Search results for: disaster detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4061

Search results for: disaster detection

3341 The Role of Emotion in Attention Allocation

Authors: Michaela Porubanova

Abstract:

In this exploratory study to examine the effects of emotional significance on change detection using the flicker paradigm, three different categories of scenes were randomly presented (neutral, positive and negative) in three different blocks. We hypothesized that because of the different effects on attention, performance in change detection tasks differs for scenes with different effective values. We found the greatest accuracy of change detection was for changes occurring in positive and negative scenes (compared with neutral scenes). Secondly and most importantly, changes in negative scenes (and also positive scenes, though not with statistical significance) were detected faster than changes in neutral scenes. Interestingly, women were less accurate than men in detecting changes in emotionally significant scenes (both negative and positive), i.e., women detected fewer changes in emotional scenes in the time limit of 40s. But on the other hand, women were quicker to detect changes in positive and negative images than men. The study makes important contributions to the area of the role of emotions on information processing. The role of emotion in attention will be discussed.

Keywords: attention, emotion, flicker task, IAPS

Procedia PDF Downloads 354
3340 On-Chip Sensor Ellipse Distribution Method and Equivalent Mapping Technique for Real-Time Hardware Trojan Detection and Location

Authors: Longfei Wang, Selçuk Köse

Abstract:

Hardware Trojan becomes great concern as integrated circuit (IC) technology advances and not all manufacturing steps of an IC are accomplished within one company. Real-time hardware Trojan detection is proven to be a feasible way to detect randomly activated Trojans that cannot be detected at testing stage. On-chip sensors serve as a great candidate to implement real-time hardware Trojan detection, however, the optimization of on-chip sensors has not been thoroughly investigated and the location of Trojan has not been carefully explored. On-chip sensor ellipse distribution method and equivalent mapping technique are proposed based on the characteristics of on-chip power delivery network in this paper to address the optimization and distribution of on-chip sensors for real-time hardware Trojan detection as well as to estimate the location and current consumption of hardware Trojan. Simulation results verify that hardware Trojan activation can be effectively detected and the location of a hardware Trojan can be efficiently estimated with less than 5% error for a realistic power grid using our proposed methods. The proposed techniques therefore lay a solid foundation for isolation and even deactivation of hardware Trojans through accurate location of Trojans.

Keywords: hardware trojan, on-chip sensor, power distribution network, power/ground noise

Procedia PDF Downloads 391
3339 Self-Attention Mechanism for Target Hiding Based on Satellite Images

Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai

Abstract:

Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.

Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding

Procedia PDF Downloads 136
3338 Nurse’s Role in Early Detection of Breast Cancer through Mammography and Genetic Screening and Its Impact on Patient's Outcome

Authors: Salwa Hagag Abdelaziz, Dorria Salem, Hoda Zaki, Suzan Atteya

Abstract:

Early detection of breast cancer saves many thousands of lives each year via application of mammography and genetic screening and many more lives could be saved if nurses are involved in breast care screening practices. So, the aim of the study was to identify nurse's role in early detection of breast cancer through mammography and genetic screening and its impact on patient's outcome. In order to achieve this aim, 400 women above 40 years, asymptomatic were recruited for mammography and genetic screening. In addition, 50 nurses and 6 technologists were involved in the study. A descriptive analytical design was used. Five tools were utilized: sociodemographic, mammographic examination and risk factors, women's before, during and after mammography, items relaying to technologists, and items related to nurses were also obtained. The study finding revealed that 3% of women detected for malignancy and 7.25% for fibroadenoma. Statistically, significant differences were found between mammography results and age, family history, genetic screening, exposure to smoke, and using contraceptive pills. Nurses have insufficient knowledge about screening tests. Based on these findings the present study recommended involvement of nurses in breast care which is very important to in force population about screening practices.

Keywords: mammography, early detection, genetic screening, breast cancer

Procedia PDF Downloads 562
3337 Real-Time Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Human Papillomavirus 16 in Oral Squamous Cell Carcinoma

Authors: Suharni Mohamad Suharni Mohamad, Nurul Izzati Hamzan Nurul Izzati Hamzan, Norhayu Abdul Rahman Norhayu Abdul Rahman, Siti Suraiya Md Noor Siti Suraiya Md Noor

Abstract:

Human papillomavirus (HPV) is an important risk factor for development of oral cancer. HPV16 is the most common type found in HPV-positive squamous cell carcinoma. In the present study, we established a real-time loop-mediated isothermal amplification (real-time LAMP) for detection of HPV16. A set of six primers was specially designed to recognize eight distinct sequences of HPV16-E6. Detection and quantification was achieved by real-time monitoring using a real-time turbidimeter based on threshold time required for turbidity in the LAMP reaction. LAMP reagents (MgSO4, dNTPs, Bst polymerase concentrations) and various incubation times and temperatures were optimized. The sensitivity was determined using 10-fold serial dilutions of HPV16 standard strain. The specificity of was evaluated using other HPV genotypes. The optimized method was established with specifically designed primers by real-time detection in approximately 30 min at 65°C. The limit of detection of HPV16 using the LAMP assay was 10 pg/ml that could be detected in 30 min. The LAMP assay was 10 times more sensitive than the conventional PCR in detecting HPV16. No cross-reactivity with other HPV genotypes was observed. This quantitative real-time LAMP assay may improve diagnostic potential for the detection and quantification of HPV16 in clinical samples and epidemiological studies due to its rapidity, simplicity, high sensitivity and specificity. This assay will be further evaluated with HPV DNAs of saliva from patients with oral squamous cell carcinoma. Acknowledgement: This study was financially supported by the ScienceFund Grant, Ministry of Science, Technology and Innovation (305/PPSG/6113219).

Keywords: Oral Squamous Cell Carcinoma (OSCC), Human Papillomavirus 16 (HPV16), Loop-Mediated Isothermal Amplification (LAMP), rapid detection

Procedia PDF Downloads 406
3336 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing

Procedia PDF Downloads 322
3335 Spectrophotometric Detection of Histidine Using Enzyme Reaction and Examination of Reaction Conditions

Authors: Akimitsu Kugimiya, Kouhei Iwato, Toru Saito, Jiro Kohda, Yasuhisa Nakano, Yu Takano

Abstract:

The measurement of amino acid content is reported to be useful for the diagnosis of several types of diseases, including lung cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, and diabetes. The conventional detection methods for amino acid are high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS), but they have several drawbacks as the equipment is cumbersome and the techniques are costly in terms of time and costs. In contrast, biosensors and biosensing methods provide more rapid and facile detection strategies that use simple equipment. The authors have reported a novel approach for the detection of each amino acid that involved the use of aminoacyl-tRNA synthetase (aaRS) as a molecular recognition element because aaRS is expected to a selective binding ability for corresponding amino acid. The consecutive enzymatic reactions used in this study are as follows: aaRS binds to its cognate amino acid and releases inorganic pyrophosphate. Hydrogen peroxide (H₂O₂) was produced by the enzyme reactions of inorganic pyrophosphatase and pyruvate oxidase. The Trinder’s reagent was added into the reaction mixture, and the absorbance change at 556 nm was measured using a microplate reader. In this study, an amino acid-sensing method using histidyl-tRNA synthetase (HisRS; histidine-specific aaRS) as molecular recognition element in combination with the Trinder’s reagent spectrophotometric method was developed. The quantitative performance and selectivity of the method were evaluated, and the optimal enzyme reaction and detection conditions were determined. The authors developed a simple and rapid method for detecting histidine with a combination of enzymatic reaction and spectrophotometric detection. In this study, HisRS was used to detect histidine, and the reaction and detection conditions were optimized for quantitation of these amino acids in the ranges of 1–100 µM histidine. The detection limits are sufficient to analyze these amino acids in biological fluids. This work was partly supported by Hiroshima City University Grant for Special Academic Research (General Studies).

Keywords: amino acid, aminoacyl-tRNA synthetase, biosensing, enzyme reaction

Procedia PDF Downloads 284
3334 Determination of Frequency Relay Setting during Distributed Generators Islanding

Authors: Tarek Kandil, Ameen Ali

Abstract:

Distributed generation (DG) has recently gained a lot of momentum in power industry due to market deregulation and environmental concerns. One of the most technical challenges facing DGs is islanding of distributed generators. The current industry practice is to disconnect all distributed generators immediately after the occurrence of islands within 200 to 350 ms after loss of main supply. To achieve such goal, each DG must be equipped with an islanding detection device. Frequency relays are one of the most commonly used loss of mains detection method. However, distribution utilities may be faced with concerns related to false operation of these frequency relays due to improper settings. The commercially available frequency relays are considering standard tight setting. This paper investigates some factors related to relays internal algorithm that contribute to their different operating responses. Further, the relay operation in the presence of multiple distributed at the same network is analyzed. Finally, the relay setting can be accurately determined based on these investigation and analysis.

Keywords: frequency relay, distributed generation, islanding detection, relay setting

Procedia PDF Downloads 533
3333 Investigation of Resilient Circles in Local Community and Industry: Waju-Traditional Culture in Japan and Modern Technology Application

Authors: R. Ueda

Abstract:

Today global society is seeking resilient partnership in local organizations and individuals, which realizes multi-stakeholders relationship. Although it is proposed by modern global framework of sustainable development, it is conceivable that such affiliation can be found out in the traditional local community in Japan, and that traditional spirit is tacitly sustaining in modern context of disaster mitigation in society and economy. Then this research is aiming to clarify and analyze implication for the global world by actual case studies. Regional and urban resilience is the ability of multi-stakeholders to cooperate flexibly and to adapt in response to changes in the circumstances caused by disasters, but there are various conflicts affecting coordination of disaster relief measures. These conflicts arise not only from a lack of communication and an insufficient network, but also from the difficulty to jointly draw common context from fragmented information. This is because of the weakness of our modern engineering which focuses on maintenance and restoration of individual systems. Here local ‘circles’ holistically includes local community and interacts periodically. Focusing on examples of resilient organizations and wisdom created in communities, what can be seen throughout history is a virtuous cycle where the information and the knowledge are structured, the context to be adapted becomes clear, and an adaptation at a higher level is made possible, by which the collaboration between organizations is deepened and expanded. And the wisdom of a solid and autonomous disaster prevention formed by the historical community called’ Waju’ – an area surrounded by circle embankment to protect the settlement from flood – lives on in government efforts of the coastal industrial island of today. Industrial company there collaborates to create a circle including common evacuation space, road access improvement and infrastructure recovery. These days, people here adopts new interface technology. Large-scale AR- Augmented Reality for more than hundred people is expressing detailed hazard by tsunami and liquefaction. Common experiences of the major disaster space and circle of mutual discussion are enforcing resilience. Collaboration spirit lies in the center of circle. A consistent key point is a virtuous cycle where the information and the knowledge are structured, the context to be adapted becomes clear, and an adaptation at a higher level is made possible, by which the collaboration between organizations is deepened and expanded. This writer believes that both self-governing human organizations and the societal implementation of technical systems are necessary. Infrastructure should be autonomously instituted by associations of companies and other entities in industrial areas for working closely with local governments. To develop advanced disaster prevention and multi-stakeholder collaboration, partnerships among industry, government, academia and citizens are important.

Keywords: industrial recovery, multi-sakeholders, traditional culture, user experience, Waju

Procedia PDF Downloads 113
3332 Multivariate Statistical Process Monitoring of Base Metal Flotation Plant Using Dissimilarity Scale-Based Singular Spectrum Analysis

Authors: Syamala Krishnannair

Abstract:

A multivariate statistical process monitoring methodology using dissimilarity scale-based singular spectrum analysis (SSA) is proposed for the detection and diagnosis of process faults in the base metal flotation plant. Process faults are detected based on the multi-level decomposition of process signals by SSA using the dissimilarity structure of the process data and the subsequent monitoring of the multiscale signals using the unified monitoring index which combines T² with SPE. Contribution plots are used to identify the root causes of the process faults. The overall results indicated that the proposed technique outperformed the conventional multivariate techniques in the detection and diagnosis of the process faults in the flotation plant.

Keywords: fault detection, fault diagnosis, process monitoring, dissimilarity scale

Procedia PDF Downloads 209
3331 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks

Authors: Ruchi Makani, B. V. R. Reddy

Abstract:

Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.

Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system

Procedia PDF Downloads 177
3330 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications

Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani

Abstract:

This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.

Keywords: human activity detection, media pipe, machine learning, metaverse applications

Procedia PDF Downloads 179
3329 Damage Detection in a Cantilever Beam under Different Excitation and Temperature Conditions

Authors: A. Kyprianou, A. Tjirkallis

Abstract:

Condition monitoring of structures in service is very important as it provides information about the risk of damage development. One of the essential constituents of structural condition monitoring is the damage detection methodology. In the context of condition monitoring of in service structures a damage detection methodology analyses data obtained from the structure while it is in operation. Usually, this means that the data could be affected by operational and environmental conditions in a way that could mask the effects of a possible damage on the data. This, depending on the damage detection methodology, could lead to either false alarms or miss existing damages. In this article a damage detection methodology that is based on the Spatio-temporal continuous wavelet transform (SPT-CWT) analysis of a sequence of experimental time responses of a cantilever beam is proposed. The cantilever is subjected to white and pink noise excitation to simulate different operating conditions. In addition, in order to simulate changing environmental conditions, the cantilever is subjected to heating by a heat gun. The response of the cantilever beam is measured by a high-speed camera. Edges are extracted from the series of images of the beam response captured by the camera. Subsequent processing of the edges gives a series of time responses on 439 points on the beam. This sequence is then analyzed using the SPT-CWT to identify damage. The algorithm proposed was able to clearly identify damage under any condition when the structure was excited by white noise force. In addition, in the case of white noise excitation, the analysis could also reveal the position of the heat gun when it was used to heat the structure. The analysis could identify the different operating conditions i.e. between responses due to white noise excitation and responses due to pink noise excitation. During the pink noise excitation whereas damage and changing temperature were identified it was not possible to clearly identify the effect of damage from that of temperature. The methodology proposed in this article for damage detection enables the separation the damage effect from that due to temperature and excitation on data obtained from measurements of a cantilever beam. This methodology does not require information about the apriori state of the structure.

Keywords: spatiotemporal continuous wavelet transform, damage detection, data normalization, varying temperature

Procedia PDF Downloads 279
3328 Exploring the Gas Sensing Performance of Cu-Doped Iron Oxide Derived from Metal-Organic Framework

Authors: Annu Sheokand, Vinay Kumar

Abstract:

Hydrogen sulfide (H₂S) detection is essential for environmental monitoring and industrial safety due to its high toxicity, even at low concentrations. This study explores the H₂S gas sensing properties of Cu-doped Fe₂O₃ materials derived from metal-organic frameworks (MOFs), which offer high surface area and controlled porosity for optimized gas sensing. The structural and morphological characteristics of the synthesized material were thoroughly analyzed using techniques such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis Spectroscopy. The resulting sensor exhibited remarkable sensitivity and selectivity, achieving a detection limit at the ppb level for H₂S. The study indicates that Cu doping significantly enhances the gas sensing performance of Fe₂O₃ by introducing abundant active sites within the material. These enhanced sensing properties emphasize the potential of MOF-derived Cu-doped Fe₂O₃ as a highly effective material for H₂S gas sensors in various applications.

Keywords: detection limit, doping, MOF, sensitivity, sensor

Procedia PDF Downloads 13
3327 Research on Placement Method of the Magnetic Flux Leakage Sensor Based on Online Detection of the Transformer Winding Deformation

Authors: Wei Zheng, Mao Ji, Zhe Hou, Meng Huang, Bo Qi

Abstract:

The transformer is the key equipment of the power system. Winding deformation is one of the main transformer defects, and timely and effective detection of the transformer winding deformation can ensure the safe and stable operation of the transformer to the maximum extent. When winding deformation occurs, the size, shape and spatial position of the winding will change, which directly leads to the change of magnetic flux leakage distribution. Therefore, it is promising to study the online detection method of the transformer winding deformation based on magnetic flux leakage characteristics, in which the key step is to study the optimal placement method of magnetic flux leakage sensors inside the transformer. In this paper, a simulation model of the transformer winding deformation is established to obtain the internal magnetic flux leakage distribution of the transformer under normal operation and different winding deformation conditions, and the law of change of magnetic flux leakage distribution due to winding deformation is analyzed. The results show that different winding deformation leads to different characteristics of the magnetic flux leakage distribution. On this basis, an optimized placement of magnetic flux leakage sensors inside the transformer is proposed to provide a basis for the online detection method of transformer winding deformation based on the magnetic flux leakage characteristics.

Keywords: magnetic flux leakage, sensor placement method, transformer, winding deformation

Procedia PDF Downloads 196
3326 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection

Procedia PDF Downloads 389
3325 Optimized Parameters for Simultaneous Detection of Cd²⁺, Pb²⁺ and CO²⁺ Ions in Water Using Square Wave Voltammetry on the Unmodified Glassy Carbon Electrode

Authors: K. Sruthi, Sai Snehitha Yadavalli, Swathi Gosh Acharyya

Abstract:

Water is the most crucial element for sustaining life on earth. Increasing water pollution directly or indirectly leads to harmful effects on human life. Most of the heavy metal ions are harmful in their cationic form. These heavy metal ions are released by various activities like disposing of batteries, industrial wastes, automobile emissions, and soil contamination. Ions like (Pb, Co, Cd) are carcinogenic and show many harmful effects when consumed more than certain limits proposed by WHO. The simultaneous detection of the heavy metal ions (Pb, Co, Cd), which are highly toxic, is reported in this study. There are many analytical methods for quantifying, but electrochemical techniques are given high priority because of their sensitivity and ability to detect and recognize lower concentrations. Square wave voltammetry was preferred in electrochemical methods due to the absence of background currents which is interference. Square wave voltammetry was performed on GCE for the quantitative detection of ions. Three electrode system consisting of a glassy carbon electrode as the working electrode (3 mm diameter), Ag/Agcl electrode as the reference electrode, and a platinum wire as the counter electrode was chosen for experimentation. The mechanism of detection was done by optimizing the experimental parameters, namely pH, scan rate, and temperature. Under the optimized conditions, square wave voltammetry was performed for simultaneous detection. Scan rates were varied from 5 mV/s to 100 mV/s and found that at 25 mV/s all the three ions were detected simultaneously with proper peaks at particular stripping potential. The variation of pH from 3 to 8 was done where the optimized pH was taken as pH 5 which holds good for three ions. There was a decreasing trend at starting because of hydrogen gas evolution, and after pH 5 again there was a decreasing trend that is because of hydroxide formation on the surface of the working electrode (GCE). The temperature variation from 25˚C to 45˚C was done where the optimum temperature concerning three ions was taken as 35˚C. Deposition and stripping potentials were given as +1.5 V and -1.5 V, and the resting time of 150 seconds was given. Three ions were detected at stripping potentials of Cd²⁺ at -0.84 V, Pb²⁺ at -0.54 V, and Co²⁺ at -0.44 V. The parameters of detection were optimized on a glassy carbon electrode for simultaneous detection of the ions at lower concentrations by square wave voltammetry.

Keywords: cadmium, cobalt, lead, glassy carbon electrode, square wave anodic stripping voltammetry

Procedia PDF Downloads 117
3324 Barnard Feature Point Detector for Low-Contractperiapical Radiography Image

Authors: Chih-Yi Ho, Tzu-Fang Chang, Chih-Chia Huang, Chia-Yen Lee

Abstract:

In dental clinics, the dentists use the periapical radiography image to assess the effectiveness of endodontic treatment of teeth with chronic apical periodontitis. Periapical radiography images are taken at different times to assess alveolar bone variation before and after the root canal treatment, and furthermore to judge whether the treatment was successful. Current clinical assessment of apical tissue recovery relies only on dentist personal experience. It is difficult to have the same standard and objective interpretations due to the dentist or radiologist personal background and knowledge. If periapical radiography images at the different time could be registered well, the endodontic treatment could be evaluated. In the image registration area, it is necessary to assign representative control points to the transformation model for good performances of registration results. However, detection of representative control points (feature points) on periapical radiography images is generally very difficult. Regardless of which traditional detection methods are practiced, sufficient feature points may not be detected due to the low-contrast characteristics of the x-ray image. Barnard detector is an algorithm for feature point detection based on grayscale value gradients, which can obtain sufficient feature points in the case of gray-scale contrast is not obvious. However, the Barnard detector would detect too many feature points, and they would be too clustered. This study uses the local extrema of clustering feature points and the suppression radius to overcome the problem, and compared different feature point detection methods. In the preliminary result, the feature points could be detected as representative control points by the proposed method.

Keywords: feature detection, Barnard detector, registration, periapical radiography image, endodontic treatment

Procedia PDF Downloads 442
3323 Robust and Real-Time Traffic Counting System

Authors: Hossam M. Moftah, Aboul Ella Hassanien

Abstract:

In the recent years the importance of automatic traffic control has increased due to the traffic jams problem especially in big cities for signal control and efficient traffic management. Traffic counting as a kind of traffic control is important to know the road traffic density in real time. This paper presents a fast and robust traffic counting system using different image processing techniques. The proposed system is composed of the following four fundamental building phases: image acquisition, pre-processing, object detection, and finally counting the connected objects. The object detection phase is comprised of the following five steps: subtracting the background, converting the image to binary, closing gaps and connecting nearby blobs, image smoothing to remove noises and very small objects, and detecting the connected objects. Experimental results show the great success of the proposed approach.

Keywords: traffic counting, traffic management, image processing, object detection, computer vision

Procedia PDF Downloads 294
3322 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 131
3321 A DNA-Based Nano-biosensor for the Rapid Detection of the Dengue Virus in Mosquito

Authors: Lilia M. Fernando, Matthew K. Vasher, Evangelyn C. Alocilja

Abstract:

This paper describes the development of a DNA-based nanobiosensor to detect the dengue virus in mosquito using electrically active magnetic (EAM) nanoparticles as the concentrator and electrochemical transducer. The biosensor detection encompasses two sets of oligonucleotide probes that are specific to the dengue virus: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe–DNA target–capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation–reduction signal of the EAM nanoparticles. Results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at dengue DNA concentrations as low as 10 ng/ul.

Keywords: dengue, magnetic nanoparticles, mosquito, nanobiosensor

Procedia PDF Downloads 366
3320 Detection of Micro-Unmanned Ariel Vehicles Using a Multiple-Input Multiple-Output Digital Array Radar

Authors: Tareq AlNuaim, Mubashir Alam, Abdulrazaq Aldowesh

Abstract:

The usage of micro-Unmanned Ariel Vehicles (UAVs) has witnessed an enormous increase recently. Detection of such drones became a necessity nowadays to prevent any harmful activities. Typically, such targets have low velocity and low Radar Cross Section (RCS), making them indistinguishable from clutter and phase noise. Multiple-Input Multiple-Output (MIMO) Radars have many potentials; it increases the degrees of freedom on both transmit and receive ends. Such architecture allows for flexibility in operation, through utilizing the direct access to every element in the transmit/ receive array. MIMO systems allow for several array processing techniques, permitting the system to stare at targets for longer times, which improves the Doppler resolution. In this paper, a 2×2 MIMO radar prototype is developed using Software Defined Radio (SDR) technology, and its performance is evaluated against a slow-moving low radar cross section micro-UAV used by hobbyists. Radar cross section simulations were carried out using FEKO simulator, achieving an average of -14.42 dBsm at S-band. The developed prototype was experimentally evaluated achieving more than 300 meters of detection range for a DJI Mavic pro-drone

Keywords: digital beamforming, drone detection, micro-UAV, MIMO, phased array

Procedia PDF Downloads 139
3319 Comparison of Direction of Arrival Estimation Method for Drone Based on Phased Microphone Array

Authors: Jiwon Lee, Yeong-Ju Go, Jong-Soo Choi

Abstract:

Drones were first developed for military use and were used in World War 1. But recently drones have been used in a variety of fields. Several companies actively utilize drone technology to strengthen their services, and in agriculture, drones are used for crop monitoring and sowing. Other people use drones for hobby activities such as photography. However, as the range of use of drones expands rapidly, problems caused by drones such as improperly flying, privacy and terrorism are also increasing. As the need for monitoring and tracking of drones increases, researches are progressing accordingly. The drone detection system estimates the position of the drone using the physical phenomena that occur when the drones fly. The drone detection system measures being developed utilize many approaches, such as radar, infrared camera, and acoustic detection systems. Among the various drone detection system, the acoustic detection system is advantageous in that the microphone array system is small, inexpensive, and easy to operate than other systems. In this paper, the acoustic signal is acquired by using minimum microphone when drone is flying, and direction of drone is estimated. When estimating the Direction of Arrival(DOA), there is a method of calculating the DOA based on the Time Difference of Arrival(TDOA) and a method of calculating the DOA based on the beamforming. The TDOA technique requires less number of microphones than the beamforming technique, but is weak in noisy environments and can only estimate the DOA of a single source. The beamforming technique requires more microphones than the TDOA technique. However, it is strong against the noisy environment and it is possible to simultaneously estimate the DOA of several drones. When estimating the DOA using acoustic signals emitted from the drone, it is impossible to measure the position of the drone, and only the direction can be estimated. To overcome this problem, in this work we show how to estimate the position of drones by arranging multiple microphone arrays. The microphone array used in the experiments was four tetrahedral microphones. We simulated the performance of each DOA algorithm and demonstrated the simulation results through experiments.

Keywords: acoustic sensing, direction of arrival, drone detection, microphone array

Procedia PDF Downloads 160
3318 Biosensor Technologies in Neurotransmitters Detection

Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha

Abstract:

Catecholamines are vital neurotransmitters that mediate a variety of central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, optical techniques for the detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid-modified enzymatic sensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence as well as electrochemical sensing strategy for catecholamines detection.

Keywords: biosensors, catecholamines, fluorescence, enzymes

Procedia PDF Downloads 111
3317 Application on Metastable Measurement with Wide Range High Resolution VDL Circuit

Authors: Po-Hui Yang, Jing-Min Chen, Po-Yu Kuo, Chia-Chun Wu

Abstract:

This paper proposed a high resolution Vernier Delay Line (VDL) measurement circuit with coarse and fine detection mechanism, which improved the trade-off problem between high resolution and less delay cells in traditional VDL circuits. And the measuring time of proposed measurement circuit is also under the high resolution requests. At first, the testing range of input signal which proposed high resolution delay line is detected by coarse detection VDL. Moreover, the delayed input signal is transmitted to fine detection VDL for measuring value with better accuracy. This paper is implemented at 0.18μm process, operating frequency is 100 MHz, and the resolution achieved 2.0 ps with only 16-stage delay cells. The test range is 170ps wide, and 17% stages saved compare with traditional single delay line circuit.

Keywords: vernier delay line, D-type flip-flop, DFF, metastable phenomenon

Procedia PDF Downloads 597
3316 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: ensembles, false positives, feature selection, one side class algorithm

Procedia PDF Downloads 292
3315 Use of a Relief Mobile Unit in the Humanitarian Cause

Authors: Stephani Ferreira da Silva Manso, Regina M. M. Dias Chiquetano

Abstract:

This article aims to present a research on one of the main aspects of response in humanitarian causes: agility of operations. Brazil is among the 10 countries with the highest number of people affected by disasters.The main types of disasters in Brazil include floods and mass movements. Focusing on a nongovernmental organization that began in the conflicts of First and Second World Wars, arriving in Brazil in 1984. In 2017, the organization has activated their emergency response mobile unit to reach families following flooding that affected around 9,000 people. In partnership with Truckvan, the mobile unit, has 45 m² of floor space and is divided into three compartments each designed to meet the main needs of the population: the first will be used to prepare hot meals, the second to washing and drying of clothes, and the third for the accomplishment of psychological support. This option will be available for situations where there are more than one thousand victims who are sheltered, even temporarily, and demand immediate care, which will be identified through the National Emergency Plan. In this way, the actions that were already done as donation of blankets, clothes, hygiene kits, among others, will be enhanced. Studies show that one of the biggest difficulties in responding to the disaster is in the first few hours after the disaster. This study aimed to show the organization's innovative results and to propose improvement actions in transportation focused on humanitarian aid as the concepts developed in the manufacture and adaptation of the mobile unit to the rescue environment. Thus, the principles of this humanitarian aid bus are very effective.

Keywords: disasters, humanitarian cause, relief, unit mobile

Procedia PDF Downloads 190
3314 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.

Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification

Procedia PDF Downloads 238
3313 A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System

Authors: Mulugeta K. Tefera, Xiaolong Yang, Jian Liu

Abstract:

Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used.

Keywords: background modeling, Gaussian mixture model, inter-frame difference, object detection and tracking, video surveillance

Procedia PDF Downloads 477
3312 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms

Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao

Abstract:

Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.

Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50

Procedia PDF Downloads 139