Search results for: intuitionistic fuzzy path
1197 Fuzzy Expert Approach for Risk Mitigation on Functional Urban Areas Affected by Anthropogenic Ground Movements
Authors: Agnieszka A. Malinowska, R. Hejmanowski
Abstract:
A number of European cities are strongly affected by ground movements caused by anthropogenic activities or post-anthropogenic metamorphosis. Those are mainly water pumping, current mining operation, the collapse of post-mining underground voids or mining-induced earthquakes. These activities lead to large and small-scale ground displacements and a ground ruptures. The ground movements occurring in urban areas could considerably affect stability and safety of structures and infrastructures. The complexity of the ground deformation phenomenon in relation to the structures and infrastructures vulnerability leads to considerable constraints in assessing the threat of those objects. However, the increase of access to the free software and satellite data could pave the way for developing new methods and strategies for environmental risk mitigation and management. Open source geographical information systems (OS GIS), may support data integration, management, and risk analysis. Lately, developed methods based on fuzzy logic and experts methods for buildings and infrastructure damage risk assessment could be integrated into OS GIS. Those methods were verified base on back analysis proving their accuracy. Moreover, those methods could be supported by ground displacement observation. Based on freely available data from European Space Agency and free software, ground deformation could be estimated. The main innovation presented in the paper is the application of open source software (OS GIS) for integration developed models and assessment of the threat of urban areas. Those approaches will be reinforced by analysis of ground movement based on free satellite data. Those data would support the verification of ground movement prediction models. Moreover, satellite data will enable our mapping of ground deformation in urbanized areas. Developed models and methods have been implemented in one of the urban areas hazarded by underground mining activity. Vulnerability maps supported by satellite ground movement observation would mitigate the hazards of land displacements in urban areas close to mines.Keywords: fuzzy logic, open source geographic information science (OS GIS), risk assessment on urbanized areas, satellite interferometry (InSAR)
Procedia PDF Downloads 1601196 Vertical Vibration Mitigation along Railway Lines
Authors: Jürgen Keil, Frank Walther
Abstract:
This article presents two innovative solutions for vertical vibration mitigation barriers including experimental and numerical investigations on the completed barriers. There is a continuing growth of exposure to noise and vibration in people´s daily lives due to the quest for more mobility and flexibility. In previous times neglected, immissions caused by vibrations can lead, for example, to secondary noise or damage in the adjacent buildings. Also people can feel very affected by vibrations. But unlike in new construction, in existing infrastructure and buildings action can be taken almost only on the transmission path of those vibrations. In the following two solutions were shown how vibrations on the transmission path can be mitigated. These are the jet grouting method and a new installation method (patent pending) by means of a prefabricated hollow box which is filled with vibration reducing mats and driven down to depth, are presented. The essential results of the numerical and experimental investigations on the completed wave barriers are included as well. This article is based on the results of a field test with the participation of Keller Holding, which was executed in the context of the European research project RIVAS (Railway Induced Vibration Abatement Solutions), and on a thesis done at the Technical University of Dresden with the involvement of BAUGRUND DRESDEN Ingenieurgesellschaft mbH and the Keller Holding GmbH.Keywords: jet grouting, rail way lines, vertical vibration mitigation, vibration reducing mats
Procedia PDF Downloads 4041195 Effects of Transformational Leadership and Political Competition on Corporate Performance of Nigeria National Petroleum Corporation
Authors: Justine Ugochukwu Osuagwu, Sazali Abd Wahab
Abstract:
The performance and operation of NNPC have faced series of attacks by all stakeholders as many have observed lots of inefficiency not only on the part of the management but the staff. This has raised questions of whether their operations and performance are being seriously affected by lack of transformational leadership, and the political competition prevalent in the country. The author has applied the administrative leadership theory and institutional theory as a guide to this study and empirically relates such theories to the study. The study also has utilized the quantitative approach where questionnaires were distributed to 370 participants, and the correctly filled and returned questionnaires were used for the analysis using structural equation modeling. The path coefficient of transformational leadership to performance is strong and positive with β = 0.672; t-value = 14.245; p-value = 0.000. Also, the result found that political competition does not mediate the relationship between transformational leadership and performance of NNPC. (β = -0.008; t-value = -0.600; p- value > 0.05). However, the indirect path is all insignificant, meaning that transformational leadership has relationship with corporate performance.The study found that,while political competition does not serve as a mediator in the relationship between transformational leadership and corporate performance, these styles of leadership have a direct and positive impact on corporate performance. The direct relationship between transformational leadership and political competition was not discovered, despite the fact that political competition has a direct and significant impact, both positive and negative, on corporate performance. As a result, both political competition and transformational leadership have the potential to significantly alter corporate performance.Keywords: performance, transformational leadership, political competition, corporation performance, Nigeria national petroleum corporation
Procedia PDF Downloads 1211194 Time and Energy Saving Kitchen Layout
Authors: Poonam Magu, Kumud Khanna, Premavathy Seetharaman
Abstract:
The two important resources of any worker performing any type of work at any workplace are time and energy. These are important inputs of the worker and need to be utilised in the best possible manner. The kitchen is an important workplace where the homemaker performs many essential activities. Its layout should be so designed that optimum use of her resources can be achieved.Ideally, the shape of the kitchen, as determined by the physical space enclosed by the four walls, can be square, rectangular or irregular. But it is the shape of the arrangement of counter that one normally refers to while talking of the layout of the kitchen. The arrangement can be along a single wall, along two opposite walls, L shape, U shape or even island. A study was conducted in 50 kitchens belonging to middle income group families. These were DDA built kitchens located in North, South, East and West Delhi.The study was conducted in three phases. In the first phase, 510 non working homemakers were interviewed. The data related to personal characteristics of the homemakers was collected. Additional information was also collected regarding the kitchens-the size, shape , etc. The homemakers were also questioned about various aspects related to meal preparation-people performing the task, number of items cooked, areas used for meal preparation , etc. In the second phase, a suitable technique was designed for conducting time and motion study in the kitchen while the meal was being prepared. This technique was called Path Process Chart. The final phase was carried out in 50 kitchens. The criterion for selection was that all items for a meal should be cooked at the same time. All the meals were cooked by the homemakers in their own kitchens. The meal preparation was studied using the Path Process Chart technique. The data collected was analysed and conclusions drawn. It was found that of all the shapes, it was the kitchen with L shape arrangement in which, on an average a homemaker spent minimum time on meal preparation and also travelled the minimum distance. Thus, the average distance travelled in a L shaped layout was 131.1 mts as compared to 181.2 mts in an U shaped layout. Similarly, 48 minutes was the average time spent on meal preparation in L shaped layout as compared to 53 minutes in U shaped layout. Thus, the L shaped layout was more time and energy saving layout as compared to U shaped.Keywords: kitchen layout, meal preparation, path process chart technique, workplace
Procedia PDF Downloads 2071193 An Application of Integrated Multi-Objective Particles Swarm Optimization and Genetic Algorithm Metaheuristic through Fuzzy Logic for Optimization of Vehicle Routing Problems in Sugar Industry
Authors: Mukhtiar Singh, Sumeet Nagar
Abstract:
Vehicle routing problem (VRP) is a combinatorial optimization and nonlinear programming problem aiming to optimize decisions regarding given set of routes for a fleet of vehicles in order to provide cost-effective and efficient delivery of both services and goods to the intended customers. This paper proposes the application of integrated particle swarm optimization (PSO) and genetic optimization algorithm (GA) to address the Vehicle routing problem in sugarcane industry in India. Suger industry is very prominent agro-based industry in India due to its impacts on rural livelihood and estimated to be employing around 5 lakhs workers directly in sugar mills. Due to various inadequacies, inefficiencies and inappropriateness associated with the current vehicle routing model it costs huge money loss to the industry which needs to be addressed in proper context. The proposed algorithm utilizes the crossover operation that originally appears in genetic algorithm (GA) to improve its flexibility and manipulation more readily and avoid being trapped in local optimum, and simultaneously for improving the convergence speed of the algorithm, level set theory is also added to it. We employ the hybrid approach to an example of VRP and compare its result with those generated by PSO, GA, and parallel PSO algorithms. The experimental comparison results indicate that the performance of hybrid algorithm is superior to others, and it will become an effective approach for solving discrete combinatory problems.Keywords: fuzzy logic, genetic algorithm, particle swarm optimization, vehicle routing problem
Procedia PDF Downloads 3941192 A Comparative Analysis Approach Based on Fuzzy AHP, TOPSIS and PROMETHEE for the Selection Problem of GSCM Solutions
Authors: Omar Boutkhoum, Mohamed Hanine, Abdessadek Bendarag
Abstract:
Sustainable economic growth is nowadays driving firms to extend toward the adoption of many green supply chain management (GSCM) solutions. However, the evaluation and selection of these solutions is a matter of concern that needs very serious decisions, involving complexity owing to the presence of various associated factors. To resolve this problem, a comparative analysis approach based on multi-criteria decision-making methods is proposed for adequate evaluation of sustainable supply chain management solutions. In the present paper, we propose an integrated decision-making model based on FAHP (Fuzzy Analytic Hierarchy Process), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) and PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) to contribute to a better understanding and development of new sustainable strategies for industrial organizations. Due to the varied importance of the selected criteria, FAHP is used to identify the evaluation criteria and assign the importance weights for each criterion, while TOPSIS and PROMETHEE methods employ these weighted criteria as inputs to evaluate and rank the alternatives. The main objective is to provide a comparative analysis based on TOPSIS and PROMETHEE processes to help make sound and reasoned decisions related to the selection problem of GSCM solution.Keywords: GSCM solutions, multi-criteria analysis, decision support system, TOPSIS, FAHP, PROMETHEE
Procedia PDF Downloads 1641191 Higher Education Quality Culture: Case Study: Georgia
Authors: Pikria Vardosanidze
Abstract:
This presentation entitled ”Higher Education Quality Culture – Case Study: Georgia”is concerned with an urgent and crucial issue. Located at the crossroads of Europe and Asia, Georgia is a transnational, post-soviet country. And it is conditioned the peculiarity of our education system. Higher education in Georgia has an extensive history and a challenging period of development consisting of several phases, especially noteworthy of which are 1918 and 1991, marking there storation of Georgia’s independence. Georgia joined the Bologna Process in 2005. Given its geopolitical location, Georgian culture has developed, and still pursues the path of development against the background of the Western and Eastern cultures. Furthermore, socio-politically and culturally, it represents part of Europe. It is of particular interest how post-Soviet states develop in terms of education. What is the path to the European integration for Georgia as a post-Soviet country? How developed is the higher education quality culture in Georgia? And, what should be done in the future? It is important to answer these questions. The research carried out in the field of education is characterized by a certain specificity as does the post-colonial research. The field of education contributes to the development of democratic society as well as to the European integration, the Eastern Partnership and so on. What is crucial for the educational system, apart from transparency and democratization, is the improvement of the quality of education which is one of the most powerful tools dictating the need for a doctoral research as such. As for the research method, the comparative method of research, and the qualitative research are applied.Keywords: internationalization, higher education, policies, Georgia
Procedia PDF Downloads 1001190 A Memristive Device with Intrinsic Rectification Behavior and Performace of Crossbar Arrays
Authors: Yansong Gao, Damith C.Ranasinghe, Siad F. Al-Sarawi, Omid Kavehei, Derek Abbott
Abstract:
Passive crossbar arrays is in principle the simplest functional electrical circuit, together with memristive device in cross-point, holding great promise in future high-density, non-volatile memories. However, the greatest problem of crossbar array is the sneak path current. In this paper, we investigate one type of memristive device with intrinsic rectification behavior to address the sneak path currents. Firstly, a SPICE behavior model written in Verilog-A language of the memristive device is presented to fit experimental data published in literature. Next, systematic performance simulations including read margin and power consumption of crossbar array, which uses the self-rectifying memristive device as storage element at cross-point, with respect to different crossbar sizes, interconnect resistance, ratio of HRS/LRS (High Resistance State/ Low Resistance State), rectification ratio and different read schemes are conducted. Subsequently, Trade-offs among reading margin, power consumption, and reading schemes are analyzed to provide guidelines for circuit design. Finally, performance comparison between the memristive device with/without intrinsic rectification behavior is given to show the worthiness of this intrinsic rectification behavior.Keywords: memristive device, memristor, crossbar, RRAM, read margin, power consumption
Procedia PDF Downloads 4361189 Evaluation of Urban-Rural Integration of Characteristic Towns in Yunnan Province
Authors: Huang Yong, Chen Qianting, Zhao Shurong
Abstract:
In order to identify the role and effect of Characteristic Towns as an important means to promote urban-rural integration, this paper uses Flow Theory and complex network analysis methods to jointly construct the identification path of urban-rural integration capabilities of Characteristic Towns. Take the National Characteristic Towns of Yunnan Province as the empirical objects to identify their role laws. The study found that in the implementation of the National Characteristic Town Project in Yunnan Province, (1) the population is more susceptible to the impact of the Characteristic Town Project than the technical elements, but the stability is poor; (2) The flow capacity of urban and rural technical elements is weak, and the quality of the enterprise cooperation network in general; (3) Compared with the batch of Characteristic Towns in 2016, its ability to promote urban-rural integration is higher in 2017; (4) The role of the Characteristic Town Project on urban-rural integration focuses on the improvement of the number of urban and rural flow elements. This paper analyzes the mode of the role of Characteristic Towns on urban-rural integration from the perspective of ‘flow,’ establishes a research paradigm for evaluating the role of Characteristic Towns in urban-rural integration capabilities, and builds a path for the application of Characteristic Towns to support the realization of urban-rural integration goals.Keywords: characteristic town, urban-rural integration, flow theory, complex network analysis
Procedia PDF Downloads 1421188 Assessment of Green Infrastructure for Sustainable Urban Water Management
Authors: Suraj Sharma
Abstract:
Green infrastructure (GI) offers a contemporary approach for reducing the risk of flooding, improve water quality, and harvesting stormwater for sustainable use. GI promotes landscape planning to enhance sustainable development and urban resilience. However, the existing literature is lacking in ensuring the comprehensive assessment of GI performance in terms of ecosystem function and services for social, ecological, and economical system resilience. We propose a robust indicator set and fuzzy comprehensive evaluation (FCE) for quantitative and qualitative analysis for sustainable water management to assess the capacity of urban resilience. Green infrastructure in urban resilience water management system (GIUR-WMS) supports decision-making for GI planning through scenario comparisons with urban resilience capacity index. To demonstrate the GIUR-WMS, we develop five scenarios for five sectors of Chandigarh (12, 26, 14, 17, and 34) to test common type of GI (rain barrel, rain gardens, detention basins, porous pavements, and open spaces). The result shows the open spaces achieve the highest green infrastructure urban resilience index of 4.22/5. To implement the open space scenario in urban sites, suitable vacant can be converted to green spaces (example: forest, low impact recreation areas, and detention basins) GIUR-WMS is easy to replicate, customize and apply to cities of different sizes to assess environmental, social and ecological dimensions.Keywords: green infrastructure, assessment, urban resilience, water management system, fuzzy comprehensive evaluation
Procedia PDF Downloads 1441187 Multilocal Youth and the Berlin Digital Industry: Productive Leisure as a Key Factor in European Migration
Authors: Stefano Pelaggi
Abstract:
The research is focused on youth labor and mobility in Berlin. Mobility has become a common denominator in our daily lives but it does not primarily move according to monetary incentives. Labor, knowledge and leisure overlap on this point as cities are trying to attract people who could participate in production of the innovations while the new migrants are experiencing the lifestyle of the host cities. The research will present the project of empirical study focused on Italian workers in the digital industry in Berlin, trying to underline the connection between pleasure, leisure with the choice of life abroad. Berlin has become the epicenter of the European Internet start-up scene, but people suitable to work for digital industries are not moving in Berlin to make a career, most of them are attracted to the city for different reasons. This point makes a clear exception to traditional migration flows, which are always originated from a specific search of employment opportunities or strong ties, usually families, in a place that could guarantee success in finding a job. Even the skilled migration has always been originated from a specific need, finding the right path for a successful professional life. In a society where the lack of free time in our calendar seems to be something to be ashamed, the actors of youth mobility incorporate some categories of experiential tourism within their own life path. Professional aspirations, lifestyle choices of the protagonists of youth mobility are geared towards meeting the desires and aspirations that define leisure. While most of creative work places, in particular digital industries, uses the category of fun as a primary element of corporate policy, virtually extending the time to work for the whole day; more and more people around the world are deciding their path in life, career choices on the basis of indicators linked to the realization of the self, which may include factors like a warm climate, cultural environment. All indicators that are usually eradicated from the hegemonic approach to labor. The interpretative framework commonly used seems to be mostly focused on a dualism between Florida's theories and those who highlight the absence of conflict in his studies. While the flexibility of the new creative industries is minimizing leisure, incorporating elements of leisure itself in work activities, more people choose their own path of life by placing great importance to basic needs, through a gaze on pleasure that is only partially driven by consumption. The multi localism is the co-existence of different identities and cultures that do not conflict because they reject the bind on territory. Local loses its strength of opposition to global, with an attenuation of the whole concept of citizenship, territory and even integration. A similar perspective could be useful to search a new approach to all the studies dedicated to the gentrification process, while studying the new migrations flow.Keywords: brain drain, digital industry, leisure and gentrification, multi localism
Procedia PDF Downloads 2451186 Learning-Oriented School Education: Indicator Construction and Taiwan's Implementation Performance
Authors: Meiju Chen, Chaoyu Guo, Chia Wei Tang
Abstract:
The present study's purpose is twofold: first, to construct indicators for learning-oriented school education and, second, to conduct a survey to examine how learning-oriented education has been implemented in junior high schools after the launch of the 12-year compulsory curriculum. For indicator system construction, we compiled relevant literature to develop a preliminary indicator list model and then conducted two rounds of a questionnaire survey to gain comprehensive feedback from experts to finalize our indicator model. In the survey's first round, 12 experts were invited to evaluate the indicators' appropriateness. Based on the experts' consensus, we determined our final indicator list and used it to develop the Fuzzy Delphi questionnaire to finalize the indicator system and each indicator's relative value. For the fact-finding survey, we collected 454 valid samples to examine how the concept of learning-oriented education is adopted and implemented in the junior high school context. We also used this data in our importance-performance analysis to explore the strengths and weaknesses of school education in Taiwan. The results suggest that the indicator system for learning-oriented school education must consist of seven dimensions and 34 indicators. Among the seven dimensions, 'student learning' and 'curriculum planning and implementation' are the most important yet underperforming dimensions that need immediate improvement. We anticipate that the indicator system will be a useful tool for other countries' evaluation of schools' performance in learning-oriented education.Keywords: learning-oriented education, school education, fuzzy Delphi method, importance-performance analysis
Procedia PDF Downloads 1431185 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment
Authors: Arindam Chaudhuri
Abstract:
Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.Keywords: FRSVM, Hadoop, MapReduce, PFRSVM
Procedia PDF Downloads 4911184 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG
Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan
Abstract:
Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.Keywords: EEG, functional connectivity, graph theory, TFCMI
Procedia PDF Downloads 4321183 Semantic Indexing Improvement for Textual Documents: Contribution of Classification by Fuzzy Association Rules
Authors: Mohsen Maraoui
Abstract:
In the aim of natural language processing applications improvement, such as information retrieval, machine translation, lexical disambiguation, we focus on statistical approach to semantic indexing for multilingual text documents based on conceptual network formalism. We propose to use this formalism as an indexing language to represent the descriptive concepts and their weighting. These concepts represent the content of the document. Our contribution is based on two steps. In the first step, we propose the extraction of index terms using the multilingual lexical resource Euro WordNet (EWN). In the second step, we pass from the representation of index terms to the representation of index concepts through conceptual network formalism. This network is generated using the EWN resource and pass by a classification step based on association rules model (in attempt to discover the non-taxonomic relations or contextual relations between the concepts of a document). These relations are latent relations buried in the text and carried by the semantic context of the co-occurrence of concepts in the document. Our proposed indexing approach can be applied to text documents in various languages because it is based on a linguistic method adapted to the language through a multilingual thesaurus. Next, we apply the same statistical process regardless of the language in order to extract the significant concepts and their associated weights. We prove that the proposed indexing approach provides encouraging results.Keywords: concept extraction, conceptual network formalism, fuzzy association rules, multilingual thesaurus, semantic indexing
Procedia PDF Downloads 1411182 Efficient Fuzzy Classified Cryptographic Model for Intelligent Encryption Technique towards E-Banking XML Transactions
Authors: Maher Aburrous, Adel Khelifi, Manar Abu Talib
Abstract:
Transactions performed by financial institutions on daily basis require XML encryption on large scale. Encrypting large volume of message fully will result both performance and resource issues. In this paper a novel approach is presented for securing financial XML transactions using classification data mining (DM) algorithms. Our strategy defines the complete process of classifying XML transactions by using set of classification algorithms, classified XML documents processed at later stage using element-wise encryption. Classification algorithms were used to identify the XML transaction rules and factors in order to classify the message content fetching important elements within. We have implemented four classification algorithms to fetch the importance level value within each XML document. Classified content is processed using element-wise encryption for selected parts with "High", "Medium" or “Low” importance level values. Element-wise encryption is performed using AES symmetric encryption algorithm and proposed modified algorithm for AES to overcome the problem of computational overhead, in which substitute byte, shift row will remain as in the original AES while mix column operation is replaced by 128 permutation operation followed by add round key operation. An implementation has been conducted using data set fetched from e-banking service to present system functionality and efficiency. Results from our implementation showed a clear improvement in processing time encrypting XML documents.Keywords: XML transaction, encryption, Advanced Encryption Standard (AES), XML classification, e-banking security, fuzzy classification, cryptography, intelligent encryption
Procedia PDF Downloads 4121181 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J
Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa
Abstract:
A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.Keywords: critical path, transportation network, connectivity reliability, network model, Neo4j application, edge betweenness centrality index
Procedia PDF Downloads 1351180 When Sex Matters: A Comparative Generalized Structural Equation Model (GSEM) for the Determinants of Stunting Amongst Under-fives in Uganda
Authors: Vallence Ngabo M., Leonard Atuhaire, Peter Clever Rutayisire
Abstract:
The main aim of this study was to establish the differences in both the determinants of stunting and the causal mechanism through which the identified determinants influence stunting amongst male and female under-fives in Uganda. Literature shows that male children below the age of five years are at a higher risk of being stunted than their female counterparts. Specifically, studies in Uganda indicate that being a male child is positively associated with stunting, while being a female is negatively associated with stunting. Data for 904 males and 829 females under-fives was extracted form UDHS-2016 survey dataset. Key variables for this study were identified and used in generating relevant models and paths. Structural equation modeling techniques were used in their generalized form (GSEM). The generalized nature necessitated specifying both the family and link functions for each response variable in the system of the model. The sex of the child (b4) was used as a grouping factor and the height for age (HAZ) scores were used to construct the status for stunting of under-fives. The estimated models and path clearly indicated that the set of underlying factors that influence male and female under-fives respectively was different and the path through which they influence stunting was different. However, some of the determinants that influenced stunting amongst male under-fives also influenced stunting amongst the female under-fives. To reduce the stunting problem to the desirable state, it is important to consider the multifaceted and complex nature of the risk factors that influence stunting amongst the under-fives but, more importantly, consider the different sex-specific factors and their causal mechanism or paths through which they influence stunting.Keywords: stunting, underfives, sex of the child, GSEM, causal mechanism
Procedia PDF Downloads 1421179 Improving Radiation Efficiency Using Metamaterial in Pyramidal Horn Antenna
Authors: Amit Kumar Baghel, Sisir Kumar Nayak
Abstract:
The proposed metamaterial design help to increase the radiation efficiency at 2.9 GHz by reducing the side and back lobes by making the phase difference of the waves emerging from the phase center of the horn antenna same after passing through metamaterial array. The unit cell of the metamaterial is having concentric ring structure made of copper of 0.035 mm thickness on both sides of FR4 sheet. The inner ring diameter is kept as 3 mm, and the outer ring diameters are changed according to the path and tramission phase difference of the unit cell from the phase center of the antenna in both the horizontal and vertical direction, i.e., in x- and y-axis. In this case, the ring radius varies from 3.19 mm to 6.99 mm with the respective S21 phase difference of -62.25° to -124.64°. The total phase difference can be calculated by adding the path difference of the respective unit cell in the array to the phase difference of S21. Taking one of the unit cell as the reference, the total phase difference between the reference unit cell and other cells must be integer multiple of 360°. The variation of transmission coefficient S21 with the ring radius is greater than -6 dB. The array having 5 x 5 unit cell is kept inside the pyramidal horn antenna (L X B X H = 295.451 x 384.233 x 298.66 mm3) at a distance of 36.68 mm from the waveguide throat. There is an improvement in side lobe level in E-plane by 14.6 dB when the array is used. The front to back lobe ration is increased by 1 dB by using the array. The proposed antenna with metamaterial array can be used in beam shaping for wireless power transfer applications.Keywords: metamaterial, side lobe level, front to back ratio, beam forming
Procedia PDF Downloads 2761178 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis
Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed
Abstract:
This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.Keywords: gas turbine, optimization, ANFIS, performance, operating conditions
Procedia PDF Downloads 4261177 Prediction of Slaughter Body Weight in Rabbits: Multivariate Approach through Path Coefficient and Principal Component Analysis
Authors: K. A. Bindu, T. V. Raja, P. M. Rojan, A. Siby
Abstract:
The multivariate path coefficient approach was employed to study the effects of various production and reproduction traits on the slaughter body weight of rabbits. Information on 562 rabbits maintained at the university rabbit farm attached to the Centre for Advanced Studies in Animal Genetics, and Breeding, Kerala Veterinary and Animal Sciences University, Kerala State, India was utilized. The manifest variables used in the study were age and weight of dam, birth weight, litter size at birth and weaning, weight at first, second and third months. The linear multiple regression analysis was performed by keeping the slaughter weight as the dependent variable and the remaining as independent variables. The model explained 48.60 percentage of the total variation present in the market weight of the rabbits. Even though the model used was significant, the standardized beta coefficients for the independent variables viz., age and weight of the dam, birth weight and litter sizes at birth and weaning were less than one indicating their negligible influence on the slaughter weight. However, the standardized beta coefficient of the second-month body weight was maximum followed by the first-month weight indicating their major role on the market weight. All the other factors influence indirectly only through these two variables. Hence it was concluded that the slaughter body weight can be predicted using the first and second-month body weights. The principal components were also developed so as to achieve more accuracy in the prediction of market weight of rabbits.Keywords: component analysis, multivariate, slaughter, regression
Procedia PDF Downloads 1661176 Crafting Robust Business Model Innovation Path with Generative Artificial Intelligence in Start-up SMEs
Authors: Ignitia Motjolopane
Abstract:
Small and medium enterprises (SMEs) play an important role in economies by contributing to economic growth and employment. In the fourth industrial revolution, the convergence of technologies and the changing nature of work created pressures on economies globally. Generative artificial intelligence (AI) may support SMEs in exploring, exploiting, and transforming business models to align with their growth aspirations. SMEs' growth aspirations fall into four categories: subsistence, income, growth, and speculative. Subsistence-oriented firms focus on meeting basic financial obligations and show less motivation for business model innovation. SMEs focused on income, growth, and speculation are more likely to pursue business model innovation to support growth strategies. SMEs' strategic goals link to distinct business model innovation paths depending on whether SMEs are starting a new business, pursuing growth, or seeking profitability. Integrating generative artificial intelligence in start-up SME business model innovation enhances value creation, user-oriented innovation, and SMEs' ability to adapt to dynamic changes in the business environment. The existing literature may lack comprehensive frameworks and guidelines for effectively integrating generative AI in start-up reiterative business model innovation paths. This paper examines start-up business model innovation path with generative artificial intelligence. A theoretical approach is used to examine start-up-focused SME reiterative business model innovation path with generative AI. Articulating how generative AI may be used to support SMEs to systematically and cyclically build the business model covering most or all business model components and analyse and test the BM's viability throughout the process. As such, the paper explores generative AI usage in market exploration. Moreover, market exploration poses unique challenges for start-ups compared to established companies due to a lack of extensive customer data, sales history, and market knowledge. Furthermore, the paper examines the use of generative AI in developing and testing viable value propositions and business models. In addition, the paper looks into identifying and selecting partners with generative AI support. Selecting the right partners is crucial for start-ups and may significantly impact success. The paper will examine generative AI usage in choosing the right information technology, funding process, revenue model determination, and stress testing business models. Stress testing business models validate strong and weak points by applying scenarios and evaluating the robustness of individual business model components and the interrelation between components. Thus, the stress testing business model may address these uncertainties, as misalignment between an organisation and its environment has been recognised as the leading cause of company failure. Generative AI may be used to generate business model stress-testing scenarios. The paper is expected to make a theoretical and practical contribution to theory and approaches in crafting a robust business model innovation path with generative artificial intelligence in start-up SMEs.Keywords: business models, innovation, generative AI, small medium enterprises
Procedia PDF Downloads 721175 The Effect of the Cultural Constraint on the Reform of Corporate Governance: The Observation of Taiwan's Efforts to Transform Its Corporate Governance
Authors: Yuanyi (Richard) Fang
Abstract:
Under the theory of La Porta, Lopez-de-Silanes, Shleifer, and Vishny, if a country can increase its legal protections for minority shareholders, the country can develop an ideal securities market that only arises under the dispersed ownership corporate governance. However, the path-dependence scholarship, such as Lucian Arye Bebchuk and Mark J. Roe, presented a different view with LLS&V. They pointed out that the initial framework of the ownership structure and traditional culture will prevent the change of the corporate governance structure through legal reform. This paper contends that traditional culture factors as an important aspect when forming the corporate governance structure. However, it is not impossible for the government to change its traditional corporate governance structure and traditional culture because the culture does not remain intact. Culture evolves with time. The occurrence of the important events will affect the people’s psychological process. The psychological process affects the evolution of culture. The new cultural norms can help defeat the force of the traditional culture and the resistance from the initial corporate ownership structure. Using Taiwan as an example, through analyzing the historical background, related corporate rules and the reactions of adoption new rules from the media, this paper try to show that Taiwan’s culture norms do not remain intact and have changed with time. It further provides that the culture is not always the hurdle for the adoption of the dispersed ownership corporate governance structure as the culture can change. A new culture can provide strong support for the adoption of the new corporate governance structure.Keywords: LLS&V theory, corporate governance, culture, path–dependent theory
Procedia PDF Downloads 4761174 A Failure Criterion for Unsupported Boreholes in Poorly Cemented Granular Formations
Authors: Sam S. Hashemi
Abstract:
The breakage of bonding between sand particles and their dislodgment from the borehole wall are among the main factors resulting in a borehole failure in poorly cemented granular formations. The grain debonding usually precedes the borehole failure and it can be considered as a sign that the onset of the borehole collapse is imminent. Detecting the bonding breakage point and introducing an appropriate failure criterion will play an important role in borehole stability analysis. To study the influence of different factors on the initiation of sand bonding breakage at the borehole wall, a series of laboratory tests was designed and conducted on poorly cemented sand samples. The total absorbed strain energy per volume of material up to the point of the observed particle debonding was computed. The results indicated that the particle bonding breakage point at the borehole wall was reached both before and after the peak strength of the thick-walled hollow cylinder specimens depending on the stress path and cement content. Three different cement contents and two borehole sizes were investigated to study the influence of the bonding strength and scale on the particle dislodgment. Test results showed that the stress path has a significant influence on the onset of the sand bonding breakage. It was shown that for various stress paths, there is a near linear relationship between the absorbed energy and the normal effective mean stress.Keywords: borehole stability, experimental studies, poorly cemented sands, total absorbed strain energy
Procedia PDF Downloads 2091173 Evidence Theory Based Emergency Multi-Attribute Group Decision-Making: Application in Facility Location Problem
Authors: Bidzina Matsaberidze
Abstract:
It is known that, in emergency situations, multi-attribute group decision-making (MAGDM) models are characterized by insufficient objective data and a lack of time to respond to the task. Evidence theory is an effective tool for describing such incomplete information in decision-making models when the expert and his knowledge are involved in the estimations of the MAGDM parameters. We consider an emergency decision-making model, where expert assessments on humanitarian aid from distribution centers (HADC) are represented in q-rung ortho-pair fuzzy numbers, and the data structure is described within the data body theory. Based on focal probability construction and experts’ evaluations, an objective function-distribution centers’ selection ranking index is constructed. Our approach for solving the constructed bicriteria partitioning problem consists of two phases. In the first phase, based on the covering’s matrix, we generate a matrix, the columns of which allow us to find all possible partitionings of the HADCs with the service centers. Some constraints are also taken into consideration while generating the matrix. In the second phase, based on the matrix and using our exact algorithm, we find the partitionings -allocations of the HADCs to the centers- which correspond to the Pareto-optimal solutions. For an illustration of the obtained results, a numerical example is given for the facility location-selection problem.Keywords: emergency MAGDM, q-rung orthopair fuzzy sets, evidence theory, HADC, facility location problem, multi-objective combinatorial optimization problem, Pareto-optimal solutions
Procedia PDF Downloads 941172 Harmonic Assessment and Mitigation in Medical Diagonesis Equipment
Authors: S. S. Adamu, H. S. Muhammad, D. S. Shuaibu
Abstract:
Poor power quality in electrical power systems can lead to medical equipment at healthcare centres to malfunction and present wrong medical diagnosis. Equipment such as X-rays, computerized axial tomography, etc. can pollute the system due to their high level of harmonics production, which may cause a number of undesirable effects like heating, equipment damages and electromagnetic interferences. The conventional approach of mitigation uses passive inductor/capacitor (LC) filters, which has some drawbacks such as, large sizes, resonance problems and fixed compensation behaviours. The current trends of solutions generally employ active power filters using suitable control algorithms. This work focuses on assessing the level of Total Harmonic Distortion (THD) on medical facilities and various ways of mitigation, using radiology unit of an existing hospital as a case study. The measurement of the harmonics is conducted with a power quality analyzer at the point of common coupling (PCC). The levels of measured THD are found to be higher than the IEEE 519-1992 standard limits. The system is then modelled as a harmonic current source using MATLAB/SIMULINK. To mitigate the unwanted harmonic currents a shunt active filter is developed using synchronous detection algorithm to extract the fundamental component of the source currents. Fuzzy logic controller is then developed to control the filter. The THD without the active power filter are validated using the measured values. The THD with the developed filter show that the harmonics are now within the recommended limits.Keywords: power quality, total harmonics distortion, shunt active filters, fuzzy logic
Procedia PDF Downloads 4791171 A Tool for Facilitating an Institutional Risk Profile Definition
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the easy creation of an institutional risk profile for endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support risk factors set up with just the most important values that are important for a particular organisation. Subsequently, the risk profile employs fuzzy models and associated configurations for the file format metadata aggregator to support digital preservation experts with a semi-automatic estimation of endangerment level for file formats. Our goal is to make use of a domain expert knowledge base aggregated from a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation and analysis of risk factors for a requried dimension. The proposed methods improve the visibility of risk factor information and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and automatically aggregated file format metadata from linked open data sources. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.Keywords: digital information management, file format, endangerment analysis, fuzzy models
Procedia PDF Downloads 4061170 Research on the United Navigation Mechanism of Land, Sea and Air Targets under Multi-Sources Information Fusion
Authors: Rui Liu, Klaus Greve
Abstract:
The navigation information is a kind of dynamic geographic information, and the navigation information system is a kind of special geographic information system. At present, there are many researches on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing is not deeply applied into the research of navigation information service. And the imperfection of navigation target coordination and navigation information sharing mechanism under certain navigation tasks has greatly affected the reliability and scientificity of navigation service such as path planning. Considering this, the project intends to study the multi-source information fusion and multi-objective united navigation information interaction mechanism: first of all, investigate the actual needs of navigation users in different areas, and establish the preliminary navigation information classification and importance level model; and then analyze the characteristics of the remote sensing and GIS vector data, and design the fusion algorithm from the aspect of improving the positioning accuracy and extracting the navigation environment data. At last, the project intends to analyze the feature of navigation information of the land, sea and air navigation targets, and design the united navigation data standard and navigation information sharing model under certain navigation tasks, and establish a test navigation system for united navigation simulation experiment. The aim of this study is to explore the theory of united navigation service and optimize the navigation information service model, which will lay the theory and technology foundation for the united navigation of land, sea and air targets.Keywords: information fusion, united navigation, dynamic path planning, navigation information visualization
Procedia PDF Downloads 2881169 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach
Authors: Alvaro Figueira, Bruno Cabral
Abstract:
Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.Keywords: data mining, e-learning, grade prediction, machine learning, student learning path
Procedia PDF Downloads 1231168 Simulation of a Three-Link, Six-Muscle Musculoskeletal Arm Activated by Hill Muscle Model
Authors: Nafiseh Ebrahimi, Amir Jafari
Abstract:
The study of humanoid character is of great interest to researchers in the field of robotics and biomechanics. One might want to know the forces and torques required to move a limb from an initial position to the desired destination position. Inverse dynamics is a helpful method to compute the force and torques for an articulated body limb. It enables us to know the joint torques required to rotate a link between two positions. Our goal in this study was to control a human-like articulated manipulator for a specific task of path tracking. For this purpose, the human arm was modeled with a three-link planar manipulator activated by Hill muscle model. Applying a proportional controller, values of force and torques applied to the joints were calculated by inverse dynamics, and then joints and muscle forces trajectories were computed and presented. To be more accurate to say, the kinematics of the muscle-joint space was formulated by which we defined the relationship between the muscle lengths and the geometry of the links and joints. Secondary, the kinematic of the links was introduced to calculate the position of the end-effector in terms of geometry. Then, we considered the modeling of Hill muscle dynamics, and after calculation of joint torques, finally, we applied them to the dynamics of the three-link manipulator obtained from the inverse dynamics to calculate the joint states, find and control the location of manipulator’s end-effector. The results show that the human arm model was successfully controlled to take the designated path of an ellipse precisely.Keywords: arm manipulator, hill muscle model, six-muscle model, three-link lodel
Procedia PDF Downloads 142