Search results for: scholarship of teaching and learning (SoTL)
1355 Creation of a Clinical Tool for Diagnosis and Treatment of Skin Disease in HIV Positive Patients in Malawi
Authors: Alice Huffman, Joseph Hartland, Sam Gibbs
Abstract:
Dermatology is often a neglected specialty in low-resource settings, despite the high morbidity associated with skin disease. This becomes even more significant when associated with HIV infection, as dermatological conditions are more common and aggressive in HIV positive patients. African countries have the highest HIV infection rates and skin conditions are frequently misdiagnosed and mismanaged, because of a lack of dermatological training and educational material. The frequent lack of diagnostic tests in the African setting renders basic clinical skills all the more vital. This project aimed to improve diagnosis and treatment of skin disease in the HIV population in a district hospital in Malawi. A basic dermatological clinical tool was developed and produced in collaboration with local staff and based on available literature and data collected from clinics. The aim was to improve diagnostic accuracy and provide guidance for the treatment of skin disease in HIV positive patients. A literature search within Embase, Medline and Google scholar was performed and supplemented through data obtained from attending 5 Antiretroviral clinics. From the literature, conditions were selected for inclusion in the resource if they were described as specific, more prevalent, or extensive in the HIV population or have more adverse outcomes if they develop in HIV patients. Resource-appropriate treatment options were decided using Malawian Ministry of Health guidelines and textbooks specific to African dermatology. After the collection of data and discussion with local clinical and pharmacy staff a list of 15 skin conditions was included and a booklet created using the simple layout of a picture, a diagnostic description of the disease and treatment options. Clinical photographs were collected from local clinics (with full consent of the patient) or from the book ‘Common Skin Diseases in Africa’ (permission granted if fully acknowledged and used in a not-for-profit capacity). This tool was evaluated by the local staff, alongside an educational teaching session on skin disease. This project aimed to reduce uncertainty in diagnosis and provide guidance for appropriate treatment in HIV patients by gathering information into one practical and manageable resource. To further this project, we hope to review the effectiveness of the tool in practice.Keywords: dermatology, HIV, Malawi, skin disease
Procedia PDF Downloads 2041354 Development of Fuzzy Logic Control Ontology for E-Learning
Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof
Abstract:
Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.Keywords: engineering knowledge, fuzzy logic control ontology, ontology development, table of content
Procedia PDF Downloads 2991353 Exploratory Study of the Influencing Factors for Hotels' Competitors
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Hotel competitiveness research is an essential phase of the marketing strategy for any hotel. Certainly, knowing the hotels' competitors helps the hotelier to grasp its position in the market and the citizen to make the right choice in picking a hotel. Thus, competitiveness is an important indicator that can be influenced by various factors. In fact, the issue of competitiveness, this ability to cope with competition, remains a difficult and complex concept to define and to exploit. Therefore, the purpose of this article is to make an exploratory study to calculate a competitiveness indicator for hotels. Further on, this paper makes it possible to determine the criteria of direct or indirect effect on the image and the perception of a hotel. The actual research is used to look into the right model for hotel ‘competitiveness. For this reason, we exploit different theoretical contributions in the field of machine learning. Thus, we use some statistical techniques such as the Principal Component Analysis (PCA) to reduce the dimensions, as well as other techniques of statistical modeling. This paper presents a survey covering of the techniques and methods in hotel competitiveness research. Furthermore, this study allows us to deduct the significant variables that influence the determination of hotel’s competitors. Lastly, the discussed experiences in this article found that the hotel competitors are influenced by several factors with different rates.Keywords: competitiveness, e-reputation, hotels' competitors, online hotel’ review, principal component analysis, statistical modeling
Procedia PDF Downloads 1191352 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control
Authors: Ming-Yen Chang, Sheng-Hung Ke
Abstract:
This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride
Procedia PDF Downloads 671351 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery
Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao
Abstract:
Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset
Procedia PDF Downloads 1201350 Comparing Image Processing and AI Techniques for Disease Detection in Plants
Authors: Luiz Daniel Garay Trindade, Antonio De Freitas Valle Neto, Fabio Paulo Basso, Elder De Macedo Rodrigues, Maicon Bernardino, Daniel Welfer, Daniel Muller
Abstract:
Agriculture plays an important role in society since it is one of the main sources of food in the world. To help the production and yield of crops, precision agriculture makes use of technologies aiming at improving productivity and quality of agricultural commodities. One of the problems hampering quality of agricultural production is the disease affecting crops. Failure in detecting diseases in a short period of time can result in small or big damages to production, causing financial losses to farmers. In order to provide a map of the contributions destined to the early detection of plant diseases and a comparison of the accuracy of the selected studies, a systematic literature review of the literature was performed, showing techniques for digital image processing and neural networks. We found 35 interesting tool support alternatives to detect disease in 19 plants. Our comparison of these studies resulted in an overall average accuracy of 87.45%, with two studies very closer to obtain 100%.Keywords: pattern recognition, image processing, deep learning, precision agriculture, smart farming, agricultural automation
Procedia PDF Downloads 3791349 IoT and Advanced Analytics Integration in Biogas Modelling
Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma
Abstract:
The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization
Procedia PDF Downloads 201348 Degree Tracking System (DTS) to Improve the Efficiency and Effectiveness of Open Distance Learning System: A Case Study of Islamabad Allama Iqbal Open University (AIOU)
Authors: Hatib Shabbir
Abstract:
Student support services play an important role in providing technical and motivational support to distance learner. ICT based systems have improved the efficiency and effectiveness of support services. In distance education, students being at distant require quick responses from their institution. In the manual system, it is practically hard to give prompt response to each and every student, so as a result student has to suffer a lot. The best way to minimize inefficiencies is to use automated systems. This project involves the development of centralized automated software that would not only replace the manual degree issuance system of 1.3 million students studying at AIOU but also provide online tracking to all the students applying for Degrees. DTS is also the first step towards the paperless culture which is adopted by the major organizations of the world. DTS would not only save university cost but also save students cost and time too by conveying all the information/objection through email and SMS. Moreover, DTS also monitors the performance of each and every individual working in the exam department AIOU and generates daily, monthly and yearly reports of every individual which helps a lot in continuous performance monitoring of the employees.Keywords: aiou dts, dts aiou, dts, degree tracking aiou
Procedia PDF Downloads 2181347 An Investigation of Entrepreneurial Intentions, Drivers, and Challenges among Final Year Students in Jigawa State Polytechnic, Nigeria
Authors: Muhammad Umar Usman
Abstract:
This study investigates the entrepreneurial intentions, drivers and challenges of starting a business among final year students in Jigawa State polytechnic. Nigeria. Final year students of Jigawa State Polytechnic from the department of accounting, business administration and management and public administration were used as a case study. The study became necessary due to the alarming rate of graduate unemployment in Nigeria. The study adopted a holistic case study approach involving a multiple methods of questionnaires involving (182) Higher National Diploma (HND) and National Diploma (ND) final year students and a telephone interview with two lecturers teaching entrepreneurship in the college. The findings clearly indicate that exposer to entrepreneurship education increases students’ entrepreneurial intentions. The result found that desire for independence, confidence and strong intention are the most important factors that influence students’ entrepreneurial intention. The study identified 3 key drivers of students’ entrepreneurial intentions. These are to earn a living, to seek job security and provision of employment. The result again identified 4 factors namely lack of support, finance, insecurity and erratic power supply as the major challenges in starting a business in Nigeria. It was also revealed that the current entrepreneurship education programme prepares students on how to open up a business not becoming an entrepreneur. The study concluded entrepreneurship helps students toward building and driving their intention to venture into business. However, the challenges of entrepreneurship in Nigeria need to be addressed in order to enable individuals to become an entrepreneur and create employment opportunities that will lead to the development of Nigerian economy. Thus, the government should provide adequate support particularly the issue of infrastructures. The Federal Government of Nigeria in collaboration with the National Board for Technical Education should fashion out the curriculum thereby making it more practically-oriented so that students may become more interested. Polytechnics should develop an internship programme for students to work in firms so as to put theory learnt in the class to practice. Students should try to align the theory learnt in college with the practical application in dynamic economic environment. Hence, this will help in building their capabilities toward entrepreneurship development in Nigeria.Keywords: entrepreneurial intention, entrepreneurial drivers, challenges, entrepreneurial education
Procedia PDF Downloads 3011346 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date
Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian
Abstract:
To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven
Procedia PDF Downloads 1741345 Effect of Media on Psycho-Social Interaction among the Children with Their Parents of Urban People in Dhaka
Authors: Nazma Sultana
Abstract:
Social media has become an important part of our daily life. It has a significance influences on the people who use them in their daily life frequently. The number of people using social network sites has been increasing continuously. For this frequent utilization has started to affect our social life. This study examine whether the use of social network sites affects the psychosocial interaction between children and their parents. At first parents introduce their children to the internet and different type of device in their early childhood. Many parents use device for feeding their children by watching rhyme or cartoon. As a result children are habituate with it. In Bangladesh 70% people are heavy internet users. About 23 percent of them spend more than five hours on the social networking sites a day. Media are increasing pervasive in the lives of children-roughly the average child today spends nearly about 45 hours per week with media, compared with 17 hours with parents and 30 hours in school. According to a social learning theory, children & adolescents learn by observing & imitating what they see on screen particularly when these behaviors are realistic or are rewarded. The influence of the media on the psychosocial development of children is profound. Thus it is important for parents to provide guidance on age-appropriate use of all media, including television, radio, music, video games and the internet.Keywords: social media, psychosocial, Technology, Parent, Social Relationship, Adolescents, Teenage, Youth
Procedia PDF Downloads 1131344 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 751343 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles
Procedia PDF Downloads 1451342 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations
Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu
Abstract:
Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10
Procedia PDF Downloads 1111341 Dental Students’ Self-Assessment of Their Performance in a Preclinical Endodontic Practice
Authors: Minseock Seo
Abstract:
Dental education consists of both theoretical and practical learning for students. When dental students encounter practical courses as a new educational experience, they must also learn to evaluate themselves. The aim of this study was to investigate the self-assessment scores of third-year dental students and compare with the scores graded by the faculty in preclinical endodontic practice in a dental school in Korea. Faculty- and student-assigned scores were calculated from preclinical endodontic practice performed on phantom patients. The students were formally instructed on grading procedures for endodontic treatment. After each step, each item was assessed by the student. The students’ self-assessment score was then compared to the score by the faculty. The students were divided into 4 groups by analyzing the scores of self-assessment and faculty-assessment and statistically analyzed by summing the theoretical and practical examination scores. In the theoretical exam score, the group who over-estimated their performance (H group) was lower than the group with lower evaluation (L group). When comparing the first and last score determined by the faculty, H groups didn’t show any improvement, while the other group did. In H group, the less improvement of the self-assessment, the higher the theoretical exam score. In L group, the higher improvement of the self-assessment, the better the theoretical exam score. The results point to the need to develop students’ self-insight with more exercises and practical training.Keywords: dental students, endodontic, preclinical practice, self-assessment
Procedia PDF Downloads 2531340 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection
Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen
Abstract:
Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.Keywords: big data analytics, Industry 4.0, SPI threshold setting, surface mount technology
Procedia PDF Downloads 1161339 Arterial Line Use for Acute Type 2 Respiratory Failure
Authors: C. Scurr, J. Jeans, S. Srivastava
Abstract:
Introduction: Acute type two respiratory failure (T2RF) has become a common presentation over the last two decades primarily due to an increase in the prevalence of chronic lung disease. Acute exacerbations can be managed either medically or in combination with non-invasive ventilation (NIV) which should be monitored with regular arterial blood gas samples (ABG). Arterial lines allow more frequent arterial blood sampling with less patient discomfort. We present the experience from a teaching hospital emergency department (ED) and level 2 medical high-dependency unit (HDU) that together form the pathway for management of acute type 2 respiratory failure. Methods: Patients acutely presenting to Charing Cross Hospital, London, with T2RF requiring non-invasive ventilation (NIV) over 14 months (2011 to 2012) were identified from clinical coding. Retrospective data collection included: demographics, co-morbidities, blood gas numbers and timing, if arterial lines were used and who performed this. Analysis was undertaken using Microsoft Excel. Results: Coding identified 107 possible patients. 69 notes were available, of which 41 required NIV for type 2 respiratory failure. 53.6% of patients had an arterial line inserted. Patients with arterial lines had 22.4 ABG in total on average compared to 8.2 for those without. These patients had a similar average time to normalizing pH of (23.7 with arterial line vs 25.6 hours without), and no statistically significant difference in mortality. Arterial lines were inserted by Foundation year doctors, Core trainees, Medical registrars as well as the ICU registrar. 63% of these were performed by the medical registrar rather than ICU, ED or a junior doctor. This is reflected in that the average time until an arterial line was inserted was 462 minutes. The average number of ABGs taken before an arterial line was 2 with a range of 0 – 6. The average number of gases taken if no arterial line was ever used was 7.79 (range of 2-34) – on average 4 times as many arterial punctures for each patient. Discussion: Arterial line use was associated with more frequent arterial blood sampling during each inpatient admission. Additionally, patients with an arterial line have less individual arterial punctures in total and this is likely more comfortable for the patient. Arterial lines are normally sited by medical registrars, however this is normally after some delay. ED clinicians could improve patient comfort and monitoring thus allowing faster titration of NIV if arteral lines were regularly inserted in the ED. We recommend that ED doctors insert arterial lines when indicated in order improve the patient experience and facilitate medical management.Keywords: non invasive ventilation, arterial blood gas, acute type, arterial line
Procedia PDF Downloads 4281338 Ambiguity-Identification Prompting for Large Language Model to Better Understand Complex Legal Texts
Authors: Haixu Yu, Wenhui Cao
Abstract:
Tailoring Large Language Models (LLMs) to perform legal reasoning has been a popular trend in the study of AI and law. Researchers have mainly employed two methods to unlock the potential of LLMs, namely by finetuning the LLMs to expand their knowledge of law and by restructuring the prompts (In-Context Learning) to optimize the LLMs’ understanding of the legal questions. Although claiming the finetuning and renovated prompting can make LLMs more competent in legal reasoning, most state-of-the-art studies show quite limited improvements of practicability. In this paper, drawing on the study of the complexity and low interpretability of legal texts, we propose a prompting strategy based on the Chain of Thought (CoT) method. Instead of merely instructing the LLM to reason “step by step”, the prompting strategy requires the tested LLM to identify the ambiguity in the questions as the first step and then allows the LLM to generate corresponding answers in line with different understandings of the identified terms as the following step. The proposed prompting strategy attempts to encourage LLMs to "interpret" the given text from various aspects. Experiments that require the LLMs to answer “case analysis” questions of bar examination with general LLMs such as GPT 4 and legal LLMs such as LawGPT show that the prompting strategy can improve LLMs’ ability to better understand complex legal texts.Keywords: ambiguity-identification, prompt, large language model, legal text understanding
Procedia PDF Downloads 611337 Ontology Mapping with R-GNN for IT Infrastructure: Enhancing Ontology Construction and Knowledge Graph Expansion
Authors: Andrey Khalov
Abstract:
The rapid growth of unstructured data necessitates advanced methods for transforming raw information into structured knowledge, particularly in domain-specific contexts such as IT service management and outsourcing. This paper presents a methodology for automatically constructing domain ontologies using the DOLCE framework as the base ontology. The research focuses on expanding ITIL-based ontologies by integrating concepts from ITSMO, followed by the extraction of entities and relationships from domain-specific texts through transformers and statistical methods like formal concept analysis (FCA). In particular, this work introduces an R-GNN-based approach for ontology mapping, enabling more efficient entity extraction and ontology alignment with existing knowledge bases. Additionally, the research explores transfer learning techniques using pre-trained transformer models (e.g., DeBERTa-v3-large) fine-tuned on synthetic datasets generated via large language models such as LLaMA. The resulting ontology, termed IT Ontology (ITO), is evaluated against existing methodologies, highlighting significant improvements in precision and recall. This study advances the field of ontology engineering by automating the extraction, expansion, and refinement of ontologies tailored to the IT domain, thus bridging the gap between unstructured data and actionable knowledge.Keywords: ontology mapping, knowledge graphs, R-GNN, ITIL, NER
Procedia PDF Downloads 171336 Post Occupancy Evaluation in Higher Education
Authors: Balogun Azeez Olawale, Azeez S. A.
Abstract:
Post occupancy evaluation (POE) is a process of assessing building performance for its users and intended function during the occupation. User satisfaction impacts the performance of educational environments and their users: students, faculty, and staff. In addition, buildings are maintained and managed by teams that spend a large amount of time and capital on their long-term sustenance. By evaluating the feedback from users of higher education facilities, university planning departments are more prepared to understand the inputs for programming and future project planning. In addition, university buildings will be closer to meeting user and maintenance needs. This paper reports on a research team made up of academics, facility personnel, and users that have developed a plan to improve the quality of campus facilities through a POE exercise on a recently built project. This study utilized a process of focus group interviews representing the different users and subsequent surveys. The paper demonstrates both the theory and practice of POE in higher education and learning environment through the case example of four universities in Nigeria's POE exercise.Keywords: post occupancy evaluation, building performance, building analysis, building evaluation, quality control, building assessment, facility management, design quality
Procedia PDF Downloads 1111335 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations
Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha
Abstract:
This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation
Procedia PDF Downloads 1421334 Public Accountability, a Challenge to Sustainable Development: A Case Study of Uganda
Authors: Nassali Celine Lindah
Abstract:
The study sought to find out how public accountability is a challenge to sustainable development in Uganda. The study was guided by the following set of objectives included establishing the challenges of Public accountability, the importance of accountability in Uganda, and the possible solutions to the problems identified in the study. In order to ensure proper accountability there should be proper control of resources, specifically the control of both public revenue and expenditures. Stakeholders should also be involved in the accountability process. Accountability can reduce corruption and other abuses, assure compliance with standards and procedures, and improve performance and organizational learning. The study involved qualitative and quantitative data collection techniques. A sample of 20 respondents from various districts/towns was used using both technical staff and non-technical staff members. The study utilized secondary and primary data, which was obtained using interviews and observations. The study reached a conclusion that the major challenges of Public accountability in Uganda are poor leadership, poor resource management, unethical behavior by the government officials and political involvement, among others. The study also recommended that the policymakers should design relevant guidelines/policies to help promote the process of public accountability in Uganda like prosecution and convictions, strengthen public expenditure management benchmarking and performance measurements, among others.Keywords: accountability, sustainability, government activities, government sector
Procedia PDF Downloads 1361333 An Explorative Study: Awareness and Understanding of Dyspraxia amongst Parents of Preschool Children Presenting with Dyspraxia
Authors: A. Pedro, T. Goldschmidt
Abstract:
Dyspraxia affects approximately 5-6% of school aged children. Utilising an ecological framework, this study aimed to (1) explore the awareness and understanding of dyspraxia or similar disorders among preschool parents and (2) to explore what skills are required or sought after by parents of children presenting with dyspraxia. A qualitative methodological approach with an exploratory design was employed in this study. A total of 15 parents were purposively selected from urban mainstream preschools in the Cape Town metropole region. Data were collected by means of semi-structured interviews and analysed thematically according to Braun and Clarke (2006). Participants were knowledgeable of their rights throughout the research process. The findings reveal that parents understanding of dyspraxia hinges on observable characteristics of their children’s abilities in comparison to typically developing children. Although parents are aware of ways to explore various avenues to better assist their child, they desire more social support and skills in terms of resources to inform them about their child’s difficulties as well as different techniques to better manage their child’s condition. Findings indicate that regular contact between preschool teachers and parents of children presenting with dyspraxia is an important factor in children’s academic success. The implications of the findings are related to the awareness of dyspraxia and similar learning disorders among both parents and teachers.Keywords: awareness and understanding, dyspraxia, parents, preschool
Procedia PDF Downloads 1541332 Bhumastra “Unmanned Ground Vehicle”
Authors: Vivek Krishna, Nikhil Jain, A. Mary Posonia A., Albert Mayan J
Abstract:
Terrorism and insurgency are significant global issues that require constant attention and effort from governments and scientists worldwide. To combat these threats, nations invest billions of dollars in developing new defensive technologies to protect civilians. Breakthroughs in vehicle automation have led to the use of sophisticated machines for many dangerous and critical anti-terrorist activities. Our concept of an "Unmanned Ground Vehicle" can carry out tasks such as border security, surveillance, mine detection, and active combat independently or in tandem with human control. The robot's movement can be wirelessly controlled by a person in a distant location or can travel to a pre-programmed destination autonomously in situations where personal control is not feasible. Our defence system comprises two units: the control unit that regulates mobility and the motion tracking unit. The remote operator robot uses the camera's live visual feed to manually operate both units, and the rover can automatically detect movement. The rover is operated by manpower who controls it using a joystick or mouse, and a wireless modem enables a soldier in a combat zone to control the rover via an additional controller feature.Keywords: robotics, computer vision, Machine learning, Artificial intelligence, future of AI
Procedia PDF Downloads 1251331 Rhythm-Reading Success Using Conversational Solfege
Authors: Kelly Jo Hollingsworth
Abstract:
Conversational Solfege, a research-based, 12-step music literacy instructional method using the sound-before-sight approach, was used to teach rhythm-reading to 128-second grade students at a public school in the southeastern United States. For each step, multiple scripted techniques are supplied to teach each skill. Unit one was the focus of this study, which is quarter note and barred eighth note rhythms. During regular weekly music instruction, students completed method steps one through five, which includes aural discrimination, decoding familiar and unfamiliar rhythm patterns, and improvising rhythmic phrases using quarter notes and barred eighth notes. Intact classes were randomly assigned to two treatment groups for teaching steps six through eight, which was the visual presentation and identification of quarter notes and barred eighth notes, visually presenting and decoding familiar patterns, and visually presenting and decoding unfamiliar patterns using said notation. For three weeks, students practiced steps six through eight during regular weekly music class. One group spent five-minutes of class time on steps six through eight technique work, while the other group spends ten-minutes of class time practicing the same techniques. A pretest and posttest were administered, and ANOVA results reveal both the five-minute (p < .001) and ten-minute group (p < .001) reached statistical significance suggesting Conversational Solfege is an efficient, effective approach to teach rhythm-reading to second grade students. After two weeks of no instruction, students were retested to measure retention. Using a repeated-measures ANOVA, both groups reached statistical significance (p < .001) on the second posttest, suggesting both the five-minute and ten-minute group retained rhythm-reading skill after two weeks of no instruction. Statistical significance was not reached between groups (p=.252), suggesting five-minutes is equally as effective as ten-minutes of rhythm-reading practice using Conversational Solfege techniques. Future research includes replicating the study with other grades and units in the text.Keywords: conversational solfege, length of instructional time, rhythm-reading, rhythm instruction
Procedia PDF Downloads 1571330 Protective Effect of Herniarin on Ionizing Radiation-Induced Impairments in Brain
Authors: Sophio Kalmakhelidze, Eka Shekiladze, Tamar Sanikidze, Mikheil Gogebashvili, Nazi Ivanishvili
Abstract:
Radiation-induced various degrees of brain injury and cognitive impairment have been described after cranial radiotherapy of brain tumors. High doses of ionizing radiation have a severe impact on the central nervous system, resulting in morphological and behavioral impairments. Structures of the limbic system are especially sensitive to radiation exposure. Hence, compounds or drugs that can reduce radiation-induced impairments can be used as promising antioxidants or radioprotectors. In our study Mice whole-body irradiation with 137Cs was performed at a dose rate of 1,1 Gy/min for a total dose of 5 Gy with a “Gamma-capsule-2”. Irradiated mice were treated with Herniarin (20 mg/kg) for five days before irradiation and the same dose was administrated after one hour of irradiation. The immediate and delayed effects of ionizing radiation, as well as, protective effect of Herniarin was evaluated during early and late post-irradiation periods. The results reveal that ionizing radiation (5 Gy) alters the structure of the hippocampus in adult mice during the late post-irradiation period resulting in the decline of memory formation and learning process. Furthermore, Simple Coumarin-Herniarin reveals a radiosensitizing effect reducing morphological and behavioral alterations.Keywords: ionizing radiation, cognitive impairments, hippocampus, limbic system, Herniarin
Procedia PDF Downloads 731329 AI and the Future of Misinformation: Opportunities and Challenges
Authors: Noor Azwa Azreen Binti Abd. Aziz, Muhamad Zaim Bin Mohd Rozi
Abstract:
Moving towards the 4th Industrial Revolution, artificial intelligence (AI) is now more popular than ever. This subject is gaining significance every day and is continually expanding, often merging with other fields. Instead of merely being passive observers, there are benefits to understanding modern technology by delving into its inner workings. However, in a world teeming with digital information, the impact of AI on the spread of disinformation has garnered significant attention. The dissemination of inaccurate or misleading information is referred to as misinformation, posing a serious threat to democratic society, public debate, and individual decision-making. This article delves deep into the connection between AI and the dissemination of false information, exploring its potential, risks, and ethical issues as AI technology advances. The rise of AI has ushered in a new era in the dissemination of misinformation as AI-driven technologies are increasingly responsible for curating, recommending, and amplifying information on online platforms. While AI holds the potential to enhance the detection and mitigation of misinformation through natural language processing and machine learning, it also raises concerns about the amplification and propagation of false information. AI-powered deepfake technology, for instance, can generate hyper-realistic videos and audio recordings, making it increasingly challenging to discern fact from fiction.Keywords: artificial intelligence, digital information, disinformation, ethical issues, misinformation
Procedia PDF Downloads 921328 Randomized Trial of Tian Jiu Therapy in San Fu Days for Patients with Chronic Asthma
Authors: Libing Zhu, Waichung Chen, Kwaicing Lo, Lei Li
Abstract:
Background: Tian Jiu Therapy (a medicinal vesiculation therapy according to traditional Chinese medicine theory) in San Fu Days (the three hottest days in a year is calculated by the Chinese ancient calendar) is widely used by patients with chronic asthma in China although from modern medicine perspective there is insufficient evidence of its effectiveness and safety issues. We investigated the efficacy and safety of Tian Jiu Therapy compared with placebo in patients with chronic asthma. Methods: Patients with chronic asthma were randomly assigned to Tian Jiu treatment group (n=165), placebo control group (n=158). Registered Chinese Medicine practitioners, in Orthopedics-Traumatology, Acupuncture, and Tui-na Clinical Centre for Teaching and Research, School of Chinese Medicine, The University of Hong Kong, administered Tian Jiu Therapy and placebo treatment in 3 times over 2 months. Patients completed questionnaires and lung function test before treatment and after treatment, 3, 6, 9, and 11 months, respectively. The primary outcome was the no of asthma-related sub-healthy symptoms and the percentage of patients with twenty-three symptoms. Results: 451 patients were recruited totally, 111 patients refused or did not participate according the appointment time and 17 did not meet the inclusion criteria. Consequently, 323 of eligible patients were enrolled. There was nothing difference between Tian Jiu Therapy group and placebo control group at the end of all treatments neither primary nor secondary outcomes. While Tian Jiu Therapy as compared with placebo significantly reduced the percentage of participants who are susceptible waken up by asthma symptoms from 27% to 14% at 2nd follow-up (P < 0.05). Similarly, Tian Jiu Therapy significantly reduced the proportion of participants who had the symptom of running nose and sneezing before onset from 18% to 8% at 2nd follow-up (P < 0.05). Additionally, Tian Jiu Therapy significantly reduced the level of asthma, the proportion of participants who don’t need to processed during asthma attack increased from 6% to 15% at 1st follow-up and 0% to 7% at 3rd follow-up (P < 0.05). Improvements also occurred with Tian Jiu Therapy group, it reduced the proportion of participants who were spontaneously sweating at 3rd follow up and diarrhea after intake of oily food at 4th follow-up (P < 0.05). Conclusion: When added to a regimen of foundational therapy for chronic asthma participants, Tian Jiu Therapy further reduced the need for medications to control asthma, improved the quality of participants’ life, and significantly reduced the level of asthma. What is more, this benefit seems to have an accumulative effect over time was in accordance with the TCM theory of 'winter disease is being cured in summer'.Keywords: asthma, Tian Jiu Therapy, San Fu Days, triaditional Chinese medicine, clinical trial
Procedia PDF Downloads 3141327 An Exploratory Study on the Impact of Video-stimulated Reflection on Novice EFL Teachers’ Professional Development
Authors: Ibrahima Diallo
Abstract:
The literature on teacher education foregrounds reflection as an important aspect of professional practice. Reflection for a teacher consists in critically analysing and evaluating retrospectively a lesson to see what worked, what did not work, and how to improve it for the future. Now, many teacher education programmes worldwide consider the ability to reflect as one of the hallmarks of an effective educator. However, in some context like Senegal, reflection has not been given due consideration in teacher education programmes. In contexts where it has been in the education landscape for some time now, reflection is mostly depicted as an individual written activity and many teacher trainees have become disenchanted by the repeated enactments of this task that is solely intended to satisfy course requirements. This has resulted in whitewashing weaknesses or even ‘faking’ reflection. Besides, the “one-size-fits-all” approach of reflection could not flourish because how reflection impacts on practice is still unproven. Therefore, reflective practice needs to be contextualised and made more thought-provoking through dialogue and by using classroom data. There is also a need to highlight change brought in teachers’ practice through reflection. So, this study introduces reflection in a new context and aims to show evidenced change in novice EFL teachers’ practice through dialogic data-led reflection. The purpose of this study is also to contribute to the scarce literature on reflection in sub-Saharan Africa by bringing new perspectives on contextualised teacher-led reflection. Eight novice EFL teachers participated in this qualitative longitudinal study, and data have been gathered online through post-lesson reflection recordings and lesson videos for a period of four months. Then, the data have been thematically analysed using NVivo to systematically organize and manage the large amount of data. The analysis followed the six steps approach to thematic analysis. Major themes related to teachers’ classroom practice and their conception of reflection emerged from the analysis of the data. The results showed that post-lesson reflection with a peer can help novice EFL teachers gained more awareness on their classroom practice. Dialogic reflection also helped them evaluate their lessons and seek for improvement. The analysis of the data also gave insight on teachers’ conception of reflection in an EFL context. It was found that teachers were more engaged in reflection when using their lesson video recordings. Change in teaching behaviour as a result of reflection was evidenced by the analysis of the lesson video recordings. This study has shown that video-stimulated reflection is practical form of professional development that can be embedded in teachers’ professional life.Keywords: novice EFL teachers, practice, professional development, video-stimulated reflection
Procedia PDF Downloads 1001326 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome
Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder
Abstract:
Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps
Procedia PDF Downloads 226