide the performance criteria of each area. At this point, the current work processes were analysed by various decision-makers and comparing each criteria by giving points according to 1-9 scale were completed. The criteria were listed in order to their weights by using Fuzzy AHP approach and top three performance criteria of each department were determined. After that, the performance criteria of supply chain consisting of three departments were asked to determine. The processes of each department were compared by decision-makers at the point of building the supply chain performance system and getting the performance criteria. According to the results, the criteria of performance system of supply chain by using Fuzzy AHP were determined for which will be used in the supply chain performance system in the future.

Keywords: AHP, fuzzy, performance evaluation, supply chain

Procedia PDF Downloads 349
11688 Utilization of Online Risk Mapping Techniques versus Desktop Geospatial Tools in Making Multi-Hazard Risk Maps for Italy

Authors: Seyed Vahid Kamal Alavi

Abstract:

Italy has experienced a notable quantity and impact of disasters due to natural hazards and technological accidents caused by diverse risk sources on its physical, technological, and human/sociological infrastructures during past decade. This study discusses the frequency and impacts of the most three physical devastating natural hazards in Italy for the period 2000–2013. The approach examines the reliability of a range of open source WebGIS techniques versus a proposed multi-hazard risk management methodology. Spatial and attribute data which include USGS publically available hazard data and thirteen years Munich RE recorded data for Italy with different severities have been processed, visualized in a GIS (Geographic Information System) framework. Comparison of results from the study showed that the multi-hazard risk maps generated using open source techniques do not provide a reliable system to analyze the infrastructures losses in respect to national risk sources while they can be adopted for general international risk management purposes. Additionally, this study establishes the possibility to critically examine and calibrate different integrated techniques in evaluating what better protection measures can be taken in an area.

Keywords: multi-hazard risk mapping, risk management, GIS, Italy

Procedia PDF Downloads 374
11687 Knowledge Management in the Interactive Portal for Decision Makers on InKOM Example

Authors: K. Marciniak, M. Owoc

Abstract:

Managers as decision-makers present in different sectors should be supported in efficient and more and more sophisticated way. There are huge number of software tools developed for such users starting from simple registering data from business area – typical for operational level of management – up to intelligent techniques with delivering knowledge - for tactical and strategic levels of management. There is a big challenge for software developers to create intelligent management dashboards allowing to support different decisions. In more advanced solutions there is even an option for selection of intelligent techniques useful for managers in particular decision-making phase in order to deliver valid knowledge-base. Such a tool (called Intelligent Dashboard for SME Managers–InKOM) is prepared in the Business Intelligent framework of Teta products. The aim of the paper is to present solutions assumed for InKOM concerning on management of stored knowledge bases offering for business managers. The paper is managed as follows. After short introduction concerning research context the discussed supporting managers via information systems the InKOM platform is presented. In the crucial part of paper a process of knowledge transformation and validation is demonstrated. We will focus on potential and real ways of knowledge-bases acquiring, storing and validation. It allows for formulation conclusions interesting from knowledge engineering point of view.

Keywords: business intelligence, decision support systems, knowledge management, knowledge transformation, knowledge validation, managerial systems

Procedia PDF Downloads 514
11686 A Fuzzy Hybrıd Decısıon Support System for Naval Base Place Selectıon in a Foreıgn Country

Authors: Latif Yanar, Muharrem Kaçan

Abstract:

In this study, an Analytic Hierarchy Process and Analytic Network Process Decision Support System (DSS) model for determination of a navy base place in another country is proposed together with a decision support software (DESTEC 1.0) developed using C Sharp programming language. The proposed software also has the ability of performing the fuzzy models (Fuzzy AHP and Fuzzy ANP) of the proposed DSS to cope with the ambiguous and linguistic nature of the model. The AHP and ANP model, for a decision support for selecting the best place among the alternatives, including the criteria and alternatives, is developed and solved by the experts from Turkish Navy and Turkish academicians related to international relations branches of the universities in Turkey. Also, the questionnaires used for weighting of the criteria and the alternatives are filled by these experts.Some of our alternatives are: economic and political stability of the third country, the effect of another super power in that country, historical relations, security in that country, social facilities in the city in which the base will be built, the transportation security and difficulty from a main city that have an airport to the city will have the base etc. Over 20 criteria like these are determined which are categorized in social, political, economic and military aspects. As a result all the criteria and three alternatives are evaluated by different people who have background and experience to weight the criteria and alternatives as it must be in AHP and ANP evaluation system. The alternatives got their degrees all between 0 – 1 and the total is 1. At the end the DSS advices one of the alternatives as the best one to the decision maker according to the developed model and the evaluations of the experts.

Keywords: analytic hierarchical process, analytic network process, fuzzy logic, naval base place selection, multiple criteria decision making

Procedia PDF Downloads 393
11685 Variable-Fidelity Surrogate Modelling with Kriging

Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans

Abstract:

Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.

Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients

Procedia PDF Downloads 559
11684 Marketing Factors Influencing the Decision to Choose Low Cost Airlines

Authors: Noppadol Sritragool

Abstract:

The objectives of this research were to investigate the decision of passengers who choose to fry with low cost airlines and to study marketing factors which have the influence to the decision to choose each low cost airlines. This paper was a quantitative research technique. A total of 400 low cost airlines’ passengers were interviewed via English questionnaire to collect the respondents’ opinions. The findings revealed that respondents were male and female at a similar proportion. The majority had at least an undergraduate degree, have a lower management level jobs, and had income in the range of 25,000 -35,000 baht per month.. In addition, the findings also revealed that the first three marketing factors influencing the decision of the respondents to choose low-cost airlines were low price, direct flight, and online system.

Keywords: decision to choose, marketing factors, low-cost airlines

Procedia PDF Downloads 429