Search results for: gas hydrate experiments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3312

Search results for: gas hydrate experiments

2592 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 161
2591 New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation

Authors: Norhashidah Hj Mohd Ali, Teng Wai Ping

Abstract:

In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two-dimensional Helmholtz equation. The formulation is based on the nine-point fourth-order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation.

Keywords: explicit group method, finite difference, Helmholtz equation, five-point formula, nine-point formula

Procedia PDF Downloads 500
2590 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling

Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas

Abstract:

Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.

Keywords: flood forecasting, machine learning, multilayer perceptron network, regression

Procedia PDF Downloads 172
2589 A Development of a Simulation Tool for Production Planning with Capacity-Booking at Specialty Store Retailer of Private Label Apparel Firms

Authors: Erika Yamaguchi, Sirawadee Arunyanrt, Shunichi Ohmori, Kazuho Yoshimoto

Abstract:

In this paper, we suggest a simulation tool to make a decision of monthly production planning for maximizing a profit of Specialty store retailer of Private label Apparel (SPA) firms. Most of SPA firms are fabless and make outsourcing deals for productions with factories of their subcontractors. Every month, SPA firms make a booking for production lines and manpower in the factories. The booking is conducted a few months in advance based on a demand prediction and a monthly production planning at that time. However, the demand prediction is updated month by month, and the monthly production planning would change to meet the latest demand prediction. Then, SPA firms have to change the capacities initially booked within a certain range to suit to the monthly production planning. The booking system is called “capacity-booking”. These days, though it is an issue for SPA firms to make precise monthly production planning, many firms are still conducting the production planning by empirical rules. In addition, it is also a challenge for SPA firms to match their products and factories with considering their demand predictabilities and regulation abilities. In this paper, we suggest a model for considering these two issues. An objective is to maximize a total profit of certain periods, which is sales minus costs of production, inventory, and capacity-booking penalty. To make a better monthly production planning at SPA firms, these points should be considered: demand predictabilities by random trends, previous and next month’s production planning of the target month, and regulation abilities of the capacity-booking. To decide matching products and factories for outsourcing, it is important to consider seasonality, volume, and predictability of each product, production possibility, size, and regulation ability of each factory. SPA firms have to consider these constructions and decide orders with several factories per one product. We modeled these issues as a linear programming. To validate the model, an example of several computational experiments with a SPA firm is presented. We suppose four typical product groups: basic, seasonal (Spring / Summer), seasonal (Fall / Winter), and spot product. As a result of the experiments, a monthly production planning was provided. In the planning, demand predictabilities from random trend are reduced by producing products which are different product types. Moreover, priorities to produce are given to high-margin products. In conclusion, we developed a simulation tool to make a decision of monthly production planning which is useful when the production planning is set every month. We considered the features of capacity-booking, and matching of products and factories which have different features and conditions.

Keywords: capacity-booking, SPA, monthly production planning, linear programming

Procedia PDF Downloads 519
2588 The Research of the Game Interface Improvement Due to the Game Operation Dilemma of Player in the Side-Scrolling Shooting Game

Authors: Shih-Chieh Liao, Cheng-Yan Shuai

Abstract:

The feature of a side-scrolling shooting game is facing the surrounding enemy and barraging in entire screen. The player will be in trouble when they are trying to do complicated operations because of the physical and system limitations of the joystick in the games. This study designed the prototype of a new type of arcade stick by focus group and assessed by the expert. By filtering the most representative, and build up the control system for the arcade stick, and testing time and bullets consumed in two experiments, try to prove it works in the game. Finally, the prototype of L-1 solves the dilemma of scroll shooting games when the player uses the arcade stick and improves the function of the arcade stick.

Keywords: arcade stick, joystick, user interface, 2D STG

Procedia PDF Downloads 80
2587 An Automatic Method for Building Learners’ Groups in Virtual Environment

Authors: O. Bourkoukou, Essaid El Bachari

Abstract:

The group composing is one of the key issue in collaborative learning to achieve a positive educational experience. The goal of this work is to propose for teachers and tutors a method to create effective collaborative learning groups in e-learning environment based on the learner profile. For this purpose, a new function was defined to rate implicitly learning objects used by the learner during his learning experience. This paper describes the proposed algorithm to build an adequate collaborative learning group. In order to verify the performance of the proposed algorithm, several experiments were conducted in real data set in virtual environment. Results show the effectiveness of the method for which it appears that the proposed approach may be promising to produce better outcomes.

Keywords: building groups, collaborative learning, e-learning, learning objects

Procedia PDF Downloads 297
2586 Experimental Study on the Molecular Spring Isolator

Authors: Muchun Yu, Xue Gao, Qian Chen

Abstract:

As a novel passive vibration isolation technology, molecular spring isolator (MSI) is investigated in this paper. An MSI consists of water and hydrophobic zeolites as working medium. Under periodic excitation, water molecules intrude into hydrophobic pores of zeolites when the pressure rises and water molecules extrude from hydrophobic pores when pressure drops. At the same time, energy is stored, released and dissipated. An MSI of piston-cylinder structure was designed in this work. Experiments were conducted to investigate the stiffness properties of MSI. The results show that MSI exhibits high-static-low dynamic (HSLD) stiffness. Furthermore, factors such as the quantity of zeolites, temperature, and ions in water are proved to have an influence on the stiffness properties of MSI.

Keywords: hydrophobic zeolites, molecular spring, stiffness, vibration isolation

Procedia PDF Downloads 476
2585 Coding of RMAC and Its Theoretical and Simulation-Based Performance Comparison with SMAC

Authors: Hamida Qumber Ali, Waseem Muhammad Arain, Shama Siddiqui, Sayeed Ghani

Abstract:

We present an implementing of RMAC in TinyOS 1.x. RMAC is a cross layer and Duty-cycle MAC protocols that was proposed to provide energy efficient transmission services for wireless sensor networks. The protocol has a unique and efficient packet transmission scheduling mechanism that enables it to overcome delivery latency and overcome traffic congestion. Design details and implementation challenges are divulged. Experiments are conducted to show the correctness of our implementation with numerous assumptions. Simulations are performed to compare the performance of RMAC and SMAC. Our results show that RMAC outperforms SMAC in energy efficiency and delay.

Keywords: MAC protocol, performance, RMAC, wireless sensor networks

Procedia PDF Downloads 325
2584 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy

Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi

Abstract:

Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.

Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing

Procedia PDF Downloads 153
2583 Pre- and Post-Analyses of Disruptive Quay Crane Scheduling Problem

Authors: K. -H. Yang

Abstract:

In the past, the quay crane operations have been well studied. There were a certain number of scheduling algorithms for quay crane operations, but without considering some nuisance factors that might disrupt the quay crane operations. For example, bad grapples make a crane unable to load or unload containers or a sudden strong breeze stops operations temporarily. Although these disruptive conditions randomly occur, they influence the efficiency of quay crane operations. The disruption is not considered in the operational procedures nor is evaluated in advance for its impacts. This study applies simulation and optimization approaches to develop structures of pre-analysis and post-analysis for the Quay Crane Scheduling Problem to deal with disruptive scenarios for quay crane operation. Numerical experiments are used for demonstrations for the validity of the developed approaches.

Keywords: disruptive quay crane scheduling, pre-analysis, post-analysis, disruption

Procedia PDF Downloads 222
2582 Study on Residual Stress Measurement of Inconel-718 under Different Lubricating Conditions

Authors: M. Sandeep Kumar, Vasu Velagapudi, A. Venugopal

Abstract:

When machining is carried out on a workpiece, residual stresses are induced in the workpiece due to nonuniform thermal and mechanical loads. These stresses play a vital role in the surface integrity of the final product or the output. Inconel 718 is commonly used in critical structural components of aircraft engines due to its properties at high temperatures. Therefore it is important to keep down the stresses induced due to machining. This can be achieved through proper lubricating conditions. In this work, experiments were carried out to check the influence of the developed nanofluid as cutting fluids on residual stresses developed during the course of machining. The results of MQL/Nanofluids were compared with MQL/Vegetable oil and dry machining lubricating condition. Results indicate the reduction in residual stress with the use of MQL/Nanofluid.

Keywords: nanofluids, MQL, residual stress, Inconel-718

Procedia PDF Downloads 260
2581 Synthesis and Characterization of Molecularly Imprinted Polymer as a New Adsorbent for the Removal of Pyridine from Organic Medium

Authors: Opeyemi Elujulo, Aderonke Okoya, Kehinde Awokoya

Abstract:

Molecularly imprinted polymers (MIP) for the adsorption of pyridine (PYD) was obtained from PYD (the template), styrene (the functional monomer), divinyl benzene (the crosslinker), benzoyl peroxide (the initiator), and water (the porogen). When the template was removed by solvent extraction, imprinted binding sites were left in the polymer material that are capable of selectively rebinding the target molecule. The material was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Batch adsorption experiments were performed to study the adsorption of the material in terms of adsorption kinetics, isotherms, and thermodynamic parameters. The results showed that the imprinted polymer exhibited higher affinity for PYD compared to non-imprinted polymer (NIP).

Keywords: molecularly imprinted polymer, bulk polymerization, environmental pollutant, adsorption

Procedia PDF Downloads 142
2580 The Treatment of Nitrate Polluted Groundwater Using Bio-electrochemical Systems Inoculated with Local Groundwater Sediments

Authors: Danish Laidin, Peter Gostomski, Aaron Marshall, Carlo Carere

Abstract:

Groundwater contamination of nitrate (NO3-) is becoming more prevalent in regions of intensive and extensive agricultural activities. Household nitrate removal involves using ion exchange membranes and reverse osmosis (RO) systems, whereas industrial nitrate removal may use organic carbon substrates (e.g. methanol) for heterotrophic microbial denitrification. However, these approaches both require high capital investment and operating costs. In this study, denitrification was demonstrated using bio-electrochemical systems (BESs) inoculated from sediments and microbial enrichment cultures. The BES reactors were operated continuously as microbial electrolytic cells (MECs) with a poised potential of -0.7V and -1.1V vs Ag/AgCl. Three parallel MECs were inoculated using hydrogen-driven denitrifying enrichments, stream sediments, and biofilm harvested from a denitrifying biotrickling filter, respectively. These reactors were continuously operated for over a year as various operating conditions were investigated to determine the optimal conditions for electroactive denitrification. The mass loading rate of nitrate was varied between 10 – 70 mg NO3-/d, and the maximum observed nitrate removal rate was 22 mg NO3- /(cm2∙d) with a current of 2.1 mA. For volumetric load experiments, the dilution rate of 1 mM NO3- feed was varied between 0.01 – 0.1 hr-1 to achieve a nitrate loading rate similar to the mass loading rate experiments. Under these conditions, the maximum rate of denitrification observed was 15.8 mg NO3- /(cm2∙d) with a current of 1.7mA. Hydrogen (H2) was supplied intermittently to investigate the hydrogenotrophic potential of the denitrifying biofilm electrodes. H2 supplementation at 0.1 mL/min resulted in an increase of nitrate removal from 0.3 mg NO3- /(cm2∙d) to 3.4 mg NO3- /(cm2∙d) in the hydrogenotrophically subcultured reactor but had no impact on the reactors which exhibited direct electron transfer properties. Results from this study depict the denitrification performance of the immobilized biofilm electrodes, either by direct electron transfer or hydrogen-driven denitrification, and the contribution of the planktonic cells present in the growth medium. Other results will include the microbial community analysis via 16s rDNA amplicon sequencing, varying the effect of poising cathodic potential from 0.7V to 1.3V vs Ag/AgCl, investigating the potential of using in-situ electrochemically produced hydrogen for autotrophic denitrification and adjusting the conductivity of the feed solution to mimic groundwater conditions. These findings highlight the overall performance of sediment inoculated MECs in removing nitrate and will be used for the future development of sustainable solutions for the treatment of nitrate polluted groundwater.

Keywords: bio-electrochemical systems, groundwater, electroactive denitrification, microbial electrolytic cell

Procedia PDF Downloads 66
2579 Folding of β-Structures via the Polarized Structure-Specific Backbone Charge (PSBC) Model

Authors: Yew Mun Yip, Dawei Zhang

Abstract:

Proteins are the biological machinery that executes specific vital functions in every cell of the human body by folding into their 3D structures. When a protein misfolds from its native structure, the machinery will malfunction and lead to misfolding diseases. Although in vitro experiments are able to conclude that the mutations of the amino acid sequence lead to incorrectly folded protein structures, these experiments are unable to decipher the folding process. Therefore, molecular dynamic (MD) simulations are employed to simulate the folding process so that our improved understanding of the folding process will enable us to contemplate better treatments for misfolding diseases. MD simulations make use of force fields to simulate the folding process of peptides. Secondary structures are formed via the hydrogen bonds formed between the backbone atoms (C, O, N, H). It is important that the hydrogen bond energy computed during the MD simulation is accurate in order to direct the folding process to the native structure. Since the atoms involved in a hydrogen bond possess very dissimilar electronegativities, the more electronegative atom will attract greater electron density from the less electronegative atom towards itself. This is known as the polarization effect. Since the polarization effect changes the electron density of the two atoms in close proximity, the atomic charges of the two atoms should also vary based on the strength of the polarization effect. However, the fixed atomic charge scheme in force fields does not account for the polarization effect. In this study, we introduce the polarized structure-specific backbone charge (PSBC) model. The PSBC model accounts for the polarization effect in MD simulation by updating the atomic charges of the backbone hydrogen bond atoms according to equations derived between the amount of charge transferred to the atom and the length of the hydrogen bond, which are calculated from quantum-mechanical calculations. Compared to other polarizable models, the PSBC model does not require quantum-mechanical calculations of the peptide simulated at every time-step of the simulation and maintains the dynamic update of atomic charges, thereby reducing the computational cost and time while accounting for the polarization effect dynamically at the same time. The PSBC model is applied to two different β-peptides, namely the Beta3s/GS peptide, a de novo designed three-stranded β-sheet whose structure is folded in vitro and studied by NMR, and the trpzip peptides, a double-stranded β-sheet where a correlation is found between the type of amino acids that constitute the β-turn and the β-propensity.

Keywords: hydrogen bond, polarization effect, protein folding, PSBC

Procedia PDF Downloads 270
2578 Joint Path and Push Planning among Moveable Obstacles

Authors: Victor Emeli, Akansel Cosgun

Abstract:

This paper explores the navigation among movable obstacles (NAMO) problem and proposes joint path and push planning: which path to take and in what direction the obstacles should be pushed at, given a start and goal position. We present a planning algorithm for selecting a path and the obstacles to be pushed, where a rapidly-exploring random tree (RRT)-based heuristic is employed to calculate a minimal collision path. When it is necessary to apply a pushing force to slide an obstacle out of the way, the planners leverage means-end analysis through a dynamic physics simulation to determine the sequence of linear pushes to clear the necessary space. Simulation experiments show that our approach finds solutions in higher clutter percentages (up to 49%) compared to the straight-line push planner (37%) and RRT without pushing (18%).

Keywords: motion planning, path planning, push planning, robot navigation

Procedia PDF Downloads 164
2577 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters

Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini

Abstract:

The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.

Keywords: curcumin, HSPs, prediction, solvates, solubility

Procedia PDF Downloads 63
2576 GRCNN: Graph Recognition Convolutional Neural Network for Synthesizing Programs from Flow Charts

Authors: Lin Cheng, Zijiang Yang

Abstract:

Program synthesis is the task to automatically generate programs based on user specification. In this paper, we present a framework that synthesizes programs from flow charts that serve as accurate and intuitive specification. In order doing so, we propose a deep neural network called GRCNN that recognizes graph structure from its image. GRCNN is trained end-to-end, which can predict edge and node information of the flow chart simultaneously. Experiments show that the accuracy rate to synthesize a program is 66.4%, and the accuracy rates to recognize edge and node are 94.1% and 67.9%, respectively. On average, it takes about 60 milliseconds to synthesize a program.

Keywords: program synthesis, flow chart, specification, graph recognition, CNN

Procedia PDF Downloads 119
2575 Discovering Semantic Links Between Synonyms, Hyponyms and Hypernyms

Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo

Abstract:

This proposal aims for semantic enrichment between glossaries using the Simple Knowledge Organization System (SKOS) vocabulary to discover synonyms, hyponyms and hyperonyms semiautomatically, in Brazilian Portuguese, generating new semantic relationships based on WordNet. To evaluate the quality of this proposed model, experiments were performed by the use of two sets containing new relations, being one generated automatically and the other manually mapped by the domain expert. The applied evaluation metrics were precision, recall, f-score, and confidence interval. The results obtained demonstrate that the applied method in the field of Oil Production and Extraction (E&P) is effective, which suggests that it can be used to improve the quality of terminological mappings. The procedure, although adding complexity in its elaboration, can be reproduced in others domains.

Keywords: ontology matching, mapping enrichment, semantic web, linked data, SKOS

Procedia PDF Downloads 216
2574 Effect of Temperature on the Production of Fructose and Bioethanol from Date’s Syrup using S. cerevisiae ATCC 36859

Authors: M. A. Zeinelabdeen, A. E. Abasaeed, M. H. Gaily, A. K. Sulieman, M. D. Putra

Abstract:

The effect of temperature on the production of fructose and bioethanol from date syrup via selective fermentation by S. cerevisiae ATCC 36859 strain was studied. Various temperatures have been tested (27, 30 and 33 ᵒC). The fermentation experiments were conducted in a water shaker bath at the three temperatures under testing and 120 rpm. The results showed that a high fructose yield can be achieved at all temperatures under testing while the optimal is 27 ᵒC with 84% fructose yield. A high ethanol yield can be obtained for all temperatures under testing. However; the maximum biomass concentration and ethanol yield (86.22%) were obtained at 30 ᵒC.

Keywords: dates, ethanol, fructose, fermentation, S. cerevisiae

Procedia PDF Downloads 402
2573 On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel

Authors: M. Bouhadef, K. Bouzelha-Hammoum, T. Guendouzen-Dabouz, A. Younsi, T. Zitoun

Abstract:

The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid.

Keywords: experiments, free-surface flow, hydraulic channel, subcritical regime, supercritical flow

Procedia PDF Downloads 307
2572 Renewable Natural Gas Production from Biomass and Applications in Industry

Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis

Abstract:

For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.

Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel

Procedia PDF Downloads 118
2571 Asymmetric of the Segregation-Enhanced Brazil Nut Effect

Authors: Panupat Chaiworn, Soraya lama

Abstract:

We study the motion of particles in cylinders which are subjected to a sinusoidal vertical vibration. We measure the rising time of a large intruder from the bottom of the container to free surface of the bed particles and find that the rising time as a function of intruder density increases to a maximum and then decreases monotonically. The result is qualitatively accord to the previous findings in experiments using relative humidity of the bed particles and found speed convection of the bed particles containers it moving slowly, and the rising time of the intruder where a minimal instead of maximal rising time in the small density region was found. Our experimental results suggest that the topology of the container plays an important role in the Brazil nut effect.

Keywords: granular particles, Brazil nut effect, cylinder container, vertical vibration, convection

Procedia PDF Downloads 528
2570 Contourlet Transform and Local Binary Pattern Based Feature Extraction for Bleeding Detection in Endoscopic Images

Authors: Mekha Mathew, Varun P Gopi

Abstract:

Wireless Capsule Endoscopy (WCE) has become a great device in Gastrointestinal (GI) tract diagnosis, which can examine the entire GI tract, especially the small intestine without invasiveness and sedation. Bleeding in the digestive tract is a symptom of a disease rather than a disease itself. Hence the detection of bleeding is important in diagnosing many diseases. In this paper we proposes a novel method for distinguishing bleeding regions from normal regions based on Contourlet transform and Local Binary Pattern (LBP). Experiments show that this method provides a high accuracy rate of 96.38% in CIE XYZ colour space for k-Nearest Neighbour (k-NN) classifier.

Keywords: Wireless Capsule Endoscopy, local binary pattern, k-NN classifier, contourlet transform

Procedia PDF Downloads 485
2569 Kinetic Monte Carlo Simulation of ZnSe Homoepitaxial Growth and Characterization

Authors: Hamid Khachab, Yamani Abdelkafi, Mouna Barhmi

Abstract:

The epitaxial growth has great important in the fabricate of the new semi-conductors devices and upgrading many factors, such as the quality of crystallization and efficiency with their deferent types and the most effective epitaxial technique is the molecular beam epitaxial. The MBE growth modeling allows to confirm the experiments results out by atomic beam and to analyze the microscopic phenomena. In of our work, we determined the growth processes specially the ZnSe epitaxial technique by Kinetic Monte Carlo method and we also give observations that are made in real time at the growth temperature using reflection high energy electron diffraction (RHEED) and photoemission current.

Keywords: molecular beam epitaxy, II-VI, morpholy, photoemission, RHEED, simulation, kinetic Monte Carlo, ZnSe

Procedia PDF Downloads 490
2568 Chicago School of Architecture 1900

Authors: Lula Chou

Abstract:

At the turn of the 20th century, Chicago faced a large real estate boom and technological advances through industrialization that led to the rise of the commercial skyscrapers. Focusing on creating a Midwest regional character and new functional meanings of structural art, architects like Sullivan, Adler, Burnham, and Root dominated the first Chicago School of Architecture. After they spearheaded the arena of modern skyscrapers, other cities in the United States like New York soon followed the trend. While battling with eclecticism and Beaux-Arts beliefs in decorative style, Chicago architects adapted Classical monumentality into their modern expressions that emphasized organicism and functionalism. With various experiments of material possibilities in the steel-framed constructions, Chicago architecture succeeded in forming humanitarian aesthetics alongside fulfilling functional requirements of the new generation.

Keywords: Chicago school, modernity, monumentality, skyscrapers, Sullivan

Procedia PDF Downloads 141
2567 Assessment of Solid Insulating Material Using Partial Discharge Characteristics

Authors: Qasim Khan, Furkan Ahmad, Asfar A. Khan, M. Saad Alam, Faiz Ahmad

Abstract:

In this paper, partial discharge analysis is performed in cavities artificially created in insulation. The setup is according with Cigre-II Method. Circular Samples created from Perspex Sheet with different configuration with changing number of cavities. Assessment of insulation health can be performed by Partial Discharge measurement as this has been found to be important means of condition monitoring. The experiments are done using MPD 540, which is a modern partial discharge measurement system. By analyzing the PD activity obtained for various voids/cavities, it is observed that the PD voltages show variation for cavity’s diameter, depth even for its ratios. This can be employed for scrutiny of insulation system.

Keywords: partial discharges, condition monitoring, insulation defects, degradation and corrosion, PMMA

Procedia PDF Downloads 517
2566 Gender Recognition with Deep Belief Networks

Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang

Abstract:

A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.

Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs

Procedia PDF Downloads 453
2565 Role of Interlayer Coupling for the Power Factor of CuSbS2 and CuSbSe2

Authors: Najebah Alsaleh, Nirpendra Singh, Udo Schwingenschlogl

Abstract:

The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak.

Keywords: density functional theory, thermoelectric, electronic properties, monolayer

Procedia PDF Downloads 323
2564 The Engineering Design of the Temple of Dendera in the City of Qena, Egypt

Authors: Shady Ahmed Emara

Abstract:

Introductory statement: The temple is characterized by a unique engineering design. This study aimed to explain the means that were used to reach this design. Background of the Study: Temple of Dandara consists of 24 columns with a height of 18m and a diameter of 2m. This paper is about the engineering method for constructing these huge columns. Two experiments were conducted at the temple. The first experiment used AutoCAD to compare the similarity of the columns in terms of dimensions. The second experiment used a laser rangefinder to measure the extent of the match between the heights between the columns. The Major Findings of the Study: (1) The method of constructing the columns was through several divided layers. It is divided into two halves and built opposite each other to maintain the integrity of the columns. (2) The match between the heights of the columns, which reached the error rate between one column and another, is only 1 mm. Concluding Statement: Both experiences will be explained through 2D and 3D.

Keywords: ancient, construction, architecture, building

Procedia PDF Downloads 103
2563 Educational Robotics with Easy Implementation and Low Cost

Authors: Maria R. A. R. Moreira, Francisco R. O. Da Silva, André O. A. Fontenele, Érick A. Ribeiro

Abstract:

This article deals with the influence of technology in education showing educational robotics as pedagogical method of solution for knowledge building. We are proposing the development and implementation of four robot models that can be used for teaching purposes involving the areas of mechatronics, mechanics, electronics and computing, making it efficient for learning other sciences and theories. One of the main reasons for application of the developed educational kits is its low cost, allowing its applicability to a greater number of educational institutions. The technology will add to education dissemination of knowledge by means of experiments in such a way that the pedagogical robotics promotes understanding, practice, solution and criticism about classroom challenges. We also present the relationship between education, science, technology and society through educational robotics, treated as an incentive to technological careers.

Keywords: education, mecatronics, robotics, technology

Procedia PDF Downloads 383