Search results for: driver drowsiness detection
3213 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 373212 Exploring the Capabilities of Sentinel-1A and Sentinel-2A Data for Landslide Mapping
Authors: Ismayanti Magfirah, Sartohadi Junun, Samodra Guruh
Abstract:
Landslides are one of the most frequent and devastating natural disasters in Indonesia. Many studies have been conducted regarding this phenomenon. However, there is a lack of attention in the landslide inventory mapping. The natural condition (dense forest area) and the limited human and economic resources are some of the major problems in building landslide inventory in Indonesia. Considering the importance of landslide inventory data in susceptibility, hazard, and risk analysis, it is essential to generate landslide inventory based on available resources. In order to achieve this, the first thing we have to do is identify the landslides' location. The presence of Sentinel-1A and Sentinel-2A data gives new insights into land monitoring investigation. The free access, high spatial resolution, and short revisit time, make the data become one of the most trending open sources data used in landslide mapping. Sentinel-1A and Sentinel-2A data have been used broadly for landslide detection and landuse/landcover mapping. This study aims to generate landslide map by integrating Sentinel-1A and Sentinel-2A data use change detection method. The result will be validated by field investigation to make preliminary landslide inventory in the study area.Keywords: change detection method, landslide inventory mapping, Sentinel-1A, Sentinel-2A
Procedia PDF Downloads 1773211 Study on Beta-Ray Detection System in Water Using a MCNP Simulation
Authors: Ki Hyun Park, Hye Min Park, Jeong Ho Kim, Chan Jong Park, Koan Sik Joo
Abstract:
In the modern days, the use of radioactive substances is on the rise in the areas like chemical weaponry, industrial usage, and power plants. Although there are various technologies available to detect and monitor radioactive substances in the air, the technologies to detect underwater radioactive substances are scarce. In this study, computer simulation of the underwater detection system measuring beta-ray, a radioactive substance, has been done through MCNP. CaF₂, YAP(Ce) and YAG(Ce) have been used in the computer simulation to detect beta-ray as scintillator. Also, the source used in the computer simulation is Sr-90 and Y-90, both of them emitting only pure beta-ray. The distance between the source and the detector was shifted from 1mm to 10mm by 1 mm in the computer simulation. The result indicated that Sr-90 was impossible to measure below 1 mm since its emission energy is low while Y-90 was able to be measured up to 10mm underwater. In addition, the detector designed with CaF₂ had the highest efficiency among 3 scintillators used in the computer simulation. Since it was possible to verify the detectable range and the detection efficiency according to modeling through MCNP simulation, it is expected that such result will reduce the time and cost in building the actual beta-ray detector and evaluating its performances, thereby contributing the research and development.Keywords: Beta-ray, CaF₂, detector, MCNP simulation, scintillator
Procedia PDF Downloads 5143210 A Framework for Blockchain Vulnerability Detection and Cybersecurity Education
Authors: Hongmei Chi
Abstract:
The Blockchain has become a necessity for many different societal industries and ordinary lives including cryptocurrency technology, supply chain, health care, public safety, education, etc. Therefore, training our future blockchain developers to know blockchain programming vulnerability and I.T. students' cyber security is in high demand. In this work, we propose a framework including learning modules and hands-on labs to guide future I.T. professionals towards developing secure blockchain programming habits and mitigating source code vulnerabilities at the early stages of the software development lifecycle following the concept of Secure Software Development Life Cycle (SSDLC). In this research, our goal is to make blockchain programmers and I.T. students aware of the vulnerabilities of blockchains. In summary, we develop a framework that will (1) improve students' skills and awareness of blockchain source code vulnerabilities, detection tools, and mitigation techniques (2) integrate concepts of blockchain vulnerabilities for IT students, (3) improve future IT workers’ ability to master the concepts of blockchain attacks.Keywords: software vulnerability detection, hands-on lab, static analysis tools, vulnerabilities, blockchain, active learning
Procedia PDF Downloads 1043209 Chemical and Biomolecular Detection at a Polarizable Electrical Interface
Authors: Nicholas Mavrogiannis, Francesca Crivellari, Zachary Gagnon
Abstract:
Development of low-cost, rapid, sensitive and portable biosensing systems are important for the detection and prevention of disease in developing countries, biowarfare/antiterrorism applications, environmental monitoring, point-of-care diagnostic testing and for basic biological research. Currently, the most established commercially available and widespread assays for portable point of care detection and disease testing are paper-based dipstick and lateral flow test strips. These paper-based devices are often small, cheap and simple to operate. The last three decades in particular have seen an emergence in these assays in diagnostic settings for detection of pregnancy, HIV/AIDS, blood glucose, Influenza, urinary protein, cardiovascular disease, respiratory infections and blood chemistries. Such assays are widely available largely because they are inexpensive, lightweight, and portable, are simple to operate, and a few platforms are capable of multiplexed detection for a small number of sample targets. However, there is a critical need for sensitive, quantitative and multiplexed detection capabilities for point-of-care diagnostics and for the detection and prevention of disease in the developing world that cannot be satisfied by current state-of-the-art paper-based assays. For example, applications including the detection of cardiac and cancer biomarkers and biothreat applications require sensitive multiplexed detection of analytes in the nM and pM range, and cannot currently be satisfied with current inexpensive portable platforms due to their lack of sensitivity, quantitative capabilities and often unreliable performance. In this talk, inexpensive label-free biomolecular detection at liquid interfaces using a newly discovered electrokinetic phenomenon known as fluidic dielectrophoresis (fDEP) is demonstrated. The electrokinetic approach involves exploiting the electrical mismatches between two aqueous liquid streams forced to flow side-by-side in a microfluidic T-channel. In this system, one fluid stream is engineered to have a higher conductivity relative to its neighbor which has a higher permittivity. When a “low” frequency (< 1 MHz) alternating current (AC) electrical field is applied normal to this fluidic electrical interface the fluid stream with high conductivity displaces into the low conductive stream. Conversely, when a “high” frequency (20MHz) AC electric field is applied, the high permittivity stream deflects across the microfluidic channel. There is, however, a critical frequency sensitive to the electrical differences between each fluid phase – the fDEP crossover frequency – between these two events where no fluid deflection is observed, and the interface remains fixed when exposed to an external field. To perform biomolecular detection, two streams flow side-by-side in a microfluidic T-channel: one fluid stream with an analyte of choice and an adjacent stream with a specific receptor to the chosen target. The two fluid streams merge and the fDEP crossover frequency is measured at different axial positions down the resulting liquidKeywords: biodetection, fluidic dielectrophoresis, interfacial polarization, liquid interface
Procedia PDF Downloads 4483208 Developing Laser Spot Position Determination and PRF Code Detection with Quadrant Detector
Authors: Mohamed Fathy Heweage, Xiao Wen, Ayman Mokhtar, Ahmed Eldamarawy
Abstract:
In this paper, we are interested in modeling, simulation, and measurement of the laser spot position with a quadrant detector. We enhance detection and tracking of semi-laser weapon decoding system based on microcontroller. The system receives the reflected pulse through quadrant detector and processes the laser pulses through a processing circuit, a microcontroller decoding laser pulse reflected by the target. The seeker accuracy will be enhanced by the decoding system, the laser detection time based on the receiving pulses number is reduced, a gate is used to limit the laser pulse width. The model is implemented based on Pulse Repetition Frequency (PRF) technique with two microcontroller units (MCU). MCU1 generates laser pulses with different codes. MCU2 decodes the laser code and locks the system at the specific code. The codes EW selected based on the two selector switches. The system is implemented and tested in Proteus ISIS software. The implementation of the full position determination circuit with the detector is produced. General system for the spot position determination was performed with the laser PRF for incident radiation and the mechanical system for adjusting system at different angles. The system test results show that the system can detect the laser code with only three received pulses based on the narrow gate signal, and good agreement between simulation and measured system performance is obtained.Keywords: four quadrant detector, pulse code detection, laser guided weapons, pulse repetition frequency (PRF), Atmega 32 microcontrollers
Procedia PDF Downloads 3973207 A Rapid Colorimetric Assay for Direct Detection of Unamplified Hepatitis C Virus RNA Using Gold Nanoparticles
Authors: M. Shemis, O. Maher, G. Casterou, F. Gauffre
Abstract:
Hepatitis C virus (HCV) is a major cause of chronic liver disease with a global 170 million chronic carriers at risk of developing liver cirrhosis and/or liver cancer. Egypt reports the highest prevalence of HCV worldwide. Currently, two classes of assays are used in the diagnosis and management of HCV infection. Despite the high sensitivity and specificity of the available diagnostic assays, they are time-consuming, labor-intensive, expensive, and require specialized equipment and highly qualified personal. It is therefore important for clinical and economic terms to develop a low-tech assay for the direct detection of HCV RNA with acceptable sensitivity and specificity, short turnaround time, and cost-effectiveness. Such an assay would be critical to control HCV in developing countries with limited resources and high infection rates, such as Egypt. The unique optical and physical properties of gold nanoparticles (AuNPs) have allowed the use of these nanoparticles in developing simple and rapid colorimetric assays for clinical diagnosis offering higher sensitivity and specificity than current detection techniques. The current research aims to develop a detection assay for HCV RNA using gold nanoparticles (AuNPs). Methods: 200 anti-HCV positive samples and 50 anti-HCV negative plasma samples were collected from Egyptian patients. HCV viral load was quantified using m2000rt (Abbott Molecular Inc., Des Plaines, IL). HCV genotypes were determined using multiplex nested RT- PCR. The assay is based on the aggregation of AuNPs in presence of the target RNA. Aggregation of AuNPs causes a color shift from red to blue. AuNPs were synthesized using citrate reduction method. Different sets of probes within the 5’ UTR conserved region of the HCV genome were designed, grafted on AuNPs and optimized for the efficient detection of HCV RNA. Results: The nano-gold assay could colorimetrically detect HCV RNA down to 125 IU/ml with sensitivity and specificity of 91.1% and 93.8% respectively. The turnaround time of the assay is < 30 min. Conclusions: The assay allows sensitive and rapid detection of HCV RNA and represents an inexpensive and simple point-of-care assay for resource-limited settings.Keywords: HCV, gold nanoparticles, point of care, viral load
Procedia PDF Downloads 2083206 Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer
Authors: Nirav J. Patel, Kalpesh K. Dudani
Abstract:
Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze.Keywords: acoustic, partial discharge, perfectly matched layer, sensor
Procedia PDF Downloads 5303205 Islanding Detection of Wind Turbine by Rate of Change of Frequency (ROCOF) and Rate of change of Power (ROCOP) Method
Authors: Vipulkumar Jagodana
Abstract:
Recently the use of renewable sources has increased, these sources include fuel cell, photo voltaic, and wind turbine. Islanding occurs when one portion of grid is isolated from remaining grid. Use of the renewable sources can provide continuous power to isolated portion in islanding condition. One of the common renewable sources is wind generation using wind turbine. The efficiency of wind generation can be increased in combination with conventional sources. When islanding occurs, few parameters change which may be frequency, voltage, active power, and harmonics. According to large change in one of these parameters islanding is detected. In this paper, two passive methods Rate of Change of Frequency (ROCOF) and Rate of change of Power (ROCOP) have been implemented for islanding detection of small wind-turbine. Islanding detection of both methods have been simulated in PSCAD. Simulation results show at different islanding inception angle response of ROCOF and ROCOP.Keywords: islanding, adopted methods, PSCAD simulation, comparison
Procedia PDF Downloads 2283204 Progressive Multimedia Collection Structuring via Scene Linking
Authors: Aman Berhe, Camille Guinaudeau, Claude Barras
Abstract:
In order to facilitate information seeking in large collections of multimedia documents with long and progressive content (such as broadcast news or TV series), one can extract the semantic links that exist between semantically coherent parts of documents, i.e., scenes. The links can then create a coherent collection of scenes from which it is easier to perform content analysis, topic extraction, or information retrieval. In this paper, we focus on TV series structuring and propose two approaches for scene linking at different levels of granularity (episode and season): a fuzzy online clustering technique and a graph-based community detection algorithm. When evaluated on the two first seasons of the TV series Game of Thrones, we found that the fuzzy online clustering approach performed better compared to graph-based community detection at the episode level, while graph-based approaches show better performance at the season level.Keywords: multimedia collection structuring, progressive content, scene linking, fuzzy clustering, community detection
Procedia PDF Downloads 1063203 [Keynote Speech]: Bridge Damage Detection Using Frequency Response Function
Authors: Ahmed Noor Al-Qayyim
Abstract:
During the past decades, the bridge structures are considered very important portions of transportation networks, due to the fast urban sprawling. With the failure of bridges that under operating conditions lead to focus on updating the default bridge inspection methodology. The structures health monitoring (SHM) using the vibration response appeared as a promising method to evaluate the condition of structures. The rapid development in the sensors technology and the condition assessment techniques based on the vibration-based damage detection made the SHM an efficient and economical ways to assess the bridges. SHM is set to assess state and expects probable failures of designated bridges. In this paper, a presentation for Frequency Response function method that uses the captured vibration test information of structures to evaluate the structure condition. Furthermore, the main steps of the assessment of bridge using the vibration information are presented. The Frequency Response function method is applied to the experimental data of a full-scale bridge.Keywords: bridge assessment, health monitoring, damage detection, frequency response function (FRF), signal processing, structure identification
Procedia PDF Downloads 3533202 Design and Performance Improvement of Three-Dimensional Optical Code Division Multiple Access Networks with NAND Detection Technique
Authors: Satyasen Panda, Urmila Bhanja
Abstract:
In this paper, we have presented and analyzed three-dimensional (3-D) matrices of wavelength/time/space code for optical code division multiple access (OCDMA) networks with NAND subtraction detection technique. The 3-D codes are constructed by integrating a two-dimensional modified quadratic congruence (MQC) code with one-dimensional modified prime (MP) code. The respective encoders and decoders were designed using fiber Bragg gratings and optical delay lines to minimize the bit error rate (BER). The performance analysis of the 3D-OCDMA system is based on measurement of signal to noise ratio (SNR), BER and eye diagram for a different number of simultaneous users. Also, in the analysis, various types of noises and multiple access interference (MAI) effects were considered. The results obtained with NAND detection technique were compared with those obtained with OR and AND subtraction techniques. The comparison results proved that the NAND detection technique with 3-D MQC\MP code can accommodate more number of simultaneous users for longer distances of fiber with minimum BER as compared to OR and AND subtraction techniques. The received optical power is also measured at various levels of BER to analyze the effect of attenuation.Keywords: Cross Correlation (CC), Three dimensional Optical Code Division Multiple Access (3-D OCDMA), Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA), Multiple Access Interference (MAI), Phase Induced Intensity Noise (PIIN), Three Dimensional Modified Quadratic Congruence/Modified Prime (3-D MQC/MP) code
Procedia PDF Downloads 4163201 Comparison of Central Light Reflex Width-to-Retinal Vessel Diameter Ratio between Glaucoma and Normal Eyes by Using Edge Detection Technique
Authors: P. Siriarchawatana, K. Leungchavaphongse, N. Covavisaruch, K. Rojananuangnit, P. Boondaeng, N. Panyayingyong
Abstract:
Glaucoma is a disease that causes visual loss in adults. Glaucoma causes damage to the optic nerve and its overall pathophysiology is still not fully understood. Vasculopathy may be one of the possible causes of nerve damage. Photographic imaging of retinal vessels by fundus camera during eye examination may complement clinical management. This paper presents an innovation for measuring central light reflex width-to-retinal vessel diameter ratio (CRR) from digital retinal photographs. Using our edge detection technique, CRRs from glaucoma and normal eyes were compared to examine differences and associations. CRRs were evaluated on fundus photographs of participants from Mettapracharak (Wat Raikhing) Hospital in Nakhon Pathom, Thailand. Fifty-five photographs from normal eyes and twenty-one photographs from glaucoma eyes were included. Participants with hypertension were excluded. In each photograph, CRRs from four retinal vessels, including arteries and veins in the inferotemporal and superotemporal regions, were quantified using edge detection technique. From our finding, mean CRRs of all four retinal arteries and veins were significantly higher in persons with glaucoma than in those without glaucoma (0.34 vs. 0.32, p < 0.05 for inferotemporal vein, 0.33 vs. 0.30, p < 0.01 for inferotemporal artery, 0.34 vs. 0.31, p < 0.01 for superotemporal vein, and 0.33 vs. 0.30, p < 0.05 for superotemporal artery). From these results, an increase in CRRs of retinal vessels, as quantitatively measured from fundus photographs, could be associated with glaucoma.Keywords: glaucoma, retinal vessel, central light reflex, image processing, fundus photograph, edge detection
Procedia PDF Downloads 3253200 Fabrication of Functionalized Multi-Walled Carbon-Nanotubes Paper Electrode for Simultaneous Detection of Dopamine and Ascorbic Acid
Authors: Tze-Sian Pui, Aung Than, Song-Wei Loo, Yuan-Li Hoe
Abstract:
A paper-based electrode devised from an array of carboxylated multi-walled carbon nanotubes (MWNTs) and poly (diallyldimethylammonium chloride) (PDDA) has been successfully developed for the simultaneous detection of dopamine (DA) and ascorbic acid (AA) in 0.1 M phosphate buffer solution (PBS). The PDDA/MWNTs electrodes were fabricated by allowing PDDA to absorb onto the surface of carboxylated MWNTs, followed by drop-casting the resulting mixture onto a paper. Cyclic voltammetry performed using 5 mM [Fe(CN)₆]³⁻/⁴⁻ as the redox marker showed that the PDDA/MWNTs electrode has higher redox activity compared to non-functionalized carboxylated MWNT electrode. Differential pulse voltammetry was conducted with DA concentration ranging from 2 µM to 500 µM in the presence of 1 mM AA. The distinctive potential of 0.156 and -0.068 V (vs. Ag/AgCl) measured on the surface of the PDDA/MWNTs electrode revealed that both DA and AA were oxidized. The detection limit of DA was estimated to be 0.8 µM. This nanocomposite paper-based electrode has great potential for future applications in bioanalysis and biomedicine.Keywords: dopamine, differential pulse voltammetry, paper sensor, carbon nanotube
Procedia PDF Downloads 1413199 Spatiotemporal Community Detection and Analysis of Associations among Overlapping Communities
Authors: JooYoung Lee, Rasheed Hussain
Abstract:
Understanding the relationships among communities of users is the key to blueprint the evolution of human society. Majority of people are equipped with GPS devices, such as smart phones and smart cars, which can trace their whereabouts. In this paper, we discover communities of device users based on real locations in a given time frame. We, then, study the associations of discovered communities, referred to as temporal communities, and generate temporal and probabilistic association rules. The rules describe how strong communities are associated. By studying the generated rules, we can automatically extract underlying hierarchies of communities and permanent communities such as work places.Keywords: association rules, community detection, evolution of communities, spatiotemporal
Procedia PDF Downloads 3753198 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot
Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan
Abstract:
With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.Keywords: object detection, feature, descriptors, SIFT, SURF, depth images, service robots
Procedia PDF Downloads 5503197 Machine Learning Approach for Stress Detection Using Wireless Physical Activity Tracker
Authors: B. Padmaja, V. V. Rama Prasad, K. V. N. Sunitha, E. Krishna Rao Patro
Abstract:
Stress is a psychological condition that reduces the quality of sleep and affects every facet of life. Constant exposure to stress is detrimental not only for mind but also body. Nevertheless, to cope with stress, one should first identify it. This paper provides an effective method for the cognitive stress level detection by using data provided from a physical activity tracker device Fitbit. This device gathers people’s daily activities of food, weight, sleep, heart rate, and physical activities. In this paper, four major stressors like physical activities, sleep patterns, working hours and change in heart rate are used to assess the stress levels of individuals. The main motive of this system is to use machine learning approach in stress detection with the help of Smartphone sensor technology. Individually, the effect of each stressor is evaluated using logistic regression and then combined model is built and assessed using variants of ordinal logistic regression models like logit, probit and complementary log-log. Then the quality of each model is evaluated using Akaike Information Criterion (AIC) and probit is assessed as the more suitable model for our dataset. This system is experimented and evaluated in a real time environment by taking data from adults working in IT and other sectors in India. The novelty of this work lies in the fact that stress detection system should be less invasive as possible for the users.Keywords: physical activity tracker, sleep pattern, working hours, heart rate, smartphone sensor
Procedia PDF Downloads 2593196 Determining Abnomal Behaviors in UAV Robots for Trajectory Control in Teleoperation
Authors: Kiwon Yeom
Abstract:
Change points are abrupt variations in a data sequence. Detection of change points is useful in modeling, analyzing, and predicting time series in application areas such as robotics and teleoperation. In this paper, a change point is defined to be a discontinuity in one of its derivatives. This paper presents a reliable method for detecting discontinuities within a three-dimensional trajectory data. The problem of determining one or more discontinuities is considered in regular and irregular trajectory data from teleoperation. We examine the geometric detection algorithm and illustrate the use of the method on real data examples.Keywords: change point, discontinuity, teleoperation, abrupt variation
Procedia PDF Downloads 1703195 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework
Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin
Abstract:
During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.Keywords: artificial intelligence, COVID-19, depression detection, psychiatric disorder
Procedia PDF Downloads 1333194 Lunar Exploration based on Ground-Based Radar: Current Research Progress and Future Prospects
Authors: Jiangwan Xu, Chunyu Ding
Abstract:
Lunar exploration is of significant importance in the development and utilization of in-situ lunar resources, water ice exploration, space and astronomical science, as well as in political and military strategy. In recent years, ground-based radar (GBR) has gained increasing attention in the field of lunar exploration due to its flexibility, low cost, and penetrating capabilities. This paper reviews the scientific research on lunar exploration using GBR, outlining the basic principles of GBR and the progress made in lunar exploration studies. It introduces the fundamental principles of lunar imaging using GBR, and systematically reviews studies on lunar surface layer detection, inversion of lunar regolith dielectric properties, and polar water ice detection using GBR. In particular, the paper summarizes the current development status of Chinese GBR and forecasts future development trends in China. This review will enhance the understanding of lunar exploration results using GBR radar, systematically demonstrate the main applications and scientific achievements of GBR in lunar exploration, and provide a reference for future GBR radar lunar exploration missions.Keywords: ground-based radar, lunar exploration, radar imaging, lunar surface/subsurface detection
Procedia PDF Downloads 383193 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design
Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong
Abstract:
This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring
Procedia PDF Downloads 923192 WO₃-SnO₂ Sensors for Selective Detection of Volatile Organic Compounds for Breath Analysis
Authors: Arpan Kumar Nayak, Debabrata Pradhan
Abstract:
A simple, single-step and one-pot hydrothermal method was employed to synthesize WO₃-SnO₂ mixed nanostructured metal oxides at 200°C in 12h. The SnO₂ nanoparticles were found to be uniformly decorated on the WO₃ nanoplates. Though it is widely known that noble metals such as Pt, Pd doping or decoration on metal oxides improve the sensing response and sensitivity, we varied the SnO₂ concentration in the WO₃-SnO₂ mixed oxide and demonstrated their performance in ammonia, ethanol and acetone sensing. The sensing performance of WO₃-(x)SnO₂ [x = 0.27, 0.54, 1.08] mixed nanostructured oxides was found to be not only superior to that of pristine oxides but also higher/better than that of reported noble metal-based sensors. The sensing properties (selectivity, limit of detection, response and recovery times) are measured as a function of operating temperature (150-350°C). In particular, the gas selectivity is found to be highly temperature-dependent with optimum performance obtained at 200°C, 300°C and 350°C for ammonia, ethanol, and acetone, respectively. The present results on cost effective WO₃-SnO₂ sensors can find potential application in human breath analysis by noninvasive detection.Keywords: gas sensing, mixed oxides, nanoplates, ammonia, ethanol, acetone
Procedia PDF Downloads 2433191 Lung Disease Detection from the Chest X Ray Images Using Various Transfer Learning
Authors: Aicha Akrout, Amira Echtioui, Mohamed Ghorbel
Abstract:
Pneumonia remains a significant global health concern, posing a substantial threat to human lives due to its contagious nature and potentially fatal respiratory complications caused by bacteria, fungi, or viruses. The reliance on chest X-rays for diagnosis, although common, often necessitates expert interpretation, leading to delays and potential inaccuracies in treatment. This study addresses these challenges by employing transfer learning techniques to automate the detection of lung diseases, with a focus on pneumonia. Leveraging three pre-trained models, VGG-16, ResNet50V2, and MobileNetV2, we conducted comprehensive experiments to evaluate their performance. Our findings reveal that the proposed model based on VGG-16 demonstrates superior accuracy, precision, recall, and F1 score, achieving impressive results with an accuracy of 93.75%, precision of 94.50%, recall of 94.00%, and an F1 score of 93.50%. This research underscores the potential of transfer learning in enhancing pneumonia diagnosis and treatment outcomes, offering a promising avenue for improving healthcare delivery and reducing mortality rates associated with this debilitating respiratory condition.Keywords: chest x-ray, lung diseases, transfer learning, pneumonia detection
Procedia PDF Downloads 493190 Reduction Study of As(III)-Cysteine Complex through Linear Sweep Voltammetry
Authors: Sunil Mittal, Sukhpreet Singh, Hardeep Kaur
Abstract:
A simple voltammetric technique for on-line analysis of arsenite [As (III)] is reported. Owing to the affinity of As (III) with thiol group of proteins and enzymes, cysteine has been employed as reducing agent. The reduction study of As(III)-cysteine complex on indium tin oxide (ITO) electrode has been explored. The experimental parameters such as scan rate, cysteine concentration, pH etc. were optimized to achieve As (III) determination. The developed method provided dynamic linear range of detection from 0.1 to 1 mM with a detection limit of 0.1 mM. The method is applicable to environmental monitoring of As (III) from highly contaminated sources such as industrial effluents, wastewater sludge etc.Keywords: arsenite, cysteine, linear sweep voltammetry, reduction
Procedia PDF Downloads 2433189 Detecting the Edge of Multiple Images in Parallel
Authors: Prakash K. Aithal, U. Dinesh Acharya, Rajesh Gopakumar
Abstract:
Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel .The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. The proposed method achieves pixel level parallelism as well as image level parallelism.Keywords: edge detection, multicore, gpu, opencl, mpi
Procedia PDF Downloads 4833188 A Nanosensor System Based on Disuccinimydyl – CYP2E1 for Amperometric Detection of the Anti-Tuberculosis Drug, Pyrazinamide
Authors: Rachel F. Ajayi, Unathi Sidwaba, Usisipho Feleni, Samantha F. Douman, Ezo Nxusani, Lindsay Wilson, Candice Rassie, Oluwakemi Tovide, Priscilla G.L. Baker, Sibulelo L. Vilakazi, Robert Tshikhudo, Emmanuel I. Iwuoha
Abstract:
Pyrazinamide (PZA) is among the first-line pro-drugs in the tuberculosis (TB) combination chemotherapy used to treat Mycobacterium tuberculosis. Numerous reports have suggested that hepatotoxicity due to pyrazinamide in patients is due to inappropriate dosing. It is therefore necessary to develop sensitive and reliable techniques for determining the PZA metabolic profile of diagnosed patients promptly and at point-of-care. This study reports the determination of PZA based on nanobiosensor systems developed from disuccinimidyl octanedioate modified Cytochrome P450-2E1 (CYP2E1) electrodeposited on gold substrates derivatised with (poly(8-anilino-1-napthalene sulphonic acid) PANSA/PVP-AgNPs nanocomposites. The rapid and sensitive amperometric PZA detection gave a dynamic linear range of 2 µM to 16 µM revealing a limit of detection of 0.044 µM and a sensitivity of 1.38 µA/µM. The Michaelis-Menten parameters; KM, KMapp and IMAX were also calculated and found to be 6.0 µM, 1.41 µM and 1.51 µA respectively indicating a nanobiosensor suitable for use in serum.Keywords: tuberculosis, cytochrome P450-2E1, disuccinimidyl octanedioate, pyrazinamide
Procedia PDF Downloads 4163187 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm
Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio
Abstract:
The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.Keywords: algorithm, CoAP, DoS, IoT, machine learning
Procedia PDF Downloads 843186 The Relationship between Human Pose and Intention to Fire a Handgun
Authors: Joshua van Staden, Dane Brown, Karen Bradshaw
Abstract:
Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.Keywords: feature engineering, human pose, machine learning, security
Procedia PDF Downloads 953185 A Distributed Mobile Agent Based on Intrusion Detection System for MANET
Authors: Maad Kamal Al-Anni
Abstract:
This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)
Procedia PDF Downloads 1973184 The Relationship Between Car Drivers' Background Information and Risky Events In I- Dreams Project
Authors: Dagim Dessalegn Haile
Abstract:
This study investigated the interaction between the drivers' socio-demographic background information (age, gender, and driving experience) and the risky events score in the i-DREAMS platform. Further, the relationship between the participants' background driving behavior and the i-DREAMS platform behavioral output scores of risky events was also investigated. The i-DREAMS acronym stands for Smart Driver and Road Environment Assessment and Monitoring System. It is a European Union Horizon 2020 funded project consisting of 13 partners, researchers, and industry partners from 8 countries. A total of 25 Belgian car drivers (16 male and nine female) were considered for analysis. Drivers' ages were categorized into ages 18-25, 26-45, 46-65, and 65 and older. Drivers' driving experience was also categorized into four groups: 1-15, 16-30, 31-45, and 46-60 years. Drivers are classified into two clusters based on the recorded score for risky events during phase 1 (baseline) using risky events; acceleration, deceleration, speeding, tailgating, overtaking, and lane discipline. Agglomerative hierarchical clustering using SPSS shows Cluster 1 drivers are safer drivers, and Cluster 2 drivers are identified as risky drivers. The analysis result indicated no significant relationship between age groups, gender, and experience groups except for risky events like acceleration, tailgating, and overtaking in a few phases. This is mainly because the fewer participants create less variability of socio-demographic background groups. Repeated measure ANOVA shows that cluster 2 drivers improved more than cluster 1 drivers for tailgating, lane discipline, and speeding events. A positive relationship between background drivers' behavior and i-DREAMS platform behavioral output scores is observed. It implies that car drivers who in the questionnaire data indicate committing more risky driving behavior demonstrate more risky driver behavior in the i-DREAMS observed driving data.Keywords: i-dreams, car drivers, socio-demographic background, risky events
Procedia PDF Downloads 73