Search results for: indoor navigation
86 Predictability of Thermal Response in Housing: A Case Study in Australia, Adelaide
Authors: Mina Rouhollahi, J. Boland
Abstract:
Changes in cities’ heat balance due to rapid urbanization and the urban heat island (UHI) have increased energy demands for space cooling and have resulted in uncomfortable living conditions for urban residents. Climate resilience and comfortable living spaces can be addressed through well-designed urban development. The sustainable housing can be more effective in controlling high levels of urban heat. In Australia, to mitigate the effects of UHIs and summer heat waves, one solution to sustainable housing has been the trend to compact housing design and the construction of energy efficient dwellings. This paper analyses whether current housing configurations and orientations are effective in avoiding increased demands for air conditioning and having an energy efficient residential neighborhood. A significant amount of energy is consumed to ensure thermal comfort in houses. This paper reports on the modelling of heat transfer within the homes using the measurements of radiation, convection and conduction between exterior/interior wall surfaces and outdoor/indoor environment respectively. The simulation was tested on selected 7.5-star energy efficient houses constructed of typical material elements and insulation in Adelaide, Australia. The chosen design dwellings were analyzed in extremely hot weather through one year. The data were obtained via a thermal circuit to accurately model the fundamental heat transfer mechanisms on both boundaries of the house and through the multi-layered wall configurations. The formulation of the Lumped capacitance model was considered in discrete time steps by adopting a non-linear model method. The simulation results focused on the effects of orientation of the solar radiation on the dynamic thermal characteristics of the houses orientations. A high star rating did not necessarily coincide with a decrease in peak demands for cooling. A more effective approach to avoid increasing the demands for air conditioning and energy may be to integrate solar–climatic data to evaluate the performance of energy efficient houses.Keywords: energy-efficient residential building, heat transfer, neighborhood orientation, solar–climatic data
Procedia PDF Downloads 13385 The Mental Health of Indigenous People During the COVID-19 Pandemic: A Scoping Review
Authors: Suzanne L. Stewart, Sarah J. Ponton, Mikaela D. Gabriel, Roy Strebel, Xinyi Lu
Abstract:
Indigenous Peoples have faced unique barriers to accessing and receiving culturally safe and appropriate mental health care while also facing daunting rates of mental health diagnoses and comorbidities. Indigenous researchers and clinicians have well established the connection of the current mental health issues in Indigenous communities as a direct result of colonization by way of intergenerational trauma throughout Canada’s colonial history. Such mental health barriers and challenges have become exacerbated during the COVID-19 pandemic. Throughout the pandemic, access to mental health, cultural, ceremonial, and community services were severely impacted and restricted; however, it is these same cultural activities and community resources that are key to supporting Indigenous mental health from a traditional and community-based perspective. This research employed a unique combination of a thorough, analytical scoping review of the existent mental health literature of Indigenous mental health in the COVID-19 pandemic, alongside narrative interviews employing an oral storytelling tradition methodology with key community informants that provide comprehensive cultural services to the Indigenous community of Toronto, as well as across Canada. These key informant interviews provided a wealth of insights into virtual transitions of Indigenous care and mental health support; intersections of historical underfunding and current financial navigation in technology infrastructure; accessibility and connection with Indigenous youth in remote locations; as well as maintaining community involvement and traditional practices in a current pandemic. Both the scoping review and narrative interviews were meticulously analyzed for overarching narrative themes to best explore the extent of the literature on Indigenous mental health and services during COVID-19; identify gaps in this literature; identify barriers and supports for the Indigenous community, and explore the intersection of community and cultural impacts to mental health. Themes of the scoping review included: Historical Context; Challenges in Culturally-Based Services; and Strengths in Culturally-Based Services. Meta themes across narrative interviews included: Virtual Transitions; Financial Support for Indigenous Services; Health Service Delivery & Wellbeing; and Culture & Community Connection. The results of this scoping review and narrative interviews provide wide application and contribution to the mental health literature, as well as recommendations for policy, service provision, autonomy in Indigenous health and wellbeing, and crucial insights into the present and enduring mental health needs of Indigenous Peoples throughout the COVID-19 pandemic.Keywords: indigenous community services, indigenous mental health, indigenous scoping review, indigenous peoples and Covid-19
Procedia PDF Downloads 24184 Impact of Colors, Space Design and Artifacts on Cognitive Health in Government Hospitals of Uttarakhand
Authors: Ila Gupta
Abstract:
The government hospitals in India by and large lack the necessary aesthetic therapeutic components, both in their interior and exterior space designs. These components especially in terms of color application are important to the emotional as well as physical well being of the patients and other participants of the space. The preliminary survey of few government hospitals in Uttarakhand, India, reveals that the government health care industry provides a wide scope for intervention. All most all of the spaces do not adhere to a proper therapeutic color scheme which directly helps the well-being of their patients and workers. The paper aims to conduct a survey and come up with recommendations in this regard. The government hospitals also lack a proper signage system which allows the space to be more user-friendly. The hospital spaces in totality also have scope for improvement in terms of space/landscape design which enhances the work environment in an efficient and positive way. This study will thus enable to come up with feasible recommendations for healthcare and built environment as well as retrofitting the existing spaces. The objective of the paper is mainly on few case studies. The present ambience in many government hospitals generally lacks a welcoming ambience. It is proposed to select one or two government hospitals and demonstrate application of appropriate and self-sustainable color schemes, placement of artifacts, changes in outdoor and indoor space design to bring about a change that is conducive for cognitive healing. Exterior changes to existing and old hospital buildings in depressed historic areas signify financial investment and change, and have the potential to play a significant role in both urban preservation and revitalization. Changes to exterior architectural colors are perhaps the most visible signifier of such revitalization, as the use of color changes as a tool in façade and interior improvement programs. The present project will provide its recommendations on the basis of case studies done in the Indian Public Health Care system. Furthermore, the recommendations will be in accordance with the extended study conducted in Indian Ayurvedic, Yogic texts as well as Vastu texts, which provides knowledge about built environments and healing properties of color.Keywords: color, environment, facade, architectural color history, interior improvement programs, community development, district/government hospitals
Procedia PDF Downloads 16783 The Accuracy of an 8-Minute Running Field Test to Estimate Lactate Threshold
Authors: Timothy Quinn, Ronald Croce, Aliaksandr Leuchanka, Justin Walker
Abstract:
Many endurance athletes train at or just below an intensity associated with their lactate threshold (LT) and often the heart rate (HR) that these athletes use for their LT are above their true LT-HR measured in a laboratory. Training above their true LT-HR may lead to overtraining and injury. Few athletes have the capability of measuring their LT in a laboratory and rely on perception to guide them, as accurate field tests to determine LT are limited. Therefore, the purpose of this study was to determine if an 8-minute field test could accurately define the HR associated with LT as measured in the laboratory. On Day 1, fifteen male runners (mean±SD; age, 27.8±4.1 years; height, 177.9±7.1 cm; body mass, 72.3±6.2 kg; body fat, 8.3±3.1%) performed a discontinuous treadmill LT/maximal oxygen consumption (LT/VO2max) test using a portable metabolic gas analyzer (Cosmed K4b2) and a lactate analyzer (Analox GL5). The LT (and associated HR) was determined using the 1/+1 method, where blood lactate increased by 1 mMol•L-1 over baseline followed by an additional 1 mMol•L-1 increase. Days 2 and 3 were randomized, and the athletes performed either an 8-minute run on the treadmill (TM) or on a 160-m indoor track (TR) in an effort to cover as much distance as possible while maintaining a high intensity throughout the entire 8 minutes. VO2, HR, ventilation (VE), and respiratory exchange ratio (RER) were measured using the Cosmed system, and rating of perceived exertion (RPE; 6-20 scale) was recorded every minute. All variables were averaged over the 8 minutes. The total distance covered over the 8 minutes was measured in both conditions. At the completion of the 8-minute runs, blood lactate was measured. Paired sample t-tests and pairwise Pearson correlations were computed to determine the relationship between variables measured in the field tests versus those obtained in the laboratory at LT. An alpha level of <0.05 was required for statistical significance. The HR (mean +SD) during the TM (167+9 bpm) and TR (172+9 bpm) tests were strongly correlated to the HR measured during the laboratory LT (169+11 bpm) test (r=0.68; p<0.03 and r=0.88; p<0.001, respectively). Blood lactate values during the TM and TR tests were not different from each other but were strongly correlated with the laboratory LT (r=0.73; p<0.04 and r=0.66; p<0.05, respectively). VE (Lmin-1) was significantly greater during the TR (134.8+11.4 Lmin-1) as compared to the TM (123.3+16.2 Lmin-1) with moderately strong correlations to the laboratory threshold values (r=0.38; p=0.27 and r=0.58; p=0.06, respectively). VO2 was higher during TR (51.4 mlkg-1min-1) compared to TM (47.4 mlkg-1min-1) with correlations of 0.33 (p=0.35) and 0.48 (p=0.13), respectively to threshold values. Total distance run was significantly greater during the TR (2331.6+180.9 m) as compared to the TM (2177.0+232.6 m), but they were strongly correlated with each other (r=0.82; p<0.002). These results suggest that an 8-minute running field test can accurately predict the HR associated with the LT and may be a simple test that athletes and coaches could implement to aid in training techniques.Keywords: blood lactate, heart rate, running, training
Procedia PDF Downloads 25282 Efficiency of Maritime Simulator Training in Oil Spill Response Competence Development
Authors: Antti Lanki, Justiina Halonen, Juuso Punnonen, Emmi Rantavuo
Abstract:
Marine oil spill response operation requires extensive vessel maneuvering and navigation skills. At-sea oil containment and recovery include both single vessel and multi-vessel operations. Towing long oil containment booms that are several hundreds of meters in length, is a challenge in itself. Boom deployment and towing in multi-vessel configurations is an added challenge that requires precise coordination and control of the vessels. Efficient communication, as a prerequisite for shared situational awareness, is needed in order to execute the response task effectively. To gain and maintain adequate maritime skills, practical training is needed. Field exercises are the most effective way of learning, but especially the related vessel operations are resource-intensive and costly. Field exercises may also be affected by environmental limitations such as high sea-state or other adverse weather conditions. In Finland, the seasonal ice-coverage also limits the training period to summer seasons only. In addition, environmental sensitiveness of the sea area restricts the use of real oil or other target substances. This paper examines, whether maritime simulator training can offer a complementary method to overcome the training challenges related to field exercises. The objective is to assess the efficiency and the learning impact of simulator training, and the specific skills that can be trained most effectively in simulators. This paper provides an overview of learning results from two oil spill response pilot courses, in which maritime navigational bridge simulators were used to train the oil spill response authorities. The simulators were equipped with an oil spill functionality module. The courses were targeted at coastal Fire and Rescue Services responsible for near shore oil spill response in Finland. The competence levels of the participants were surveyed before and after the course in order to measure potential shifts in competencies due to the simulator training. In addition to the quantitative analysis, the efficiency of the simulator training is evaluated qualitatively through feedback from the participants. The results indicate that simulator training is a valid and effective method for developing marine oil spill response competencies that complement traditional field exercises. Simulator training provides a safe environment for assessing various oil containment and recovery tactics. One of the main benefits of the simulator training was found to be the immediate feedback the spill modelling software provides on the oil spill behaviour as a reaction to response measures.Keywords: maritime training, oil spill response, simulation, vessel manoeuvring
Procedia PDF Downloads 17281 Semi-Autonomous Surgical Robot for Pedicle Screw Insertion on ex vivo Bovine Bone: Improved Workflow and Real-Time Process Monitoring
Authors: Robnier Reyes, Andrew J. P. Marques, Joel Ramjist, Chris R. Pasarikovski, Victor X. D. Yang
Abstract:
Over the past three decades, surgical robotic systems have demonstrated their ability to improve surgical outcomes. The LBR Med is a collaborative robotic arm that is meant to work with a surgeon to streamline surgical workflow. It has 7 degrees of freedom and thus can be easily oriented. Position and torque sensors at each joint allow it to maintain a position accuracy of 150 µm with real-time force and torque feedback, making it ideal for complex surgical procedures. Spinal fusion procedures involve the placement of as many as 20 pedicle screws, requiring a great deal of accuracy due to proximity to the spinal canal and surrounding vessels. Any deviation from intended path can lead to major surgical complications. Assistive surgical robotic systems are meant to serve as collaborative devices easing the workload of the surgeon, thereby improving pedicle screw placement by mitigating fatigue related inaccuracies. Moreover, robotic spinal systems have shown marked improvements over conventional freehanded techniques in both screw placement accuracy and fusion quality and have greatly reduced the need for screw revision, intraoperatively and post-operatively. However, current assistive spinal fusion robots, such as the ROSA Spine, are limited in functionality to positioning surgical instruments. While they offer a small degree of improvement in pedicle screw placement accuracy, they do not alleviate surgeon fatigue, nor do they provide real-time force and torque feedback during screw insertion. We propose a semi-autonomous surgical robot workflow for spinal fusion where the surgeon guides the robot to its initial position and orientation, and the robot drives the pedicle screw accurately into the vertebra. Here, we demonstrate feasibility by inserting pedicle screws into ex-vivo bovine rib bone. The robot monitors position, force and torque with respect to predefined values selected by the surgeon to ensure the highest possible spinal fusion quality. The workflow alleviates the strain on the surgeon by having the robot perform the screw placement while the ability to monitor the process in real-time keeps the surgeon in the system loop. The approach we have taken in terms of level autonomy for the robot reflects its ability to safely collaborate with the surgeon in the operating room without external navigation systems.Keywords: ex vivo bovine bone, pedicle screw, surgical robot, surgical workflow
Procedia PDF Downloads 16880 Inhibitory Action of Fatty Acid Salts against Cladosporium cladosporioides and Dermatophagoides farinae
Authors: Yui Okuno, Mariko Era, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita
Abstract:
Introduction: Fungus and mite are known as allergens that cause an allergic disease for example asthma bronchiale and allergic rhinitis. Cladosporium cladosporioides is one of the most often detected fungi in the indoor environment and causes pollution and deterioration. Dermatophagoides farinae is major mite allergens indoors. Therefore, the creation of antifungal agents with high safety and the antifungal effect is required. Fatty acid salts are known that have antibacterial activities. This report describes the effects of fatty acid salts against Cladosporium cladosporioides NBRC 30314 and Dermatophagoides farinae. Methods: Potassium salts of 9 fatty acids (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C18:1, C18:2, C18:3) were prepared by mixing the fatty acid with the appropriate amount of KOH solution to a concentration of 175 mM and pH 10.5. The antifungal method, the spore suspension (3.0×104 spores/mL) was mixed with a sample of fatty acid potassium (final concentration of 175 mM). Samples were counted at 0, 10, 60, 180 min by plating (100 µL) on PDA. Fungal colonies were counted after incubation for 3 days at 30 °C. The MIC (minimum inhibitory concentration) against the fungi was determined by the two-fold dilution method. Each fatty acid salts were inoculated separately with 400 µL of C. cladosporioides at 3.0 × 104 spores/mL. The mixtures were incubated at the respective temperature for each organism for 10 min. The tubes were then contacted with the fungi incubated at 30 °C for 7 days and examined for growth of spores on PDA. The acaricidal method, twenty D. farinae adult females were used and each adult was covered completely with 2 µL fatty acid potassium for 1 min. The adults were then dried with filter paper. The filter paper was folded and fixed by two clips and kept at 25 °C and 64 % RH. Mortalities were determained 48 h after treatment under the microscope. D. farina was considered to be dead if appendages did not move when prodded with a pin. Results and Conclusions: The results show that C8K, C10K, C12K, C14K was effective to decrease survival rate (4 log unit) of the fatty acids potassium incubated time for 10 min against C. cladosporioides. C18:3K was effective to decrease 4 log unit of the fatty acids potassium incubated time for 60 min. Especially, C12K was the highest antifungal activity and the MIC of C12K was 0.7 mM. On the other hand, the fatty acids potassium showed no acaricidal effects against D. farinae. The activity of D. farinae was not adversely affected after 48 hours. These results indicate that C12K has high antifungal activity against C. cladosporioides and suggest the fatty acid potassium will be used as an antifungal agent.Keywords: fatty acid salts, antifungal effects, acaricidal effects, Cladosporium cladosporioides, Dermatophagoides farinae
Procedia PDF Downloads 27379 Dual-use UAVs in Armed Conflicts: Opportunities and Risks for Cyber and Electronic Warfare
Authors: Piret Pernik
Abstract:
Based on strategic, operational, and technical analysis of the ongoing armed conflict in Ukraine, this paper will examine the opportunities and risks of using small commercial drones (dual-use unmanned aerial vehicles, UAV) for military purposes. The paper discusses the opportunities and risks in the information domain, encompassing both cyber and electromagnetic interference and attacks. The paper will draw conclusions on a possible strategic impact to the battlefield outcomes in the modern armed conflicts by the widespread use of dual-use UAVs. This article will contribute to filling the gap in the literature by examining based on empirical data cyberattacks and electromagnetic interference. Today, more than one hundred states and non-state actors possess UAVs ranging from low cost commodity models, widely are dual-use, available and affordable to anyone, to high-cost combat UAVs (UCAV) with lethal kinetic strike capabilities, which can be enhanced with Artificial Intelligence (AI) and Machine Learning (ML). Dual-use UAVs have been used by various actors for intelligence, reconnaissance, surveillance, situational awareness, geolocation, and kinetic targeting. Thus they function as force multipliers enabling kinetic and electronic warfare attacks and provide comparative and asymmetric operational and tactical advances. Some go as far as argue that automated (or semi-automated) systems can change the character of warfare, while others observe that the use of small drones has not changed the balance of power or battlefield outcomes. UAVs give considerable opportunities for commanders, for example, because they can be operated without GPS navigation, makes them less vulnerable and dependent on satellite communications. They can and have been used to conduct cyberattacks, electromagnetic interference, and kinetic attacks. However, they are highly vulnerable to those attacks themselves. So far, strategic studies, literature, and expert commentary have overlooked cybersecurity and electronic interference dimension of the use of dual use UAVs. The studies that link technical analysis of opportunities and risks with strategic battlefield outcomes is missing. It is expected that dual use commercial UAV proliferation in armed and hybrid conflicts will continue and accelerate in the future. Therefore, it is important to understand specific opportunities and risks related to the crowdsourced use of dual-use UAVs, which can have kinetic effects. Technical countermeasures to protect UAVs differ depending on a type of UAV (small, midsize, large, stealth combat), and this paper will offer a unique analysis of small UAVs both from the view of opportunities and risks for commanders and other actors in armed conflict.Keywords: dual-use technology, cyber attacks, electromagnetic warfare, case studies of cyberattacks in armed conflicts
Procedia PDF Downloads 10278 Research and Design of Functional Mixed Community: A Model Based on the Construction of New Districts in China
Authors: Wu Chao
Abstract:
The urban design of the new district in China is different from other existing cities at the city planning level, including Beijing, Shanghai, Guangzhou, etc. And the urban problems of these super-cities are same as many big cities around the world. The goal of the new district construction plan is to enable people to live comfortably, to improve the well-being of residents, and to create a way of life different from that of other urban communities. To avoid the emergence of the super community, the idea of "decentralization" is taken as the overall planning idea, and the function and form of each community are set up with a homogeneous allocation of resources so that the community can grow naturally. Similar to the growth of vines in nature, each community groups are independent and connected through roads, with clear community boundaries that limit their unlimited expansion. With a community contained 20,000 people as a case, the community is a mixture for living, production, office, entertainment, and other functions. Based on the development of the Internet, to create more space for public use, and can use data to allocate resources in real time. And this kind of shared space is the main part of the activity space in the community. At the same time, the transformation of spatial function can be determined by the usage feedback of all kinds of existing space, and the use of space can be changed by the changing data. Take the residential unit as the basic building function mass, take the lower three to four floors of the building as the main flexible space for use, distribute functions such as entertainment, service, office, etc. For the upper living space, set up a small amount of indoor and outdoor activity space, also used as shared space. The transformable space of the bottom layer is evenly distributed, combined with the walking space connected the community, the service and entertainment network can be formed in the whole community, and can be used in most of the community space. With the basic residential unit as the replicable module, the design of the other residential units runs through the idea of decentralization and the concept of the vine community, and the various units are reasonably combined. At the same time, a small number of office buildings are added to meet the special office needs. The new functional mixed community can change many problems of the present city in the future construction, at the same time, it can keep its vitality through the adjustment function of the Internet.Keywords: decentralization, mixed functional community, shared space, spatial usage data
Procedia PDF Downloads 12377 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement
Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes
Abstract:
Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology
Procedia PDF Downloads 7976 Storms Dynamics in the Black Sea in the Context of the Climate Changes
Authors: Eugen Rusu
Abstract:
The objective of the work proposed is to perform an analysis of the wave conditions in the Black Sea basin. This is especially focused on the spatial and temporal occurrences and on the dynamics of the most extreme storms in the context of the climate changes. A numerical modelling system, based on the spectral phase averaged wave model SWAN, has been implemented and validated against both in situ measurements and remotely sensed data, all along the sea. Moreover, a successive correction method for the assimilation of the satellite data has been associated with the wave modelling system. This is based on the optimal interpolation of the satellite data. Previous studies show that the process of data assimilation improves considerably the reliability of the results provided by the modelling system. This especially concerns the most sensitive cases from the point of view of the accuracy of the wave predictions, as the extreme storm situations are. Following this numerical approach, it has to be highlighted that the results provided by the wave modelling system above described are in general in line with those provided by some similar wave prediction systems implemented in enclosed or semi-enclosed sea basins. Simulations of this wave modelling system with data assimilation have been performed for the 30-year period 1987-2016. Considering this database, the next step was to analyze the intensity and the dynamics of the higher storms encountered in this period. According to the data resulted from the model simulations, the western side of the sea is considerably more energetic than the rest of the basin. In this western region, regular strong storms provide usually significant wave heights greater than 8m. This may lead to maximum wave heights even greater than 15m. Such regular strong storms may occur several times in one year, usually in the wintertime, or in late autumn, and it can be noticed that their frequency becomes higher in the last decade. As regards the case of the most extreme storms, significant wave heights greater than 10m and maximum wave heights close to 20m (and even greater) may occur. Such extreme storms, which in the past were noticed only once in four or five years, are more recent to be faced almost every year in the Black Sea, and this seems to be a consequence of the climate changes. The analysis performed included also the dynamics of the monthly and annual significant wave height maxima as well as the identification of the most probable spatial and temporal occurrences of the extreme storm events. Finally, it can be concluded that the present work provides valuable information related to the characteristics of the storm conditions and on their dynamics in the Black Sea. This environment is currently subjected to high navigation traffic and intense offshore and nearshore activities and the strong storms that systematically occur may produce accidents with very serious consequences.Keywords: Black Sea, extreme storms, SWAN simulations, waves
Procedia PDF Downloads 24875 Occupational Safety and Health in the Wake of Drones
Authors: Hoda Rahmani, Gary Weckman
Abstract:
The body of research examining the integration of drones into various industries is expanding rapidly. Despite progress made in addressing the cybersecurity concerns for commercial drones, knowledge deficits remain in determining potential occupational hazards and risks of drone use to employees’ well-being and health in the workplace. This creates difficulty in identifying key approaches to risk mitigation strategies and thus reflects the need for raising awareness among employers, safety professionals, and policymakers about workplace drone-related accidents. The purpose of this study is to investigate the prevalence of and possible risk factors for drone-related mishaps by comparing the application of drones in construction with manufacturing industries. The chief reason for considering these specific sectors is to ascertain whether there exists any significant difference between indoor and outdoor flights since most construction sites use drones outside and vice versa. Therefore, the current research seeks to examine the causes and patterns of workplace drone-related mishaps and suggest possible ergonomic interventions through data collection. Potential ergonomic practices to mitigate hazards associated with flying drones could include providing operators with professional pieces of training, conducting a risk analysis, and promoting the use of personal protective equipment. For the purpose of data analysis, two data mining techniques, the random forest and association rule mining algorithms, will be performed to find meaningful associations and trends in data as well as influential features that have an impact on the occurrence of drone-related accidents in construction and manufacturing sectors. In addition, Spearman’s correlation and chi-square tests will be used to measure the possible correlation between different variables. Indeed, by recognizing risks and hazards, occupational safety stakeholders will be able to pursue data-driven and evidence-based policy change with the aim of reducing drone mishaps, increasing productivity, creating a safer work environment, and extending human performance in safe and fulfilling ways. This research study was supported by the National Institute for Occupational Safety and Health through the Pilot Research Project Training Program of the University of Cincinnati Education and Research Center Grant #T42OH008432.Keywords: commercial drones, ergonomic interventions, occupational safety, pattern recognition
Procedia PDF Downloads 20974 Using Repetition of Instructions in Course Design to Improve Instructor Efficiency and Increase Enrollment in a Large Online Course
Authors: David M. Gilstrap
Abstract:
Designing effective instructions is a critical dimension of effective teaching systems. Due to a void in interpersonal contact, online courses present new challenges in this regard, especially with large class sizes. This presentation is a case study in how the repetition of instructions within the course design was utilized to increase instructor efficiency in managing a rapid rise in enrollment. World of Turf is a two-credit, semester-long elective course for non-turfgrass majors at Michigan State University. It is taught entirely online and solely by the instructor without any graduate teaching assistants. Discussion forums about subject matter are designated for each lecture, and those forums are moderated by a few undergraduate turfgrass majors. The instructions as to the course structure, navigation, and grading are conveyed in the syllabus and course-introduction lecture. Regardless, students email questions about such matters, and the number of emails increased as course enrollment grew steadily during the first three years of its existence, almost to a point that the course was becoming unmanageable. Many of these emails occurred because the instructor was failing to update and operate the course in a timely and proper fashion because he was too busy answering emails. Some of the emails did help the instructor ferret out poorly composed instructions, which he corrected. Beginning in the summer semester of 2015, the instructor overhauled the course by segregating content into weekly modules. The philosophy envisioned and embraced was that there can never be too much repetition of instructions in an online course. Instructions were duplicated within each of these modules as well as associated modules for syllabus and schedules, getting started, frequently asked questions, practice tests, surveys, and exams. In addition, informational forums were created and set aside for questions about the course workings and each of the three exams, thus creating even more repetition. Within these informational forums, students typically answer each other’s questions, which demonstrated to the students that that information is available in the course. When needed, the instructor interjects with corrects answers or clarifies any misinformation which students might be putting forth. Increasing the amount of repetition of instructions and strategic enhancements to the course design have resulted in a dramatic decrease in the number of email replies necessitated by the instructor. The resulting improvement in efficiency allowed the instructor to raise enrollment limits thus effecting a ten-fold increase in enrollment over a five-year period with 1050 students registered during the most recent academic year, thus becoming easily the largest online course at the university. Because of the improvement in course-delivery efficiency, sufficient time was created that allowed the instructor to development and launch an additional online course, hence further enhancing his productivity and value in terms of the number of the student-credit hours for which he is responsible.Keywords: design, efficiency, instructions, online, repetition
Procedia PDF Downloads 20973 MB-Slam: A Slam Framework for Construction Monitoring
Authors: Mojtaba Noghabaei, Khashayar Asadi, Kevin Han
Abstract:
Simultaneous Localization and Mapping (SLAM) technology has recently attracted the attention of construction companies for real-time performance monitoring. To effectively use SLAM for construction performance monitoring, SLAM results should be registered to a Building Information Models (BIM). Registring SLAM and BIM can provide essential insights for construction managers to identify construction deficiencies in real-time and ultimately reduce rework. Also, registering SLAM to BIM in real-time can boost the accuracy of SLAM since SLAM can use features from both images and 3d models. However, registering SLAM with the BIM in real-time is a challenge. In this study, a novel SLAM platform named Model-Based SLAM (MB-SLAM) is proposed, which not only provides automated registration of SLAM and BIM but also improves the localization accuracy of the SLAM system in real-time. This framework improves the accuracy of SLAM by aligning perspective features such as depth, vanishing points, and vanishing lines from the BIM to the SLAM system. This framework extracts depth features from a monocular camera’s image and improves the localization accuracy of the SLAM system through a real-time iterative process. Initially, SLAM can be used to calculate a rough camera pose for each keyframe. In the next step, each SLAM video sequence keyframe is registered to the BIM in real-time by aligning the keyframe’s perspective with the equivalent BIM view. The alignment method is based on perspective detection that estimates vanishing lines and points by detecting straight edges on images. This process will generate the associated BIM views from the keyframes' views. The calculated poses are later improved during a real-time gradient descent-based iteration method. Two case studies were presented to validate MB-SLAM. The validation process demonstrated promising results and accurately registered SLAM to BIM and significantly improved the SLAM’s localization accuracy. Besides, MB-SLAM achieved real-time performance in both indoor and outdoor environments. The proposed method can fully automate past studies and generate as-built models that are aligned with BIM. The main contribution of this study is a SLAM framework for both research and commercial usage, which aims to monitor construction progress and performance in a unified framework. Through this platform, users can improve the accuracy of the SLAM by providing a rough 3D model of the environment. MB-SLAM further boosts the application to practical usage of the SLAM.Keywords: perspective alignment, progress monitoring, slam, stereo matching.
Procedia PDF Downloads 22472 Walking Cadence to Attain a Minimum of Moderate Aerobic Intensity in People at Risk of Cardiovascular Diseases
Authors: Fagner O. Serrano, Danielle R. Bouchard, Todd A. Duhame
Abstract:
Walking cadence (steps/min) is an effective way to prescribe exercise so an individual can reach a moderate intensity, which is recommended to optimize health benefits. To our knowledge, there is no study on the required walking cadence to reach a moderate intensity for people that present chronic conditions or risk factors for chronic conditions such as Cardiovascular Diseases (CVD). The objectives of this study were: 1- to identify the walking cadence needed for people at risk of CVD to a reach moderate intensity, and 2- to develop and test an equation using clinical variables to help professionals working with individuals at risk of CVD to estimate the walking cadence needed to reach moderate intensity. Ninety-one people presenting a minimum of two risk factors for CVD completed a medically supervised graded exercise test to assess maximum oxygen consumption at the first visit. The last visit consisted of recording walking cadence using a foot pod Garmin FR-60 and a Polar heart rate monitor, aiming to get participants to reach 40% of their maximal oxygen consumption using a portable metabolic cart on an indoor flat surface. The equation to predict the walking cadence needed to reach moderate intensity in this sample was developed as follows: The sample was randomly split in half and the equation was developed with one half of the participants, and validated using the other half. Body mass index, height, stride length, leg height, body weight, fitness level (VO2max), and self-selected cadence (over 200 meters) were measured using objective measured. Mean walking cadence to reach moderate intensity for people age 64.3 ± 10.3 years old at risk of CVD was 115.8 10.3 steps per minute. Body mass index, height, body weight, fitness level, and self-selected cadence were associated with walking cadence at moderate intensity when evaluated in bivariate analyses (r ranging from 0.22 to 0.52; all P values ≤0.05). Using linear regression analysis including all clinical variables associated in the bivariate analyses, body weight was the significant predictor of walking cadence for reaching a moderate intensity (ß=0.24; P=.018) explaining 13% of walking cadence to reach moderate intensity. The regression model created was Y = 134.4-0.24 X body weight (kg).Our findings suggest that people presenting two or more risk factors for CVD are reaching moderate intensity while walking at a cadence above the one officially recommended (116 steps per minute vs. 100 steps per minute) for healthy adults.Keywords: cardiovascular disease, moderate intensity, older adults, walking cadence
Procedia PDF Downloads 44371 Seasonal Variability of M₂ Internal Tides Energetics in the Western Bay of Bengal
Authors: A. D. Rao, Sachiko Mohanty
Abstract:
The Internal Waves (IWs) are generated by the flow of barotropic tide over the rapidly varying and steep topographic features like continental shelf slope, subsurface ridges, and the seamounts, etc. The IWs of the tidal frequency are generally known as internal tides. These waves have a significant influence on the vertical density and hence causes mixing in the region. Such waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing and biogeochemical processes, etc. over the shelf-slope region. The seasonal variability of internal tides in the Bay of Bengal with special emphasis on its energetics is examined by using three-dimensional MITgcm model. The numerical simulations are performed for different periods covering August-September, 2013; November-December, 2013 and March-April, 2014 representing monsoon, post-monsoon and pre-monsoon seasons respectively during which high temporal resolution in-situ data sets are available. The model is initially validated through the spectral estimates of density and the baroclinic velocities. From the estimates, it is inferred that the internal tides associated with semi-diurnal frequency are more dominant in both observations and model simulations for November-December and March-April. However, in August, the estimate is found to be maximum near-inertial frequency at all the available depths. The observed vertical structure of the baroclinic velocities and its magnitude are found to be well captured by the model. EOF analysis is performed to decompose the zonal and meridional baroclinic tidal currents into different vertical modes. The analysis suggests that about 70-80% of the total variance comes from Mode-1 semi-diurnal internal tide in both observations as well as in the model simulations. The first three modes are sufficient to describe most of the variability for semidiurnal internal tides, as they represent 90-95% of the total variance for all the seasons. The phase speed, group speed, and wavelength are found to be maximum for post-monsoon season compared to other two seasons. The model simulation suggests that the internal tide is generated all along the shelf-slope regions and propagate away from the generation sites in all the months. The model simulated energy dissipation rate infers that its maximum occurs at the generation sites and hence the local mixing due to internal tide is maximum at these sites. The spatial distribution of available potential energy is found to be maximum in November (20kg/m²) in northern BoB and minimum in August (14kg/m²). The detailed energy budget calculation are made for all the seasons and results are analysed.Keywords: available potential energy, baroclinic energy flux, internal tides, Bay of Bengal
Procedia PDF Downloads 17070 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy
Authors: Jian Yu
Abstract:
Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process
Procedia PDF Downloads 18969 Multiple Insecticide Resistance in Culex quinquefasciatus Say, from Siliguri, West Bengal, India
Authors: Minu Bharati, Priyanka Rai, Satarupa Dutta, Dhiraj Saha
Abstract:
Culex quinquefasciatus Say, is a mosquito of immense public health concern due to its role in transmission of filariasis, which is an endemic disease in 20 states and union territories of India, putting about 600 million people at the risk of infection. The main strategies to control filaria in India include anti-larval measures in urban areas, Indoor Residual Spray (IRS) in rural areas and mass diethylcarbamazine citrate (DEC) administration. Larval destruction measures and IRS are done with the use of insecticides. In this study, Susceptibility/ Resistance to insecticides were assessed in Culex quinquefasciatus mosquitoes collected from eight densely populated areas of Siliguri subdivision, which has a high rate of filarial infection. To unveil the insecticide susceptibility status of Culex quinquefasciatus, bioassays were performed on field-caught mosquitoes against two major groups of insecticides, i.e. Synthetic Pyrethroids (SPs): 0.05% deltamethrin and 0.05% lambda-cyhalothrin and Organophosphates (OPs): 5% malathion and temephos using World Health Organisation (WHO) discriminating doses. The knockdown rates and knockdown times (KDT50) were also noted against deltamethrin, lambda-cyhalothrin and malathion. Also, activities of major detoxifying enzymes, i.e. α-carboxylesterases, β-carboxylesterases and cytochrome P450 (CYP450) monooxygenases were determined to find the involvement of biochemical mechanisms in resistance phenomenon (if any). The results obtained showed that, majority of the mosquito populations were moderately to severely resistant against both the SPs and one OP, i.e. temephos. Whereas, most of the populations showed 100% susceptibility to malathion. The knockdown rates and KDT50 in response to above-mentioned insecticides showed significant variation among different populations. Variability in activities of carboxylesterases and CYP450 monooxygenases were also observed with hints of their involvement in contribution towards insecticide resistance in some of the tested populations. It may be concluded that, Culex quinquefasciatus has started developing resistance against deltamethrin, lambda-cyhalothrin and temephos in Siliguri subdivision. Malathion seems to hold the greatest potentiality for control of these mosquitoes in this area as revealed through this study. Adoption of Integrated mosquito management (IMM) strategy should be the prime objective of the concerned authorities to delimit the insecticide resistance phenomenon and filariasis infections.Keywords: Culex quinquefasciatus, detoxifying enzymes, insecticide resistance, knockdown rate
Procedia PDF Downloads 25568 Numerical Modelling of the Influence of Meteorological Forcing on Water-Level in the Head Bay of Bengal
Authors: Linta Rose, Prasad K. Bhaskaran
Abstract:
Water-level information along the coast is very important for disaster management, navigation, planning shoreline management, coastal engineering and protection works, port and harbour activities, and for a better understanding of near-shore ocean dynamics. The water-level variation along a coast attributes from various factors like astronomical tides, meteorological and hydrological forcing. The study area is the Head Bay of Bengal which is highly vulnerable to flooding events caused by monsoons, cyclones and sea-level rise. The study aims to explore the extent to which wind and surface pressure can influence water-level elevation, in view of the low-lying topography of the coastal zones in the region. The ADCIRC hydrodynamic model has been customized for the Head Bay of Bengal, discretized using flexible finite elements and validated against tide gauge observations. Monthly mean climatological wind and mean sea level pressure fields of ERA Interim reanalysis data was used as input forcing to simulate water-level variation in the Head Bay of Bengal, in addition to tidal forcing. The output water-level was compared against that produced using tidal forcing alone, so as to quantify the contribution of meteorological forcing to water-level. The average contribution of meteorological fields to water-level in January is 5.5% at a deep-water location and 13.3% at a coastal location. During the month of July, when the monsoon winds are strongest in this region, this increases to 10.7% and 43.1% respectively at the deep-water and coastal locations. The model output was tested by varying the input conditions of the meteorological fields in an attempt to quantify the relative significance of wind speed and wind direction on water-level. Under uniform wind conditions, the results showed a higher contribution of meteorological fields for south-west winds than north-east winds, when the wind speed was higher. A comparison of the spectral characteristics of output water-level with that generated due to tidal forcing alone showed additional modes with seasonal and annual signatures. Moreover, non-linear monthly mode was found to be weaker than during tidal simulation, all of which point out that meteorological fields do not cause much effect on the water-level at periods less than a day and that it induces non-linear interactions between existing modes of oscillations. The study signifies the role of meteorological forcing under fair weather conditions and points out that a combination of multiple forcing fields including tides, wind, atmospheric pressure, waves, precipitation and river discharge is essential for efficient and effective forecast modelling, especially during extreme weather events.Keywords: ADCIRC, head Bay of Bengal, mean sea level pressure, meteorological forcing, water-level, wind
Procedia PDF Downloads 21967 Passing-On Cultural Heritage Knowledge: Entrepreneurial Approaches for a Higher Educational Sustainability
Authors: Ioana Simina Frincu
Abstract:
As institutional initiatives often fail to provide good practices when it comes to heritage management or to adapt to the changing environment in which they function and to the audiences they address, private actions represent viable strategies for sustainable knowledge acquisition. Information dissemination to future generations is one of the key aspects in preserving cultural heritage and is successfully feasible even in the absence of original artifacts. Combined with the (re)discovery of natural landscape, open-air exploratory approaches (archeoparks) versus an enclosed monodisciplinary rigid framework (traditional museums) are more likely to 'speak the language' of a larger number of people, belonging to a variety of categories, ages, and professions. Interactive sites are efficient ways of stimulating heritage awareness and increasing the number of visitors of non-interactive/static cultural institutions owning original pieces of history, delivering specialized information, and making continuous efforts to preserve historical evidence (relics, manuscripts, etc.). It is high time entrepreneurs took over the role of promoting cultural heritage, bet it under a more commercial yet more attractive form (business). Inclusive, participatory type of activities conceived by experts from different domains/fields (history, anthropology, tourism, sociology, business management, integrative sustainability, etc.) have better chances to ensure long term cultural benefits for both adults and children, especially when and where the educational discourse fails. These unique self-experience leisure activities, which offer everyone the opportunity to recreate history by him-/her-self, to relive the ancestors’ way of living, surviving and exploring should be regarded not as pseudo-scientific approaches but as important pre-steps to museum experiences. In order to support this theory, focus will be laid on two different examples: one dynamic, in the outdoors (the Boario Terme Archeopark from Italy) and one experimental, held indoor (the reconstruction of the Neolithic sanctuary of Parta, Romania as part of a transdisciplinary academic course) and their impact on young generations. The conclusion of this study shows that the increasingly lower engagement of youth (students) in discovering and understanding history, archaeology, and heritage can be revived by entrepreneurial projects.Keywords: archeopark, educational tourism, open air museum, Parta sanctuary, prehistory
Procedia PDF Downloads 13966 Reduce the Environmental Impacts of the Intensive Use of Glass in New Buildings in Khartoum, Sudan
Authors: Sawsan Domi
Abstract:
Khartoum is considering as one of the hottest cities all over the world, the mean monthly outdoor temperature remains above 30 ºC. Solar Radiation on Building Surfaces considered within the world highest values. Buildings in Khartoum is receiving huge amounts of watts/m2. Northern, eastern and western facades always receive a greater amount than the south ones. Therefore, these facades of the building must be better protected than the others. One of the most important design limits affecting indoor thermal comfort and energy conservation are building envelope design, self-efficiency in building materials and optical and thermo-physical properties of the building envelope. A small sun-facing glazing area is very important to provide thermal comfort in hot dry climates because of the intensive sunshine. This study aims to propose a work plan to help minimize the negative environmental effect of the climate on buildings taking the intensive use of glazing. In the last 15 years, there was a rapid growth in building sector in Khartoum followed by many of wrong strategies getting away of being environmental friendly. The intensive use of glazing on facades increased to commercial, industrial and design aspects, while the glass envelope led to quick increase in temperature by the reflection affects the sun on faces, cars and bodies. Logically, being transparent by using glass give a sense of open spaces, allowing natural lighting and sometimes natural ventilation keeping dust and insects away. In the other hand, it costs more and give more overheated. And this is unsuitable for a hot dry climate city like Khartoum. Many huge projects permitted every year from the Ministry of Planning in Khartoum state, with a design based on the intensive use of glazing on facades. There are no Laws or Regulations to control using materials in construction, the last building code -building code 2008- Khartoum state- only focused in using sustainable materials with no consider to any environmental aspects. Results of the study will help increase the awareness for architects, engineers and public about this environmentally problem. Objectives vary between Improve energy performance in buildings and Provide high levels of thermal comfort in the inner environment. As a future project, what are the changes that can happen in building permits codes and regulations. There could be recommendations for the governmental sector such as Obliging the responsible authorities to version environmental friendly laws in building construction fields and Support Renewable energy sector in buildings.Keywords: building envelope, building regulations, glazed facades, solar radiation
Procedia PDF Downloads 21965 Mapping Intertidal Changes Using Polarimetry and Interferometry Techniques
Authors: Khalid Omari, Rene Chenier, Enrique Blondel, Ryan Ahola
Abstract:
Northern Canadian coasts have vulnerable and very dynamic intertidal zones with very high tides occurring in several areas. The impact of climate change presents challenges not only for maintaining this biodiversity but also for navigation safety adaptation due to the high sediment mobility in these coastal areas. Thus, frequent mapping of shorelines and intertidal changes is of high importance. To help in quantifying the changes in these fragile ecosystems, remote sensing provides practical monitoring tools at local and regional scales. Traditional methods based on high-resolution optical sensors are often used to map intertidal areas by benefiting of the spectral response contrast of intertidal classes in visible, near and mid-infrared bands. Tidal areas are highly reflective in visible bands mainly because of the presence of fine sand deposits. However, getting a cloud-free optical data that coincide with low tides in intertidal zones in northern regions is very difficult. Alternatively, the all-weather capability and daylight-independence of the microwave remote sensing using synthetic aperture radar (SAR) can offer valuable geophysical parameters with a high frequency revisit over intertidal zones. Multi-polarization SAR parameters have been used successfully in mapping intertidal zones using incoherence target decomposition. Moreover, the crustal displacements caused by ocean tide loading may reach several centimeters that can be detected and quantified across differential interferometric synthetic aperture radar (DInSAR). Soil moisture change has a significant impact on both the coherence and the backscatter. For instance, increases in the backscatter intensity associated with low coherence is an indicator for abrupt surface changes. In this research, we present primary results obtained following our investigation of the potential of the fully polarimetric Radarsat-2 data for mapping an inter-tidal zone located on Tasiujaq on the south-west shore of Ungava Bay, Quebec. Using the repeat pass cycle of Radarsat-2, multiple seasonal fine quad (FQ14W) images are acquired over the site between 2016 and 2018. Only 8 images corresponding to low tide conditions are selected and used to build an interferometric stack of data. The observed displacements along the line of sight generated using HH and VV polarization are compared with the changes noticed using the Freeman Durden polarimetric decomposition and Touzi degree of polarization extrema. Results show the consistency of both approaches in their ability to monitor the changes in intertidal zones.Keywords: SAR, degree of polarization, DInSAR, Freeman-Durden, polarimetry, Radarsat-2
Procedia PDF Downloads 13764 Antimicrobial Properties of SEBS Compounds with Copper Microparticles
Authors: Vanda Ferreira Ribeiro, Daiane Tomacheski, Douglas Naue Simões, Michele Pitto, Ruth Marlene Campomanes Santana
Abstract:
Indoor environments, such as car cabins and public transportation vehicles are places where users are subject to air quality. Microorganisms (bacteria, fungi, yeasts) enter these environments through windows, ventilation systems and may use the organic particles present as a growth substrate. In addition, atmospheric pollutants can act as potential carbon and nitrogen sources for some microorganisms. Compounds base SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPEs), fully recyclable and largely used in automotive parts. Metals, such as cooper and silver, have biocidal activities and the production of the SEBS compounds by melting blending with these agents can be a good option for producing compounds for use in plastic parts of ventilation systems and automotive air-conditioning, in order to minimize the problems caused by growth of pathogenic microorganisms. In this sense, the aim of this work was to evaluate the effect of copper microparticles as antimicrobial agent in compositions based on SEBS/PP/oil/calcite. Copper microparticles were used in weight proportion of 0%, 1%, 2% and 4%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The processing parameters were 300 rpm of screw rotation rate, with a temperature profile between 150 to 190°C. SEBS based TPE compounds were injection molded. The compounds emission were characterized by gravimetric fogging test. Compounds were characterized by physical (density and staining by contact), mechanical (hardness and tension properties) and rheological properties (melt volume rate – MVR). Antibacterial properties were evaluated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. To avaluate the abilities toward the fungi have been chosen Aspergillus niger (A. niger), Candida albicans (C. albicans), Cladosporium cladosporioides (C. cladosporioides) and Penicillium chrysogenum (P. chrysogenum). The results of biological tests showed a reduction on bacteria in up to 88% in E.coli and up to 93% in S. aureus. The tests with fungi showed no conclusive results because the sample without copper also demonstrated inhibition of the development of these microorganisms. The copper addition did not cause significant variations in mechanical properties, in the MVR and the emission behavior of the compounds. The density increases with the increment of copper in compounds.Keywords: air conditioner, antimicrobial, cooper, SEBS
Procedia PDF Downloads 28263 The Residual Efficacy of Etofenprox WP on Different Surfaces for Malaria Control in the Brazilian Legal Amazon
Authors: Ana Paula S. A. Correa, Allan K. R. Galardo, Luana A. Lima, Talita F. Sobral, Josiane N. Muller, Jessica F. S. Barroso, Nercy V. R. Furtado, Ednaldo C. Rêgo., Jose B. P. Lima
Abstract:
Malaria is a public health problem in the Brazilian Legal Amazon. Among the integrated approaches for anopheline control, the Indoor Residual Spraying (IRS) remains one of the main tools in the basic strategy applied in the Amazonian States, where the National Malaria Control Program currently uses one of the insecticides from the pyrethroid class, the Etofenprox WP. Understanding the residual efficacy of insecticides on different surfaces is essential to determine the spray cycles, in order to maintain a rational use and to avoid product waste. The aim of this study was to evaluate the residual efficacy of Etofenprox - VECTRON ® 20 WP on surfaces of Unplastered Cement (UC) and Unpainted Wood (UW) on panels, in field, and in semi-field evaluation of Brazil’s Amapa State. The evaluation criteria used was the cone bioassay test, following the World Health Organization (WHO) recommended method, using plastic cones and female mosquitos of Anopheles sp. The tests were carried out in laboratory panels, semi-field evaluation in a “test house” built in the Macapa municipality, and in the field in 20 houses, being ten houses per surface type (UC and UW), in an endemic malaria area in Mazagão’s municipality. The residual efficacy was measured from March to September 2017, starting one day after the spraying, repeated monthly for a period of six months. The UW surface presented higher residual efficacy than the UC. In fact, the UW presented a residual efficacy of the insecticide throughout the period of this study with a mortality rate above 80% in the panels (= 95%), in the "test house" (= 86%) and in field houses ( = 87%). On the UC surface it was observed a mortality decreased in all the tests performed, with a mortality rate of 45, 47 and 29% on panels, semi-field and in field, respectively; however, the residual efficacy ≥ 80% only occurred in the first evaluation after the 24-hour spraying bioassay in the "test house". Thus, only the UW surface meets the specifications of the World Health Organization Pesticide Evaluation Scheme (WHOPES) regarding the duration of effective action (three to six months). To sum up, the insecticide residual efficacy presented variability on the different surfaces where it was sprayed. Although the IRS with Etofenprox WP was efficient on UW surfaces, and it can be used in spraying cycles at 4-month intervals, it is important to consider the diversity of houses in the Brazilian Legal Amazon, in order to implement alternatives for vector control, including the evaluation of new products or different formulations types for insecticides.Keywords: Anopheles, vector control, insecticide, bioassay
Procedia PDF Downloads 16562 Standardized Testing of Filter Systems regarding Their Separation Efficiency in Terms of Allergenic Particles and Airborne Germs
Authors: Johannes Mertl
Abstract:
Our surrounding air contains various particles. Besides typical representatives of inorganic dust, such as soot and ash, also particles originating from animals, microorganisms or plants are floating through the air, so-called bioaerosols. The group of bioaerosols consists of a broad spectrum of particles of different size, including fungi, bacteria, viruses, spores, or tree, flower and grass pollen that are of high relevance for allergy sufferers. In dependence of the environmental climate and the actual season, these allergenic particles can be found in enormous numbers in the air and are inhaled by humans via the respiration tract, with a potential for inflammatory diseases of the airways, such as asthma or allergic rhinitis. As a consequence air filter systems of ventilation and air conditioning devices are required to meet very high standards to prevent, or at least lower the number of allergens and airborne germs entering the indoor air. Still, filter systems are merely classified for their separation rates using well-defined mineral test dust, while no appropriate sufficiently standardized test methods for bioaerosols exist. However, determined separation rates for mineral test particles of a certain size cannot simply be transferred to bioaerosols, as separation efficiency of particularly fine and respirable particles (< 10 microns) is dependent not only on their shape and particle diameter, but also defined by their density and physicochemical properties. For this reason, the OFI developed a test method, which directly enables a testing of filters and filter media for their separation rates on bioaerosols, as well as a classification of filters. Besides allergens from an intact or fractured tree or grass pollen, allergenic proteins bound to particulates, as well as allergenic fungal spores (e.g. Cladosporium cladosporioides), or bacteria can be used to classify filters regarding their separation rates. Allergens passing through the filter can then be detected by highly sensitive immunological assays (ELISA) or in the case of fungal spores by microbiological methods, which allow for the detection of even one single spore passing the filter. The test procedure, which is carried out in laboratory scale, was furthermore validated regarding its sufficiency to cover real life situations by upscaling using air conditioning devices showing great conformity in terms of separation rates. Additionally, a clinical study with allergy sufferers was performed to verify analytical results. Several different air conditioning filters from the car industry have been tested, showing significant differences in their separation rates.Keywords: airborne germs, allergens, classification of filters, fine dust
Procedia PDF Downloads 25261 Monitoring and Evaluation of Web-Services Quality and Medium-Term Impact on E-Government Agencies' Efficiency
Authors: A. F. Huseynov, N. T. Mardanov, J. Y. Nakhchivanski
Abstract:
This practical research is aimed to improve the management quality and efficiency of public administration agencies providing e-services. The monitoring system developed will provide continuous review of the websites compliance with the selected indicators, their evaluation based on the selected indicators and ranking of services according to the quality criteria. The responsible departments in the government agencies were surveyed; the questionnaire includes issues of management and feedback, e-services provided, and the application of information systems. By analyzing the main affecting factors and barriers, the recommendations will be given that lead to the relevant decisions to strengthen the state agencies competencies for the management and the provision of their services. Component 1. E-services monitoring system. Three separate monitoring activities are proposed to be executed in parallel: Continuous tracing of e-government sites using built-in web-monitoring program; this program generates several quantitative values which are basically related to the technical characteristics and the performance of websites. The expert assessment of e-government sites in accordance with the two general criteria. Criterion 1. Technical quality of the site. Criterion 2. Usability/accessibility (load, see, use). Each high-level criterion is in turn subdivided into several sub-criteria, such as: the fonts and the color of the background (Is it readable?), W3C coding standards, availability of the Robots.txt and the site map, the search engine, the feedback/contact and the security mechanisms. The on-line survey of the users/citizens – a small group of questions embedded in the e-service websites. The questionnaires comprise of the information concerning navigation, users’ experience with the website (whether it was positive or negative), etc. Automated monitoring of web-sites by its own could not capture the whole evaluation process, and should therefore be seen as a complement to expert’s manual web evaluations. All of the separate results were integrated to provide the complete evaluation picture. Component 2. Assessment of the agencies/departments efficiency in providing e-government services. - the relevant indicators to evaluate the efficiency and the effectiveness of e-services were identified; - the survey was conducted in all the governmental organizations (ministries, committees and agencies) that provide electronic services for the citizens or the businesses; - the quantitative and qualitative measures are covering the following sections of activities: e-governance, e-services, the feedback from the users, the information systems at the agencies’ disposal. Main results: 1. The software program and the set of indicators for internet sites evaluation has been developed and the results of pilot monitoring have been presented. 2. The evaluation of the (internal) efficiency of the e-government agencies based on the survey results with the practical recommendations related to the human potential, the information systems used and e-services provided.Keywords: e-government, web-sites monitoring, survey, internal efficiency
Procedia PDF Downloads 30460 Dynamic Building Simulation Based Study to Understand Thermal Behavior of High-Rise Structural Timber Buildings
Authors: Timothy O. Adekunle, Sigridur Bjarnadottir
Abstract:
Several studies have investigated thermal behavior of buildings with limited studies focusing on high-rise buildings. Of the limited investigations that have considered thermal performance of high-rise buildings, only a few studies have considered thermal behavior of high-rise structural sustainable buildings. As a result, this study investigates the thermal behavior of a high-rise structural timber building. The study aims to understand the thermal environment of a high-rise structural timber block of apartments located in East London, UK by comparing the indoor environmental conditions at different floors (ground and upper floors) of the building. The environmental variables (temperature and relative humidity) were measured at 15-minute intervals for a few weeks in the summer of 2012 to generate data that was considered for calibration and validation of the simulated results. The study employed mainly dynamic thermal building simulation using DesignBuilder by EnergyPlus and supplemented with environmental monitoring as major techniques for data collection and analysis. The weather file (Test Reference Years- TRYs) for the 2000s from the weather generator carried out by the Prometheus Group was considered for the simulation since the study focuses on investigating thermal behavior of high-rise structural timber buildings in the summertime and not in extreme summertime. In this study, the simulated results (May-September of the 2000s) will be the focus of discussion, but the results will be briefly compared with the environmental monitoring results. The simulated results followed a similar trend with the findings obtained from the short period of the environmental monitoring at the building. The results revealed lower temperatures are often predicted (at least 1.1°C lower) at the ground floor than the predicted temperatures at the upper floors. The simulated results also showed that higher temperatures are predicted in spaces at southeast facing (at least 0.5°C higher) than spaces in other orientations across the floors considered. There is, however, a noticeable difference between the thermal environment of spaces when the results obtained from the environmental monitoring are compared with the simulated results. The field survey revealed higher temperatures were recorded in the living areas (at least 1.0°C higher) while higher temperatures are predicted in bedrooms (at least 0.9°C) than living areas for the simulation. In addition, the simulated results showed spaces on lower floors of high-rise structural timber buildings are predicted to provide more comfortable thermal environment than spaces on upper floors in summer, but this may not be the same in wintertime due to high upward movement of hot air to spaces on upper floors.Keywords: building simulation, high-rise, structural timber buildings, sustainable, temperatures, thermal behavior
Procedia PDF Downloads 17659 The Rise of Blue Water Navy and its Implication for the Region
Authors: Riddhi Chopra
Abstract:
Alfred Thayer Mahan described the sea as a ‘great common,’ which would serve as a medium for communication, trade, and transport. The seas of Asia are witnessing an intriguing historical anomaly – rise of an indigenous maritime power against the backdrop of US domination over the region. As China transforms from an inward leaning economy to an outward-leaning economy, it has become increasingly dependent on the global sea; as a result, we witness an evolution in its maritime strategy from near seas defense to far seas deployment strategies. It is not only patrolling the international waters but has also built a network of civilian and military infrastructure across the disputed oceanic expanse. The paper analyses the reorientation of China from a naval power to a blue water navy in an era of extensive globalisation. The actions of the Chinese have created a zone of high alert amongst its neighbors such as Japan, Philippines, Vietnam and North Korea. These nations are trying to align themselves so as to counter China’s growing brinkmanship, but China has been pursuing claims through a carefully calibrated strategy in the region shunning any coercive measures taken by other forces. If China continues to expand its maritime boundaries, its neighbors – all smaller and weaker Asian nations would be limited to a narrow band of the sea along its coastlines. Hence it is essential for the US to intervene and support its allies to offset Chinese supremacy. The paper intends to provide a profound analysis over the disputes in South China Sea and East China Sea focusing on Philippines and Japan respectively. Moreover, the paper attempts to give an account of US involvement in the region and its alignment with its South Asian allies. The geographic dynamics is said the breed a national coalition dominating the strategic ambitions of China as well as the weak littoral states. China has conducted behind the scenes diplomacy trying to persuade its neighbors to support its position on the territorial disputes. These efforts have been successful in creating fault lines in ASEAN thereby undermining regional integrity to reach a consensus on the issue. Chinese diplomatic efforts have also forced the US to revisit its foreign policy and engage with players like Cambodia and Laos. The current scenario in the SCS points to a strong Chinese hold trying to outspace all others with no regards to International law. Chinese activities are in contrast with US principles like Freedom of Navigation thereby signaling US to take bold actions to prevent Chinese hegemony in the region. The paper ultimately seeks to explore the changing power dynamics among various claimants where a rival superpower like US can pursue the traditional policy of alliance formation play a decisive role in changing the status quo in the arena, consequently determining the future trajectory.Keywords: China, East China Sea, South China Sea, USA
Procedia PDF Downloads 24158 An Experimental Study on Greywater Reuse for Irrigating a Green Wall System
Authors: Mishadi Herath, Amin Talei, Andreas Hermawan, Clarina Chua
Abstract:
Green walls are vegetated structures on building’s wall that are considered as part of sustainable urban design. They are proved to have many micro-climate benefits such as reduction in indoor temperature, noise attenuation, and improvement in air quality. On the other hand, several studies have also been conducted on potential reuse of greywater in urban water management. Greywater is relatively clean when compared to blackwater; therefore, this study was aimed to assess the potential reuse of it for irrigating a green wall system. In this study, the campus of Monash University Malaysia located in Selangor state was considered as the study site where total 48 samples of greywater were collected from 7 toilets hand-wash and 5 pantries during 3 months period. The samples were tested to characterize the quality of greywater in the study site and compare it with local standard for irrigation water. PH and concentration of heavy metals, nutrients, Total Suspended Solids (TSS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), total Coliform and E.coli were measured. Results showed that greywater could be directly used for irrigation with minimal treatment. Since the effluent of the system was supposed to be drained to stormwater drainage system, the effluent needed to meet certain quality requirement. Therefore, a biofiltration system was proposed to host the green wall plants and also treat the greywater (which is used as irrigation water) to the required level. To assess the performance of the proposed system, an experimental setup consisting of Polyvinyl Chloride (PVC) soil columns with sand-based filter media were prepared. Two different local creeper plants were chosen considering several factors including fast growth, low maintenance requirement, and aesthetic aspects. Three replicates of each plants were used to ensure the validity of the findings. The growth of creeping plants and their survivability was monitored for 6 months while monthly sampling and testing of effluent was conducted to evaluate effluent quality. An analysis was also conducted to estimate the potential cost and benefit of such system considering water and energy saving in the system. Results showed that the proposed system can work efficiently throughout a long period of time with minimal maintenance requirement. Moreover, the biofiltration-green wall system was found to be successful in reusing greywater as irrigating water while the effluent was meeting all the requirements for being drained to stormwater drainage system.Keywords: biofiltration, green wall, greywater, sustainability
Procedia PDF Downloads 21457 Exposure to Radon on Air in Tourist Caves in Bulgaria
Authors: Bistra Kunovska, Kremena Ivanova, Jana Djounova, Desislava Djunakova, Zdenka Stojanovska
Abstract:
The carcinogenic effects of radon as a radioactive noble gas have been studied and show a strong correlation between radon exposure and lung cancer occurrence, even in the case of low radon levels. The major part of the natural radiation dose in humans is received by inhaling radon and its progenies, which originates from the decay chain of U-238. Indoor radon poses a substantial threat to human health when build-up occurs in confined spaces such as homes, mines and caves and the risk increases with the duration of radon exposure and is proportional to both the radon concentration and the time of exposure. Tourist caves are a case of special environmental conditions that may be affected by high radon concentration. Tourist caves are a recognized danger in terms of radon exposure to cave workers (guides, employees working in shops built above the cave entrances, etc.), but due to the sensitive nature of the cave environment, high concentrations cannot be easily removed. Forced ventilation of the air in the caves is considered unthinkable due to the possible harmful effects on the microclimate, flora and fauna. The risks to human health posed by exposure to elevated radon levels in caves are not well documented. Various studies around the world often detail very high concentrations of radon in caves and exposure of employees but without a follow-up assessment of the overall impact on human health. This study was developed in the implementation of a national project to assess the potential health effects caused by exposure to elevated levels of radon in buildings with public access under the National Science Fund of Bulgaria, in the framework of grant No КП-06-Н23/1/07.12.2018. The purpose of the work is to assess the radon level in Bulgarian caves and the exposure of the visitors and workers. The number of caves (sampling size) was calculated for simple random selection from total available caves 65 (sampling population) are 13 caves with confidence level 95 % and confidence interval (margin of error) approximately 25 %. A measurement of the radon concentration in air at specific locations in caves was done by using CR-39 type nuclear track-etch detectors that were placed by the participants in the research team. Despite the fact that all of the caves were formed in karst rocks, the radon levels were rather different from each other (97–7575 Bq/m3). An assessment of the influence of the orientation of the caves in the earth's surface (horizontal, inclined, vertical) on the radon concentration was performed. Evaluation of health hazards and radon risk exposure causing by inhaling the radon and its daughter products in each surveyed caves was done. Reducing the time spent in the cave has been recommended in order to decrease the exposure of workers.Keywords: tourist caves, radon concentration, exposure, Bulgaria
Procedia PDF Downloads 187