Search results for: cycle space
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5675

Search results for: cycle space

4955 Economic Assessment of CO2-Based Methane, Methanol and Polyoxymethylene Production

Authors: Wieland Hoppe, Nadine Wachter, Stefan Bringezu

Abstract:

Carbon dioxide (CO2) utilization might be a promising way to substitute fossil raw materials like coal, oil or natural gas as carbon source of chemical production. While first life cycle assessments indicate a positive environmental performance of CO2-based process routes, a commercialization of CO2 is limited by several economic obstacles up to now. We, therefore, analyzed the economic performance of the three CO2-based chemicals methane and methanol as basic chemicals and polyoxymethylene as polymer on a cradle-to-gate basis. Our approach is oriented towards life cycle costing. The focus lies on the cost drivers of CO2-based technologies and options to stimulate a CO2-based economy by changing regulative factors. In this way, we analyze various modes of operation and give an outlook for the potentially cost-effective development in the next decades. Biogas, waste gases of a cement plant, and flue gases of a waste incineration plant are considered as CO2-sources. The energy needed to convert CO2 into hydrocarbons via electrolysis is assumed to be supplied by wind power, which is increasingly available in Germany. Economic data originates from both industrial processes and process simulations. The results indicate that CO2-based production technologies are not competitive with conventional production methods under present conditions. This is mainly due to high electricity generation costs and regulative factors like the German Renewable Energy Act (EEG). While the decrease in production costs of CO2-based chemicals might be limited in the next decades, a modification of relevant regulative factors could potentially promote an earlier commercialization.

Keywords: carbon capture and utilization (CCU), economic assessment, life cycle costing (LCC), power-to-X

Procedia PDF Downloads 291
4954 Implementation of a Low-Cost Instrumentation for an Open Cycle Wind Tunnel to Evaluate Pressure Coefficient

Authors: Cristian P. Topa, Esteban A. Valencia, Victor H. Hidalgo, Marco A. Martinez

Abstract:

Wind tunnel experiments for aerodynamic profiles display numerous advantages, such as: clean steady laminar flow, controlled environmental conditions, streamlines visualization, and real data acquisition. However, the experiment instrumentation usually is expensive, and hence, each test implies a incremented in design cost. The aim of this work is to select and implement a low-cost static pressure data acquisition system for a NACA 2412 airfoil in an open cycle wind tunnel. This work compares wind tunnel experiment with Computational Fluid Dynamics (CFD) simulation and parametric analysis. The experiment was evaluated at Reynolds of 1.65 e5, with increasing angles from -5° to 15°. The comparison between the approaches show good enough accuracy, between the experiment and CFD, additional parametric analysis results differ widely from the other methods, which complies with the lack of accuracy of the lateral approach due its simplicity.

Keywords: wind tunnel, low cost instrumentation, experimental testing, CFD simulation

Procedia PDF Downloads 180
4953 Geographic Legacies for Modern Day Disease Research: Autism Spectrum Disorder as a Case-Control Study

Authors: Rebecca Richards Steed, James Van Derslice, Ken Smith, Richard Medina, Amanda Bakian

Abstract:

Elucidating gene-environment interactions for heritable disease outcomes is an emerging area of disease research, with genetic studies informing hypotheses for environment and gene interactions underlying some of the most confounding diseases of our time, like autism spectrum disorder (ASD). Geography has thus far played a key role in identifying environmental factors contributing to disease, but its use can be broadened to include genetic and environmental factors that have a synergistic effect on disease. Through the use of family pedigrees and disease outcomes with life-course residential histories, space-time clustering of generations at critical developmental windows can provide further understanding of (1) environmental factors that contribute to disease patterns in families, (2) susceptible critical windows of development most impacted by environment, (3) and that are most likely to lead to an ASD diagnosis. This paper introduces a retrospective case-control study that utilizes pedigree data, health data, and residential life-course location points to find space-time clustering of ancestors with a grandchild/child with a clinical diagnosis of ASD. Finding space-time clusters of ancestors at critical developmental windows serves as a proxy for shared environmental exposures. The authors refer to geographic life-course exposures as geographic legacies. Identifying space-time clusters of ancestors creates a bridge for researching exposures of past generations that may impact modern-day progeny health. Results from the space-time cluster analysis show multiple clusters for the maternal and paternal pedigrees. The paternal grandparent pedigree resulted in the most space-time clustering for birth and childhood developmental windows. No statistically significant clustering was found for adolescent years. These results will be further studied to identify the specific share of space-time environmental exposures. In conclusion, this study has found significant space-time clusters of parents, and grandparents for both maternal and paternal lineage. These results will be used to identify what environmental exposures have been shared with family members at critical developmental windows of time, and additional analysis will be applied.

Keywords: family pedigree, environmental exposure, geographic legacy, medical geography, transgenerational inheritance

Procedia PDF Downloads 116
4952 Monitoring Vaginal Electrical Resistance, Follicular Wave and Hormonal Profile during Estrus Cycle in Indigenous Sheep

Authors: T. A. Rosy, M. R. I. Talukdar, N. S. Juyena, F. Y. Bari, M. N. Islam

Abstract:

The ovarian follicular dynamics, vaginal electrical resistance (VER) and progesterone (P4) and estrogen (E2) profiles were investigated during estrus cycle in four indigenous ewes. Daily VER values were recorded with heat detector. The follicles were observed and measured by trans-rectal ultrasonography. Blood was collected daily for hormonal profiles. Results showed a significant variation in VER values (P<0.05) at estrus in regards to ewes and cycles. The day difference between two successive lower values in VER waves ranged from 13-17 days which might indicate the estrus cycle in indigenous ewes. Trans-rectal ultrasonography of ovaries revealed the presence of two to four waves of follicular growth during the study period. Results also showed that follicular diameter was negatively correlated with VER values. Study of hormonal profiles by ELISA revealed a positive correlation between E2 concentration and development of follicle and negative correlation between P4 concentration and development of follicle. The concentrations of estradiol increased at the time of estrus and then fall down in a basal level. Development of follicular size was accompanied by an increase in the concentration of serum estradiol. Inversely, when follicles heed to ovulation concentration of progesterone starts to fall down and after ovulation it turns its way to the zenith and remains at this state until next ovulatory follicle comes to its maximum diameter. This study could help scientists to set up a manipulative reproductive technique for improving genetic values of sheep in Bangladesh.

Keywords: ovarian follicle, hormonal profile, sheep, ultrasonography, vaginal electrical resistance

Procedia PDF Downloads 266
4951 Computational Fluid Dynamics Simulation of Reservoir for Dwell Time Prediction

Authors: Nitin Dewangan, Nitin Kattula, Megha Anawat

Abstract:

Hydraulic reservoir is the key component in the mobile construction vehicles; most of the off-road earth moving construction machinery requires bigger side hydraulic reservoirs. Their reservoir construction is very much non-uniform and designers used such design to utilize the space available under the vehicle. There is no way to find out the space utilization of the reservoir by oil and validity of design except virtual simulation. Computational fluid dynamics (CFD) helps to predict the reservoir space utilization by vortex mapping, path line plots and dwell time prediction to make sure the design is valid and efficient for the vehicle. The dwell time acceptance criteria for effective reservoir design is 15 seconds. The paper will describe the hydraulic reservoir simulation which is carried out using CFD tool acuSolve using automated mesh strategy. The free surface flow and moving reference mesh is used to define the oil flow level inside the reservoir. The first baseline design is not able to meet the acceptance criteria, i.e., dwell time below 15 seconds because the oil entry and exit ports were very close. CFD is used to redefine the port locations for the reservoir so that oil dwell time increases in the reservoir. CFD also proposed baffle design the effective space utilization. The final design proposed through CFD analysis is used for physical validation on the machine.

Keywords: reservoir, turbulence model, transient model, level set, free-surface flow, moving frame of reference

Procedia PDF Downloads 152
4950 Life Cycle Assessment to Study the Acidification and Eutrophication Impacts of Sweet Cherry Production

Authors: G. Bravo, D. Lopez, A. Iriarte

Abstract:

Several organizations and governments have created a demand for information about the environmental impacts of agricultural products. Today, the export oriented fruit sector in Chile is being challenged to quantify and reduce their environmental impacts. Chile is the largest southern hemisphere producer and exporter of sweet cherry fruit. Chilean sweet cherry production reached a volume of 80,000 tons in 2012. The main destination market for the Chilean cherry in 2012 was Asia (including Hong Kong and China), taking in 69% of exported volume. Another important market was the United States with 16% participation, followed by Latin America (7%) and Europe (6%). Concerning geographical distribution, the Chilean conventional cherry production is focused in the center-south area, between the regions of Maule and O’Higgins; both regions represent 81% of the planted surface. The Life Cycle Assessment (LCA) is widely accepted as one of the major methodologies for assessing environmental impacts of products or services. The LCA identifies the material, energy, material, and waste flows of a product or service, and their impact on the environment. There are scant studies that examine the impacts of sweet cherry cultivation, such as acidification and eutrophication. Within this context, the main objective of this study is to evaluate, using the LCA, the acidification and eutrophication impacts of sweet cherry production in Chile. The additional objective is to identify the agricultural inputs that contributed significantly to the impacts of this fruit. The system under study included all the life cycle stages from the cradle to the farm gate (harvested sweet cherry). The data of sweet cherry production correspond to nationwide representative practices and are based on technical-economic studies and field information obtained in several face-to-face interviews. The study takes into account the following agricultural inputs: fertilizers, pesticides, diesel consumption for agricultural operations, machinery and electricity for irrigation. The results indicated that the mineral fertilizers are the most important contributors to the acidification and eutrophication impacts of the sheet cherry cultivation. Improvement options are suggested for the hotspot in order to reduce the environmental impacts. The results allow planning and promoting low impacts procedures across fruit companies, as well as policymakers, and other stakeholders on the subject. In this context, this study is one of the first assessments of the environmental impacts of sweet cherry production. New field data or evaluation of other life cycle stages could further improve the knowledge on the impacts of this fruit. This study may contribute to environmental information in other countries where there is similar agricultural production for sweet cherry.

Keywords: acidification, eutrophication, life cycle assessment, sweet cherry production

Procedia PDF Downloads 271
4949 Developing NAND Flash-Memory SSD-Based File System Design

Authors: Jaechun No

Abstract:

This paper focuses on I/O optimizations of N-hybrid (New-Form of hybrid), which provides a hybrid file system space constructed on SSD and HDD. Although the promising potentials of SSD, such as the absence of mechanical moving overhead and high random I/O throughput, have drawn a lot of attentions from IT enterprises, its high ratio of cost/capacity makes it less desirable to build a large-scale data storage subsystem composed of only SSDs. In this paper, we present N-hybrid that attempts to integrate the strengths of SSD and HDD, to offer a single, large hybrid file system space. Several experiments were conducted to verify the performance of N-hybrid.

Keywords: SSD, data section, I/O optimizations, hybrid system

Procedia PDF Downloads 418
4948 The Effects of Native Forests Conservation and Preservation Scenarios on Two Chilean Basins Water Cycle, under Climate Change Conditions

Authors: Hernández Marieta, Aguayo Mauricio, Pedreros María, Llompart Ovidio

Abstract:

The hydrological cycle is influenced by multiple factors, including climate change, land use changes, and anthropogenic activities, all of which threaten water availability and quality worldwide. In recent decades, numerous investigations have used landscape metrics and hydrological modeling to demonstrate the influence of landscape patterns on the hydrological cycle components' natural dynamics. Many of these investigations have determined the repercussions on the quality and availability of water, sedimentation, and erosion regime, mainly in Asian basins. In fact, there is progress in this branch of science, but there are still unanswered questions for our region. This study examines the hydrological response in Chilean basins under various land use change scenarios (LUCC) and the influence of climate change. The components of the water cycle were modeled using a physically distributed type hydrological and hydraulic simulation model based on and oriented to mountain basins TETIS model. Future climate data were derived from Chilean regional simulations using the WRF-MIROC5 model, forced with the RCP 8.5 scenario, at a 25 km resolution for the periods 2030-2060 and 2061-2091. LUCC scenarios were designed based on nature-based solutions, landscape pattern influences, current national and international water conservation legislation, and extreme scenarios of non-preservation and conservation of native forests. The scenarios that demonstrate greater water availability, even under climate change, are those promoting the restoration of native forests in over 30% of the basins, even alongside agricultural activities. Current legislation promoting the restoration of native forests only in riparian zones (30-60 m or 200 m in steeper areas) will not be resilient enough to address future water shortages. Evapotranspiration, direct runoff, and water availability at basin outlets showed the greatest variations due to LUCC. The relationship between hydrological modeling and landscape configuration is an effective tool for establishing future territorial planning that prioritizes water resource protection.

Keywords: TETIS, landscape pattern, hydrological process, water availability, Chilean basins

Procedia PDF Downloads 36
4947 Performance Analysis of a Shell and Tube Heat Exchanger in the Organic Rankine Cycle Power Plant

Authors: Yogi Sirodz Gaos, Irvan Wiradinata

Abstract:

In the 500 kW Organic Rankine Cycle (ORC) power plant in Indonesia, an AFT (according to the Tubular Exchanger Manufacturers Association – TEMA) type shell and tube heat exchanger device is used as a pre-heating system for the ORC’s hot water circulation system. The pre-heating source is a waste heat recovery of the brine water, which is tapped from a geothermal power plant. The brine water itself has 5 MWₜₕ capacities, with average temperature of 170ᵒC, and 7 barg working pressure. The aim of this research is to examine the performance of the heat exchanger in the ORC system in a 500 kW ORC power plant. The data for this research were collected during the commissioning on the middle of December 2016. During the commissioning, the inlet temperature and working pressure of the brine water to the shell and tube type heat exchanger was 149ᵒC, and 4.4 barg respectively. Furthermore, the ΔT for the hot water circulation of the ORC system to the heat exchanger was 27ᵒC, with the inlet temperature of 140ᵒC. The pressure in the hot circulation system was dropped slightly from 7.4ᵒC to 7.1ᵒC. The flow rate of the hot water circulation was 80.5 m³/h. The presentation and discussion of a case study on the performance of the heat exchanger on the 500 kW ORC system is presented as follows: (1) the heat exchange duty is 2,572 kW; (2) log mean temperature of the heat exchanger is 13.2ᵒC; (3) the actual overall thermal conductivity is 1,020.6 W/m².K (4) the required overall thermal conductivity is 316.76 W/m².K; and (5) the over design for this heat exchange performance is 222.2%. An analysis of the heat exchanger detailed engineering design (DED) is briefly discussed. To sum up, this research concludes that the shell and tube heat exchangers technology demonstrated a good performance as pre-heating system for the ORC’s hot water circulation system. Further research need to be conducted to examine the performance of heat exchanger system on the ORC’s hot water circulation system.

Keywords: shell and tube, heat exchanger, organic Rankine cycle, performance, commissioning

Procedia PDF Downloads 143
4946 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery

Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori

Abstract:

The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.

Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS

Procedia PDF Downloads 191
4945 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013

Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran

Abstract:

Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.

Keywords: ALOS/AVNIR-2, dengue, space-time clustering analysis, Sri Lanka

Procedia PDF Downloads 476
4944 Fermentation of Xylose and Glucose Mixture in Intensified Reactors by Scheffersomyces stipitis to Produce Ethanol

Authors: S. C. Santos, S. R. Dionísio, A. L. D. De Andrade, L. R. Roque, A. C. Da Costa, J. L. Ienczak

Abstract:

In this work, two fermentations at different temperatures (25 and 30 ºC), with cell recycling, were accomplished to produce ethanol, using a mix of commercial substrates, xylose (70%) and glucose (30%), as organic source for Scheffersomyces stipitis. Five consecutive fermentations of 80 g L-1 (1º, 2º and 3º recycles), 96 g L-1 (4º recycle) and 120 g L-1 (5º recycle)reduced sugars led to a final maximum ethanol concentration of 17.2 and 34.5 g L-1, at 25 and 30 ºC, respectively. Glucose was the preferred substrate; moreover xylose startup degradation was initiated after a remaining glucose presence in the medium. Results showed that yeast acid treatment, performed before each cycle, provided improvements on cell viability, accompanied by ethanol productivity of 2.16 g L-1 h-1 at 30 ºC. A maximum 36% of xylose was retained in the fermentation medium and after five-cycle fermentation an ethanol yield of 0.43 g ethanol/g sugars was observed. S. stipitis fermentation capacity and tolerance showed better results at 30 ºC with 83.4% of theoretical yield referenced on initial biomass.

Keywords: 5-carbon sugar, cell recycling fermenter, mixed sugars, xylose-fermenting yeast

Procedia PDF Downloads 418
4943 Empowering Children through Co-creation: Writing a Book with and for Children about Their First Steps Towards Urban Independence

Authors: Beata Patuszynska

Abstract:

Children are largely absent from Polish social discourse, a fact which is mirrored in urban planning processes. Their absence creates a vicious circle – an unfriendly urban space discourages children from going outside on their own, meaning adults do not see a need to make spaces more friendly for a group, not present. The pandemic and lockdown, with their closed schools and temporary ban on unaccompanied minors on the streets, have only reinforced this. The project – co-writing with children a book concerning their first steps into urban independence - aims at empowering children, enabling them to find their voice when it comes to urban space. The foundation for the book was data collected during research and workshops with children from Warsaw primary schools, aged 7-10 - the age they begin independent travel in the city. The project was carried out with the participation and involvement of children at each creative step. Children were (1) models: the narrator is an 7-year-old boy getting ready for urban independence. He shares his experience as well as the experience of his school friends and his 10-year-old sister, who already travels on her own. Children were (2) teachers: the book is based on authentic children’s stories and experience, along with the author’s findings from research undertaken with children. The material was extended by observations and conclusions made during the pandemic. Children were (3) reviewers: a series of draft chapters from the book underwent review by children during workshops performed in a school. The process demonstrated that all children experience similar pleasures and worries when it comes to interaction with urban space. Furthermore, they also have similar needs that need satisfying. In my article, I will discuss; (1) the advantages of creating together with children; (2) my conclusions on how to work with children in participatory processes; (3) research results: perceptions of urban space by children age 7-10, when they begin their independent travel in the city; the barriers to and pleasures derived from independent urban travel; the influence of the pandemic on children’s feelings and their behaviour in urban spaces.

Keywords: children, urban space, co-creation, participation, human rights

Procedia PDF Downloads 103
4942 Calculate Product Carbon Footprint through the Internet of Things from Network Science

Authors: Jing Zhang

Abstract:

To reduce the carbon footprint of mankind and become more sustainable is one of the major challenges in our era. Internet of Things (IoT) mainly resolves three problems: Things to Things (T2T), Human to Things, H2T), and Human to Human (H2H). Borrowing the classification of IoT, we can find carbon prints of industries also can be divided in these three ways. Therefore, monitoring the routes of generation and circulation of products may help calculate product carbon print. This paper does not consider any technique used by IoT itself, but the ideas of it look at the connection of products. Carbon prints are like a gene or mark of a product from raw materials to the final products, which never leave the products. The contribution of this paper is to combine the characteristics of IoT and the methodology of network science to find a way to calculate the product's carbon footprint. Life cycle assessment, LCA is a traditional and main tool to calculate the carbon print of products. LCA is a traditional but main tool, which includes three kinds.

Keywords: product carbon footprint, Internet of Things, network science, life cycle assessment

Procedia PDF Downloads 116
4941 Transient Simulation Using SPACE for ATLAS Facility to Investigate the Effect of Heat Loss on Major Parameters

Authors: Suhib A. Abu-Seini, Kyung-Doo Kim

Abstract:

A heat loss model for ATLAS facility was introduced using SPACE code predefined correlations and various dialing factors. As all previous simulations were carried out using a heat loss free input; the facility was considered to be completely insulated and the core power was reduced by the experimentally measured values of heat loss to compensate to the account for the loss of heat, this study will consider heat loss throughout the simulation. The new heat loss model will be affecting SPACE code simulation as heat being leaked out of the system throughout a transient will alter many parameters corresponding to temperature and temperature difference. For that, a Station Blackout followed by a multiple Steam Generator Tube Rupture accident will be simulated using both the insulated system approach and the newly introduced heat loss input of the steady state. Major parameters such as system temperatures, pressure values, and flow rates to be put into comparison and various analysis will be suggested upon it as the experimental values will not be the reference to validate the expected outcome. This study will not only show the significance of heat loss consideration in the processes of prevention and mitigation of various incidents, design basis and beyond accidents as it will give a detailed behavior of ATLAS facility during both processes of steady state and major transient, but will also present a verification of how credible the data acquired of ATLAS are; since heat loss values for steady state were already mismatched between SPACE simulation results and ATLAS data acquiring system. Acknowledgement- This work was supported by the Korean institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea.

Keywords: ATLAS, heat loss, simulation, SPACE, station blackout, steam generator tube rupture, verification

Procedia PDF Downloads 224
4940 A User-Friendly Approach for Design and Economic Analysis of Standalone PV System for the Electrification of Rural Area of Eritrea

Authors: Tedros Asefaw Gebremeskel, Xaoyi Yang

Abstract:

The potential of solar energy in Eritrea is relatively high, based on this truth, there are a number of isolated and remote villages situated far away from the electrical national grid which don’t get access to electricity. The core objective of this work is to design a most favorable and cost-effective power by means of standalone PV system for the electrification of a single housing in the inaccessible area of Eritrea. The sizing of the recommended PV system is achieved, such as radiation data and electrical load for the typical household of the selected site is also well thought-out in the design steps. Finally, the life cycle cost (LCC) analysis is conducted to evaluate the economic viability of the system. The outcome of the study promote the use of PV system for a residential building and show that PV system is a reasonable option to provide electricity for household applications in the rural area of Eritrea.

Keywords: electrification, inaccessible area, life cycle cost, residential building, stand-alone PV system

Procedia PDF Downloads 143
4939 [Keynote Talk]: Existence of Random Fixed Point Theorem for Contractive Mappings

Authors: D. S. Palimkar

Abstract:

Random fixed point theory has received much attention in recent years, and it is needed for the study of various classes of random equations. The study of random fixed point theorems was initiated by the Prague school of probabilistic in the 1950s. The existence and uniqueness of fixed points for the self-maps of a metric space by altering distances between the points with the use of a control function is an interesting aspect in the classical fixed point theory. In a new category of fixed point problems for a single self-map with the help of a control function that alters the distance between two points in a metric space which they called an altering distance function. In this paper, we prove the results of existence of random common fixed point and its uniqueness for a pair of random mappings under weakly contractive condition for generalizing alter distance function in polish spaces using Random Common Fixed Point Theorem for Generalized Weakly Contractions.

Keywords: Polish space, random common fixed point theorem, weakly contractive mapping, altering function

Procedia PDF Downloads 273
4938 “Waving High the Delicate Mistress”: on Feminist Geography and American Identity in the Valley of the Moon

Authors: Yangyang Zhang

Abstract:

In The Valley of the Moon, Jack London implicitly presents the connection between the city and the male, the country and the female, constructing a gender space where the city and the countryside are opposed. But meanwhile, London is constantly dismantling the gender space through the reversed travel map so as to highlight the fluidity and productivity of female space. Under such circumstance, the original gender space has to be reorganized. Through the construction of gendered urban and rural spaces, Jack London presents the national crisis in the process of urbanization of the American West in the late 19th century, while the female-led reversed travel map reproduces the original contribution of the American West to the construction of nationality. In the end, the reorganized neutral space “valley of the moon” reflects the “garden” motif in American national imagination and plays an important role in rebuilding national identity. This research studies the feminist geography and cartography in Jack London's novel The Valley of the Moon and analyzes the gender-politics attribution in the literary geography writing in London's novel on this basis. The research returns to the American historical context at the end of the 19th century, focusing on how London’s feminist geography embodies his sense of nationality and investigating how female-dominated literary cartography reconstructs American identity. This paper takes Literary Cartography, and feminist geography as the ideological guide combines with the discourse of gender politics. comprehensively uses various literary criticism methods such as deconstructionist literary criticism, and new historicism literary criticism, etc., Through the study of Jack London's work, the paper aims to analyse how London constructs a national image by literary geography.

Keywords: American identity, American west, feminist geography, garden motif, the valley of the moon

Procedia PDF Downloads 126
4937 Defining a Framework for Holistic Life Cycle Assessment of Building Components by Considering Parameters Such as Circularity, Material Health, Biodiversity, Pollution Control, Cost, Social Impacts, and Uncertainty

Authors: Naomi Grigoryan, Alexandros Loutsioli Daskalakis, Anna Elisse Uy, Yihe Huang, Aude Laurent (Webanck)

Abstract:

In response to the building and construction sectors accounting for a third of all energy demand and emissions, the European Union has placed new laws and regulations in the construction sector that emphasize material circularity, energy efficiency, biodiversity, and social impact. Existing design tools assess sustainability in early-stage design for products or buildings; however, there is no standardized methodology for measuring the circularity performance of building components. Existing assessment methods for building components focus primarily on carbon footprint but lack the comprehensive analysis required to design for circularity. The research conducted in this paper covers the parameters needed to assess sustainability in the design process of architectural products such as doors, windows, and facades. It maps a framework for a tool that assists designers with real-time sustainability metrics. Considering the life cycle of building components such as façades, windows, and doors involves the life cycle stages applied to product design and many of the methods used in the life cycle analysis of buildings. The current industry standards of sustainability assessment for metal building components follow cradle-to-grave life cycle assessment (LCA), track Global Warming Potential (GWP), and document the parameters used for an Environmental Product Declaration (EPD). Developed by the Ellen Macarthur Foundation, the Material Circularity Indicator (MCI) is a methodology utilizing the data from LCA and EPDs to rate circularity, with a "value between 0 and 1 where higher values indicate a higher circularity+". Expanding on the MCI with additional indicators such as the Water Circularity Index (WCI), the Energy Circularity Index (ECI), the Social Circularity Index (SCI), Life Cycle Economic Value (EV), and calculating biodiversity risk and uncertainty, the assessment methodology of an architectural product's impact can be targeted more specifically based on product requirements, performance, and lifespan. Broadening the scope of LCA calculation for products to incorporate aspects of building design allows product designers to account for the disassembly of architectural components. For example, the Material Circularity Indicator for architectural products such as windows and facades is typically low due to the impact of glass, as 70% of glass ends up in landfills due to damage in the disassembly process. The low MCI can be combatted by expanding beyond cradle-to-grave assessment and focusing the design process on disassembly, recycling, and repurposing with the help of real-time assessment tools. Design for Disassembly and Urban Mining has been integrated within the construction field on small scales as project-based exercises, not addressing the entire supply chain of architectural products. By adopting more comprehensive sustainability metrics and incorporating uncertainty calculations, the sustainability assessment of building components can be more accurately assessed with decarbonization and disassembly in mind, addressing the large-scale commercial markets within construction, some of the most significant contributors to climate change.

Keywords: architectural products, early-stage design, life cycle assessment, material circularity indicator

Procedia PDF Downloads 88
4936 Entropically Favoured Through Space Charge Transfer ‘Lighted’ Photosensitizing Assemblies for ‘Metal Free’ Regulated Photooxidation of Alcohols and Aldehydes

Authors: Gurpreet Kaur, Manoj Kumar, Vandana Bhalla

Abstract:

Strong acceptor-weak acceptor system FN-TPy has been designed and synthesized which undergoes solvent dependent self-assembly in mixed aqueous media to generate through space intermolecular charge transfer assemblies. The as prepared entropically favoured assemblies of FN-TPy exhibit excellent photostability and photosensitizing properties in the assembled state to activate aerial oxygen for efficient generation of reactive oxygen species (ROS) through Type-I and Type-II pathways. The FN-TPy assemblies exhibit excellent potential for regulated oxidation of alcohols and aldehydes under mild reaction conditions (visible light irradiation, aqueous media, room temperature) using aerial oxygen as the ‘oxidant’. The present study demonstrates the potential of FN-TPy assemblies to catalyze controlled oxidation of benzyl alcohol to benzaldehyde and to corresponding benzoic acid.

Keywords: oxidations, photosensitizer, reactive oxygen species, supramolecular assemblies, through space charge transfer.

Procedia PDF Downloads 118
4935 A Study on Micro-Renewal of Mountainous Urban Communities Based on Child-Friendliness

Authors: Zipei Yin

Abstract:

Community space is the main place for children's daily outdoor activities. The mountain community space has the typical characteristics of a closed natural environment, a scattered population layout with height differences, and a relatively independent group structure. This has resulted in special limitations on children's outdoor activities in terms of safety, accessibility, and appropriateness, which urgently makes it necessary to explore how to construct children's activity spaces in mountainous societies under the special limitations. This study investigated the activity spaces for children aged 3-11 years old in typical old communities in Chongqing and evaluated them based on the dimensions of spatial characteristics, environmental safety, and connectivity to summarise three typical patterns of children's outdoor activity spaces in old communities in mountainous cities. Then, under the framework of the appeal of the child-friendly urban environment, taking advantage of the characteristics of the old community in mountain cities compared with the plain urban community, such as complex social form, diversified functional positioning, and good foundation of autonomy, this paper explores the micro-renewal path and strategy of the compound utilization of community public space from the two levels of design and governance, so as to further promote the research and practice of the healthy development of mountain urban community environment.

Keywords: child-friendly, healthy community, community public space, mountainous urban community, community renewal

Procedia PDF Downloads 61
4934 SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space

Authors: Sanaa Chafik, Imane Daoudi, Mounim A. El Yacoubi, Hamid El Ouardi

Abstract:

Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH.

Keywords: approximate nearest neighbor search, content based image retrieval (CBIR), curse of dimensionality, locality sensitive hashing, multidimensional indexing, scalability

Procedia PDF Downloads 321
4933 Learning and Rethinking Language through Gendered Experiences

Authors: Neha Narayanan

Abstract:

The paper tries to explore the role of language in determining spaces occupied by women in everyday lives. It is inspired from an ongoing action research work which employs ‘immersion’- arriving at a research problematic through community research, as a methodology in a Kondh adivasi village, Kirkalpadu located in Rayagada district of the Indian state of Odisha. In the dominant development discourse, language is associated with either preservation or conservation of endangered language or empowerment through language. Beyond these, is the discourse of language as a structure, with the hegemonic quality to organise lifeworld in a specific manner. This rigid structure leads to an experience of constriction of space for women. In Kirkalpadu, the action research work is with young and unmarried women of the age 15-25. During daytime, these women are either in the agricultural field or in the bari -the backyard of the house whose rooms are linearly arranged one after the other ending with the kitchen followed by an open space called bari (in Odia) which is an intimate and gendered space- where they are not easily visible. They justify the experience of restriction in mobility and fear of moving out of the village alone by the argument that the place and the men are nihi-aaeh (not good). These women, who have dropped out of school early to contribute to the (surplus) labour requirement in the household, want to learn English to be able to read signboards when they are on the road, to be able to fill forms at a bank and use mobile phones to communicate with their romantic partner(s). But the incapacity to have within one’s grasp the province of language and the incapacity to take the mobile phone to the kind of requirements marked by the above mentioned impossible transactions with space restricts them to the bari of the house. The paper concludes by seeking to explore the possibilities of learning and rethinking languages which takes into cognizance the gendered experience of women and the desire of women to cross the borders and occupy spaces restricted to them.

Keywords: action research, gendered experience, language, space

Procedia PDF Downloads 171
4932 Building Deep: Mystery And Sensuality In The Underground World

Authors: Rene Davids

Abstract:

Urban undergrounds spaces such as parking garages or metro stations are perceived as interludes before reaching desired destinations, as commodities devoid of aesthetic value. Within the encoded space of the city, commercial underground spaces are the closest expression to pure to structures of consumption and commodity. Even in the house, the cellar is associated with castoffs and waste or, as scholar Mircea Eliade has pointed out at best, with a place to store abandoned household and childhood objects, which lie forgotten and on rediscovery evoke a nostalgic and uncanny sense of the past. Despite a growing body of evidence presented by an increasing number of buildings situated entirely below or semi underground that feature exemplary spatial and sensuous qualities, critics and scholars see them largely as efforts to produce efforts in producing low consumption non-renewable energy. Buildings that also free space above ground. This critical approach neglects to mention and highlight other project drivers such as the notion that the ground and sky can be considered a building’s fundamental context, that underground spaces are conducive to the exploration of pure space, namely an architecture that doesn’t have to deal with facades and or external volumes and that digging into geology can inspire the textural and spatial richness. This paper will argue that while the assessment about the reduced energy consumption of underground construction is important, it does not do justice to the qualities underground buildings can contribute to a city’s expanded urban and or landscape experiences.

Keywords: low non-renewable energy consumption, pure space, underground buildings, urban and landscape experience

Procedia PDF Downloads 179
4931 The Significance of Urban Space in Death Trilogy of Alejandro González Iñárritu

Authors: Marta Kaprzyk

Abstract:

The cinema of Alejandro González Iñárritu hasn’t been subjected to a lot of detailed analysis yet, what makes it an exceptionally interesting research material. The purpose of this presentation is to discuss the significance of urban space in three films of this Mexican director, that forms Death Trilogy: ‘Amores Perros’ (2000), ‘21 Grams’ (2003) and ‘Babel’ (2006). The fact that in the aforementioned movies the urban space itself becomes an additional protagonist with its own identity, psychology and the ability to transform and affect other characters, in itself warrants for independent research and analysis. Independently, such mode of presenting urban space has another function; it enables the director to complement the rest of characters. The basis for methodology of this description of cinematographic space is to treat its visual layer as a point of departure for a detailed analysis. At the same time, the analysis itself will be supported by recognised academic theories concerning special issues, which are transformed here into essential tools necessary to describe the world (mise-en-scène) created by González Iñárritu. In ‘Amores perros’ the Mexico City serves as a scenery – a place full of contradictions- in the movie depicted as a modern conglomerate and an urban jungle, as well as a labyrinth of poverty and violence. In this work stylistic tropes can be found in an intertextual dialogue of the director with photographies of Nan Goldin and Mary Ellen Mark. The story recounted in ‘21 Grams’, the most tragic piece in the trilogy, is characterised by almost hyperrealistic sadism. It takes place in Memphis, which on the screen turns into an impersonal formation full of heterotopias described by Michel Foucault and non-places, as defined by Marc Augé in his essay. By contrast, the main urban space in ‘Babel’ is Tokio, which seems to perfectly correspond with the image of places discussed by Juhani Pallasmaa in his works concerning the reception of the architecture by ‘pathological senses’ in the modern (or, even more adequately, postmodern) world. It’s portrayed as a city full of buildings that look so surreal, that they seem to be completely unsuitable for the humans to move between them. Ultimately, the aim of this paper is to demonstrate the coherence of the manner in which González Iñárritu designs urban spaces in his Death Trilogy. In particular, the author attempts to examine the imperative role of the cities that form three specific microcosms in which the protagonists of the Mexican director live their overwhelming tragedies.

Keywords: cinematographic space, Death Trilogy, film Studies, González Iñárritu Alejandro, urban space

Procedia PDF Downloads 333
4930 Using Life Cycle Assessment in Potable Water Treatment Plant: A Colombian Case Study

Authors: Oscar Orlando Ortiz Rodriguez, Raquel A. Villamizar-G, Alexander Araque

Abstract:

There is a total of 1027 municipal development plants in Colombia, 70% of municipalities had Potable Water Treatment Plants (PWTPs) in urban areas and 20% in rural areas. These PWTPs are typically supplied by surface waters (mainly rivers) and resort to gravity, pumping and/or mixed systems to get the water from the catchment point, where the first stage of the potable water process takes place. Subsequently, a series of conventional methods are applied, consisting in a more or less standardized sequence of physicochemical and, sometimes, biological treatment processes which vary depending on the quality of the water that enters the plant. These processes require energy and chemical supplies in order to guarantee an adequate product for human consumption. Therefore, in this paper, we applied the environmental methodology of Life Cycle Assessment (LCA) to evaluate the environmental loads of a potable water treatment plant (PWTP) located in northeastern Colombia following international guidelines of ISO 14040. The different stages of the potable water process, from the catchment point through pumping to the distribution network, were thoroughly assessed. The functional unit was defined as 1 m³ of water treated. The data were analyzed through the database Ecoinvent v.3.01, and modeled and processed in the software LCA-Data Manager. The results allowed determining that in the plant, the largest impact was caused by Clarifloc (82%), followed by Chlorine gas (13%) and power consumption (4%). In this context, the company involved in the sustainability of the potable water service should ideally reduce these environmental loads during the potable water process. A strategy could be the use of Clarifloc can be reduced by applying coadjuvants or other coagulant agents. Also, the preservation of the hydric source that supplies the treatment plant constitutes an important factor, since its deterioration confers unfavorable features to the water that is to be treated. By concluding, treatment processes and techniques, bioclimatic conditions and culturally driven consumption behavior vary from region to region. Furthermore, changes in treatment processes and techniques are likely to affect the environment during all stages of a plant’s operation cycle.

Keywords: climate change, environmental impact, life cycle assessment, treated water

Procedia PDF Downloads 224
4929 A Thermographic and Energy Based Approach to Define High Cycle Fatigue Strength of Flax Fiber Reinforced Thermoset Composites

Authors: Md. Zahirul Islam, Chad A. Ulven

Abstract:

Fiber-reinforced polymer matrix composites have a wide range of applications in the sectors of automotive, aerospace, sports utilities, among others, due to their high specific strength, stiffness as well as reduced weight. In addition to those favorable properties, composites composed of natural fibers and bio-based resins (i.e., biocomposites) have eco-friendliness and biodegradability. However, the applications of biocomposites are limited due to the lack of knowledge about their long-term reliability under fluctuating loads. In order to explore the long-term reliability of flax fiber reinforced composites under fluctuating loads through high cycle fatigue strength (HCFS), fatigue test were conducted on unidirectional flax fiber reinforced thermoset composites at different percentage loads of ultimate tensile strength (UTS) with a loading frequency of 5 Hz. Change of temperature of the sample during cyclic loading was captured using an IR camera. Initially, the temperature increased rapidly, but after a certain time, it stabilized. A mathematical model was developed to predict the fatigue life from the data of stabilized temperature. Stabilized temperature and dissipated energy per cycle were compared with applied stress. Both showed bilinear behavior and the intersection of those curves were used to determine HCFS. HCFS for unidirectional flax fiber reinforced composites is around 45% of UTS for a loading frequency of 5Hz. Unlike fatigue life, stabilized temperature and dissipated energy-based models are convenient to define HCFS as they have little variation from sample to sample.

Keywords: energy method, fatigue, flax fiber reinforced composite, HCFS, thermographic approach

Procedia PDF Downloads 106
4928 Scorbot-ER 4U Using Forward Kinematics Modelling and Analysis

Authors: D. Maneetham, L. Sivhour

Abstract:

Robotic arm manipulators are widely used to accomplish many kinds of tasks. SCORBOT-ER 4u is a 5-degree of freedom (DOF) vertical articulated educational robotic arm, and all joints are revolute. It is specifically designed to perform pick and place task with its gripper. The pick and place task consists of consideration of the end effector coordinate of the robotic arm and the desired position coordinate in its workspace. This paper describes about forward kinematics modeling and analysis of the robotic end effector motion through joint space. The kinematics problems are defined by the transformation from the Cartesian space to the joint space. Denavit-Hartenberg (D-H) model is used in order to model the robotic links and joints with 4x4 homogeneous matrix. The forward kinematics model is also developed and simulated in MATLAB. The mathematical model is validated by using robotic toolbox in MATLAB. By using this method, it may be applicable to get the end effector coordinate of this robotic arm and other similar types to this arm. The software development of SCORBOT-ER 4u is also described here. PC-and EtherCAT based control technology from BECKHOFF is used to control the arm to express the pick and place task.

Keywords: forward kinematics, D-H model, robotic toolbox, PC- and EtherCAT-based control

Procedia PDF Downloads 179
4927 Contactless and Multiple Space Debris Removal by Micro to Nanno Satellites

Authors: Junichiro Kawaguchi

Abstract:

Space debris problems have emerged and threatened the use of low earth orbit around the Earth owing to a large number of spacecraft. In debris removal, a number of research and patents have been proposed and published so far. They assume servicing spacecraft, robots to be built for accessing the target debris objects. The robots should be sophisticated enough automatically to access the debris articulating the attitude and the translation motion with respect to the debris. This paper presents the idea of using the torpedo-like third unsophisticated and disposable body, in addition to the first body of the servicing robot and the second body of the target debris. The third body is launched from the first body from a distance farer than the size of the second body. This paper presents the method and the system, so that the third body is launched from the first body. The third body carries both a net and an inflatable or extendible drag deceleration device and is built small and light. This method enables even a micro to nano satellite to perform contactless and multiple debris removal even via a single flight.

Keywords: ballute, debris removal, echo satellite, gossamer, gun-net, inflatable space structure, small satellite, un-cooperated target

Procedia PDF Downloads 121
4926 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings

Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez

Abstract:

Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.

Keywords: life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil

Procedia PDF Downloads 306