Search results for: real estate price prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8230

Search results for: real estate price prediction

1060 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements

Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles

Abstract:

During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).

Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium

Procedia PDF Downloads 308
1059 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model

Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson

Abstract:

The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.

Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania

Procedia PDF Downloads 105
1058 Efficacy of Different Plant Extracts against Brevicoryne brassicae and Their Effects on Pollinators

Authors: Hafiza Javaria Ashraf, Asim Abbasi, Muhammad Hussnain Babar, Muhammad Sufyan

Abstract:

Brevicoryne brassicae (Aphid) is not only the major biotic constraint of rapeseed crop but also transmits 20 different viral pathogens that cause diseases in crucifers. Aphids cause major losses to rapeseed by stunting growth and yield, with real damage being contamination of harvested heads. The misuse of pesticides has led to tremendous economic losses and hazards to human health and environmental pollution. Thus, newer approaches for pest control are continuously being sought. The naturally occurring, biologically active plant-based products seem to have a prominent role in the development of future commercial pesticides not only for increased productivity but their eco-friendly nature. The present experiment was carried out in Research Area of Ayub Agriculture Research Institute, Faisalabad to check the efficacy of different botanicals against rapeseed aphid. The tested botanicals were, neem seed extract, neem leaf extract, dathora seed extract, kaner leaf extract and aak leaf extract. Insecticide, advantage 20 EC served as the positive control in the experiment. Data was recorded before and after 1, 3 and 7 days of treatment application. The results of the experiment revealed that neem seed extract exhibited maximum mortality (48.42%) followed by dathora (45.54%) and kaner leaf extract (40.29%) after 7 days of treatment application. However minimum mortality i.e. 26.64% was observed in case of aak leaf extract. Advantage encountered maximum mortality i.e. 86.14%. All treatments caused maximum mortality after 7 days of treatment application. In case of pollinators maximum population reduction was observed in case of insecticide (74.29%) while minimum reduction was observed in neem leaf extract (11.57%). Hence it was concluded that unlike insecticides, plant based products can be a better option for regulating pests and conserving beneficial insect fauna.

Keywords: Aphid, mortality, plant based, pollinators

Procedia PDF Downloads 226
1057 Real World Cancer Pain Incidence and Treatment in Daily Hospital

Authors: Alexandru Grigorescu, Alexandra Protesanu

Abstract:

Background: Approximately 34-67 percent of cancer patients experience an episode of uncontrolled pain during the course of their disease, depending on the stage. The aim is to provide evidence-based data for pain prevalence, diagnosis and treatment recommendations on an integrative model of medical oncology and palliative care for patients with cancer diagnostic in a day hospital. Patients and method: Consultation registers and electronic records of 166 Patients (Pts) were studied from April 2022 to March 2023. Pts with pain syndrome were selected. The pain was objectified by the visual pain scale. To elucidate the causes of the pain, investigations were carried out: bone scintigraphy, CT scan, and PET-CT. The analgesic treatments were represented by weak and strong morphine, radiotherapy, and bisphosphonates. Result: During the mentioned period, 166 oncological patients (74 women and 92 men) were treated in the oncology day hospitalization service. There were 1,500 consultations, 40 of which were only for pain. The neoplastic locations were: gynecological, malignant melanoma, breast, gastric, bronchopulmonary, colorectal, liver, pancreatic, bladder, and kidney. 70 Pts presented pain syndrome. The causes of the pain were represented by bone metastases, compressive tumors, and post-surgical status. Drug treatment: Tramadol 47 Pts, of which 10 switched to a major opioid (Oxycodonum, Morphine sulfate), 20 Pts were treated with Oxycodonum as the first intention. In 5 patients ry to rotated morphine, 20 Pts received palliative radiotherapy, 10 Pts were treated with bisphosphonates. 2 Pts required neurosurgery consultation for an antalgic intervention. 5 Pts had important adverse reactions to morphine. All patients and their families were advised by a medical oncologist and psychologist for a lifestyle change. Conclusions: The prevalence of pain was similar to that described in the literature. In most cases, the pain could be managed in the day hospital. Weak and strong morphine represented the main pain therapy. Palliative radiotherapy was the second most effective therapy. Treatment with bisphosphonates was useful. Surgical interventions were rarely indicated. Discussions with patients and their families regarding the lifestyle change were important.

Keywords: cancer pain, opioids, medical oncology, palliative care

Procedia PDF Downloads 65
1056 Community Development and Empowerment

Authors: Shahin Marjan Nanaje

Abstract:

The present century is the time that social worker faced complicated issues in the area of their work. All the focus are on bringing change in the life of those that they live in margin or live in poverty became the cause that we have forgotten to look at ourselves and start to bring change in the way we address issues. It seems that there is new area of needs that social worker should response to that. In need of dialogue and collaboration, to address the issues and needs of community both individually and as a group we need to have new method of dialogue as tools to reach to collaboration. The social worker as link between community, organization and government play multiple roles. They need to focus in the area of communication with new ability, to transfer all the narration of the community to those organization and government and vice versa. It is not relate only in language but it is about changing dialogue. Migration for survival by job seeker to the big cities created its own issues and difficulty and therefore created new need. Collaboration is not only requiring between government sector and non-government sectors but also it could be in new way between government, non-government and communities. To reach to this collaboration we need healthy, productive and meaningful dialogue. In this new collaboration there will not be any hierarchy between members. The methodology that selected by researcher were focusing on observation at the first place, and used questionnaire in the second place. Duration of the research was three months and included home visits, group discussion and using communal narrations which helped to bring enough evidence to understand real need of community. The sample selected randomly was included 70 immigrant families which work as sweepers in the slum community in Bangalore, Karnataka. The result reveals that there is a gap between what a community is and what organizations, government and members of society apart from this community think about them. Consequently, it is learnt that to supply any service or bring any change to slum community, we need to apply new skill to have dialogue and understand each other before providing any services. Also to bring change in the life of those marginal groups at large we need to have collaboration as their challenges are collective and need to address by different group and collaboration will be necessary. The outcome of research helped researcher to see the area of need for new method of dialogue and collaboration as well as a framework for collaboration and dialogue that were main focus of the paper. The researcher used observation experience out of ten NGO’s and their activities to create framework for dialogue and collaboration.

Keywords: collaboration, dialogue, community development, empowerment

Procedia PDF Downloads 588
1055 Role of Higher Education Commission (HEC) in Strengthening the Academia and Industry Relationships: The Case of Pakistan

Authors: Shah Awan, Fahad Sultan, Shahid Jan Kakakhel

Abstract:

Higher education in the 21st century has been faced with game-changing developments impacting teaching and learning and also strengthening the academia and industry relationship. The academia and industry relationship plays a key role in economic development in developed, developing and emerging economies. The partnership not only explores innovation but also provide a real time experience of the theoretical knowledge. For this purpose, the paper assessing the role of HEC in the Pakistan and discusses the way in academia and industry contribute their role in improving Pakistani economy. Successive studies have reported the importance of innovation and technology , research development initiatives in public sector universities, and the significance of role of higher education commission in strengthening the academia and industrial relationship to improve performance and minimize failure. The paper presents the results of interviews conducted, using semi-structured interviews amongst 26 staff members of two public sector universities, higher education commission and managers from corporate sector.The study shows public sector universities face the several barriers in developing economy like Pakistan, to establish the successful collaboration between universities and industry. Of the participants interviewed, HEC provides an insufficient road map to improve organisational capabilities in facilitating and enhance the performance. The results of this study have demonstrated that HEC has to embrace and internalize support to industry and public sector universities to compete in the era of globalization. Publication of this research paper will help higher education sector to further strengthen research sector through industry and university collaboration. The research findings corroborate the findings of Dooley and Kirk who highlights the features of university-industry collaboration. Enhanced communication has implications for the quality of the product and human resource. Crucial for developing economies, feasible organisational design and framework is essential for the university-industry relationship.

Keywords: higher education commission, role, academia and industry relationship, Pakistan

Procedia PDF Downloads 467
1054 The Consequence of Being Perceived as An 'Immodest Woman': The Kuwaiti Criminal Justice System’s Response to Allegations of Sexual Violence

Authors: Eiman Alqattan

Abstract:

Kuwaiti criminal justice system’s responses to allegations of sexual violence against women during the pre-trial process, suggesting that the system in Kuwait is affected by an ethos that is male dominated and patriarchal, and which results in prejudicial, unfair, and unequal treatment of female victims of serious sexual offenses. Data derived from qualitative semi-structured face-to-face interviews with four main groups of criminal justice system personnel in Kuwait (prosecutors, police investigators, police officers, and investigators) reveal the characteristics of a complaint of sexual violence that contribute to cases being either sent to court or dismissed. This proposed paper will suggest that Arab cultural views of women appear to influence and even shape the views, perceptions, and conduct of the interviewed Kuwaiti criminal justice system personnel regarding complaints of sexual violence made by citizens. Data from the interviews show how the image of the ‘modest woman’ that exists within Arabic cultural views and norms greatly contributes to shaping the characteristics of what the majority of the interviewed officials considered to be a ‘credible’ allegation of sexual violence. In addition, it is clear that the interviewees’ definitions of ‘modesty’ varied. Yet the problem is not only about the stereotypical perceptions of complainants or the consequences of those perceptions on the decision to send the case to court. These perceptions also affected the behaviours of criminal justice system personnel towards citizen complainants. When complainants’ allegations were questioned, investigators went as far as abusing the women verbally or physically, often in order to force them to withdraw the so-called ‘false’ complaint in order to protect the ‘real’ victim: the ‘innocent defendant’. The proposed presentation will discuss these police approaches to women and the techniques used in assessing the credibility of their accusations, including how they differ depending on whether the complainant was under or over 21 years old.

Keywords: criminal justice system, law and Arab culture, modest woman, sexual violence

Procedia PDF Downloads 296
1053 Dynamic Model for Forecasting Rainfall Induced Landslides

Authors: R. Premasiri, W. A. H. A. Abeygunasekara, S. M. Hewavidana, T. Jananthan, R. M. S. Madawala, K. Vaheeshan

Abstract:

Forecasting the potential for disastrous events such as landslides has become one of the major necessities in the current world. Most of all, the landslides occurred in Sri Lanka are found to be triggered mostly by intense rainfall events. The study area is the landslide near Gerandiella waterfall which is located by the 41st kilometer post on Nuwara Eliya-Gampala main road in Kotmale Division in Sri Lanka. The landslide endangers the entire Kotmale town beneath the slope. Geographic Information System (GIS) platform is very much useful when it comes to the need of emulating the real-world processes. The models are used in a wide array of applications ranging from simple evaluations to the levels of forecast future events. This project investigates the possibility of developing a dynamic model to map the spatial distribution of the slope stability. The model incorporates several theoretical models including the infinite slope model, Green Ampt infiltration model and Perched ground water flow model. A series of rainfall values can be fed to the model as the main input to simulate the dynamics of slope stability. Hydrological model developed using GIS is used to quantify the perched water table height, which is one of the most critical parameters affecting the slope stability. Infinite slope stability model is used to quantify the degree of slope stability in terms of factor of safety. DEM was built with the use of digitized contour data. Stratigraphy was modeled in Surfer using borehole data and resistivity images. Data available from rainfall gauges and piezometers were used in calibrating the model. During the calibration, the parameters were adjusted until a good fit between the simulated ground water levels and the piezometer readings was obtained. This model equipped with the predicted rainfall values can be used to forecast of the slope dynamics of the area of interest. Therefore it can be investigated the slope stability of rainfall induced landslides by adjusting temporal dimensions.

Keywords: factor of safety, geographic information system, hydrological model, slope stability

Procedia PDF Downloads 423
1052 Exploring Regularity Results in the Context of Extremely Degenerate Elliptic Equations

Authors: Zahid Ullah, Atlas Khan

Abstract:

This research endeavors to explore the regularity properties associated with a specific class of equations, namely extremely degenerate elliptic equations. These equations hold significance in understanding complex physical systems like porous media flow, with applications spanning various branches of mathematics. The focus is on unraveling and analyzing regularity results to gain insights into the smoothness of solutions for these highly degenerate equations. Elliptic equations, fundamental in expressing and understanding diverse physical phenomena through partial differential equations (PDEs), are particularly adept at modeling steady-state and equilibrium behaviors. However, within the realm of elliptic equations, the subset of extremely degenerate cases presents a level of complexity that challenges traditional analytical methods, necessitating a deeper exploration of mathematical theory. While elliptic equations are celebrated for their versatility in capturing smooth and continuous behaviors across different disciplines, the introduction of degeneracy adds a layer of intricacy. Extremely degenerate elliptic equations are characterized by coefficients approaching singular behavior, posing non-trivial challenges in establishing classical solutions. Still, the exploration of extremely degenerate cases remains uncharted territory, requiring a profound understanding of mathematical structures and their implications. The motivation behind this research lies in addressing gaps in the current understanding of regularity properties within solutions to extremely degenerate elliptic equations. The study of extreme degeneracy is prompted by its prevalence in real-world applications, where physical phenomena often exhibit characteristics defying conventional mathematical modeling. Whether examining porous media flow or highly anisotropic materials, comprehending the regularity of solutions becomes crucial. Through this research, the aim is to contribute not only to the theoretical foundations of mathematics but also to the practical applicability of mathematical models in diverse scientific fields.

Keywords: elliptic equations, extremely degenerate, regularity results, partial differential equations, mathematical modeling, porous media flow

Procedia PDF Downloads 73
1051 The Crossroad of Identities in Wajdi Mouawad's 'Littoral': A Rhizomatic Approach of Identity Reconstruction through Theatre and Performance

Authors: Mai Hussein

Abstract:

'Littoral' is an original voice in Québécois theatre, spanning the cultural gaps that can exist between the playwrights’ native Lebanon, North America, Quebec, and Europe. Littoral is a 'crossroad' of cultures and themes, a 'bridge' connecting cultures and languages. It represents a new form of theatrical writing that combines the verbal, the vocal and the pantomimic, calling upon the stage to question the real, to engage characters in a quest, in a journey of mourning, of reconstructing identity and a collective memory despite ruins and wars. A theatre of witness, a theatre denouncing irrationality of racism and war, a theatre 'performing' the symptoms of the stress disorders of characters passing from resistance and anger to reconciliation and giving voice to the silenced victims, these are some of the pillars that this play has to offer. In this corrida between life and death, the identity seems like a work-in-progress that is shaped in the presence of the Self and the Other. This trajectory will lead to re-open widely the door to questions, interrogations, and reflections to show how this play is at the nexus of contemporary preoccupations of the 21st century: the importance of memory, the search for meaning, the pursuit of the infinite. It also shows how a play can create bridges between languages, cultures, societies, and movements. To what extent does it mediate between the words and the silence, and how does it burn the bridges or the gaps between the textual and the performative while investigating the power of intermediality to confront racism and segregation. It also underlines the centrality of confrontation between cultures, languages, writing and representation techniques to challenge the characters in their quest to restructure their shattered, but yet intertwined identities. The goal of this theatre would then be to invite everyone involved in the process of a journey of self-discovery away from their comfort zone. Everyone will have to explore the liminal space, to read in between the lines of the written text as well as in between the text and the performance to explore the gaps and the tensions that exist between what is said, and what is played, between the 'parole' and the performative body.

Keywords: identity, memory, performance, testimony, trauma

Procedia PDF Downloads 115
1050 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: lithium-ion batteries, genetic algorithm optimization, battery aging test, parameter identification

Procedia PDF Downloads 267
1049 Climate Change and Health in Policies

Authors: Corinne Kowalski, Lea de Jong, Rainer Sauerborn, Niamh Herlihy, Anneliese Depoux, Jale Tosun

Abstract:

Climate change is considered one of the biggest threats to human health of the 21st century. The link between climate change and health has received relatively little attention in the media, in research and in policy-making. A long term and broad overview of how health is represented in the legislation on climate change is missing in the legislative literature. It is unknown if or how the argument for health is referred in legal clauses addressing climate change, in national and European legislation. Integrating scientific based evidence into policies regarding the impacts of climate change on health could be a key step to inciting the political and societal changes necessary to decelerate global warming. This may also drive the implementation of new strategies to mitigate the consequences on health systems. To provide an overview of this issue, we are analyzing the Global Climate Legislation Database provided by the Grantham Research Institute on Climate Change and the Environment. This institution was established in 2008 at the London School of Economics and Political Science. The database consists of (updated as of 1st January 2015) legislations on climate change in 99 countries around the world. This tool offers relevant information about the state of climate related policies. We will use the database to systematically analyze the 829 identified legislations to identify how health is represented as a relevant aspect of climate change legislation. We are conducting explorative research of national and supranational legislations and anticipate health to be addressed in various forms. The goal is to highlight how often, in what specific terms, which aspects of health or health risks of climate change are mentioned in various legislations. The position and recurrence of the mention of health is also of importance. Data will be extracted with complete quotation of the sentence which mentions health, which will allow for second qualitative stage to analyze which aspects of health are represented and in what context. This study is part of an interdisciplinary project called 4CHealth that confronts results of the research done on scientific, political and press literature to better understand how the knowledge on climate change and health circulates within those different fields and whether and how it is translated to real world change.

Keywords: climate change, explorative research, health, policies

Procedia PDF Downloads 365
1048 Gene Expressions in Left Ventricle Heart Tissue of Rat after 150 Mev Proton Irradiation

Authors: R. Fardid, R. Coppes

Abstract:

Introduction: In mediastinal radiotherapy and to a lesser extend also in total-body irradiation (TBI) radiation exposure may lead to development of cardiac diseases. Radiation-induced heart disease is dose-dependent and it is characterized by a loss of cardiac function, associated with progressive heart cells degeneration. We aimed to determine the in-vivo radiation effects on fibronectin, ColaA1, ColaA2, galectin and TGFb1 gene expression levels in left ventricle heart tissues of rats after irradiation. Material and method: Four non-treatment adult Wistar rats as control group (group A) were selected. In group B, 4 adult Wistar rats irradiated to 20 Gy single dose of 150 Mev proton beam locally in heart only. In heart plus lung irradiate group (group C) 4 adult rats was irradiated by 50% of lung laterally plus heart radiation that mentioned in before group. At 8 weeks after radiation animals sacrificed and left ventricle heart dropped in liquid nitrogen for RNA extraction by Absolutely RNA® Miniprep Kit (Stratagen, Cat no. 400800). cDNA was synthesized using M-MLV reverse transcriptase (Life Technologies, Cat no. 28025-013). We used Bio-Rad machine (Bio Rad iQ5 Real Time PCR) for QPCR testing by relative standard curve method. Results: We found that gene expression of fibronectin in group C significantly increased compared to control group, but it was not showed significant change in group B compared to group A. The levels of gene expressions of Cola1 and Cola2 in mRNA did not show any significant changes between normal and radiation groups. Changes of expression of galectin target significantly increased only in group C compared to group A. TGFb1 expressions in group C more than group B showed significant enhancement compared to group A. Conclusion: In summary we can say that 20 Gy of proton exposure of heart tissue may lead to detectable damages in heart cells and may distribute function of them as a component of heart tissue structure in molecular level.

Keywords: gene expression, heart damage, proton irradiation, radiotherapy

Procedia PDF Downloads 489
1047 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool

Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier

Abstract:

Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.

Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison

Procedia PDF Downloads 384
1046 PLO-AIM: Potential-Based Lane Organization in Autonomous Intersection Management

Authors: Berk Ecer, Ebru Akcapinar Sezer

Abstract:

Traditional management models of intersections, such as no-light intersections or signalized intersection, are not the most effective way of passing the intersections if the vehicles are intelligent. To this end, Dresner and Stone proposed a new intersection control model called Autonomous Intersection Management (AIM). In the AIM simulation, they were examining the problem from a multi-agent perspective, demonstrating that intelligent intersection control can be made more efficient than existing control mechanisms. In this study, autonomous intersection management has been investigated. We extended their works and added a potential-based lane organization layer. In order to distribute vehicles evenly to each lane, this layer triggers vehicles to analyze near lanes, and they change their lane if other lanes have an advantage. We can observe this behavior in real life, such as drivers, change their lane by considering their intuitions. Basic intuition on selecting the correct lane for traffic is selecting a less crowded lane in order to reduce delay. We model that behavior without any change in the AIM workflow. Experiment results show us that intersection performance is directly connected with the vehicle distribution in lanes of roads of intersections. We see the advantage of handling lane management with a potential approach in performance metrics such as average delay of intersection and average travel time. Therefore, lane management and intersection management are problems that need to be handled together. This study shows us that the lane through which vehicles enter the intersection is an effective parameter for intersection management. Our study draws attention to this parameter and suggested a solution for it. We observed that the regulation of AIM inputs, which are vehicles in lanes, was as effective as contributing to aim intersection management. PLO-AIM model outperforms AIM in evaluation metrics such as average delay of intersection and average travel time for reasonable traffic rates, which is in between 600 vehicle/hour per lane to 1300 vehicle/hour per lane. The proposed model reduced the average travel time reduced in between %0.2 - %17.3 and reduced the average delay of intersection in between %1.6 - %17.1 for 4-lane and 6-lane scenarios.

Keywords: AIM project, autonomous intersection management, lane organization, potential-based approach

Procedia PDF Downloads 139
1045 Formulation and Evaluation of Antioxidant Cream Containing Nepalese Medicinal Plants

Authors: Ajaya Acharya, Prem Narayan Paudel, Rajendra Gyawali

Abstract:

Due to strong tyrosinase inhibition and antioxidant effects, green tea and Licorice are valuable in cosmetics for the skin. However, data on the addition of essential oils to green tea and Licorice in cream formulation to examine antioxidant activities are limited. The purpose of this study was to develop and assess a phytocosmetic cream’s antioxidant and tyrosinase inhibitory characteristics using crude aqueous extracts of green tea, Licorice, and loaded with essential oils. To load the best concentration on cream formulations, plant aqueous extracts were designed, evaluated, and correlated in terms of total phenolic content (TPC), total flavonoids content (TFC), and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Moreover, o. tenuiflorum and o. basilicum essential oils were extracted and added to a cream formulation. The spreadability profile, water washability, centrifugation test, and organoleptic characteristics of formulated oil in water cream were all satisfactory. The cream exhibited a non-Newtonian rheological profile and pH range of 6.353 ± 0.065 to 6.467±0.050 over successive 0, 1, 2, and 3 months at normal room temperature. The 50% inhibition concentrations shown by herbal cream were 13.764 ± 0.153 µg/ml, 301.445 ± 1.709 µg/ml and 8.082 ± 0.055 respectively for 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric (Fe³⁺) reducing antioxidant power (FRAP) and 2, 2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, and that of standard ascorbic acid were 6.716 ± 0.077 µg/ml, 171.604 ± 1.551µg/ml and 5.645±0.034µg/ml which showed formulated cream had strong antioxidant characteristics. The formulated herbal cream with a 50% tyrosinase inhibition concentration of 22.254 ± 0.369µg/ml compared to standard Kojic acid 12.535 ± 0.098µg/ml demonstrated a satisfactory tyrosinase inhibition profile for skin whitening property. Herbal cream was reportedly stable in physical and chemical parameters for successive 0, 1, 2, and 3 months at both real and accelerated time study zones, according to obtained stability study results.

Keywords: crude extracts, antioxidant, tyrosinase inhibition, green tea polyphenols

Procedia PDF Downloads 21
1044 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 27
1043 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty

Authors: Ben Khayut, Lina Fabri, Maya Avikhana

Abstract:

The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.

Keywords: computational brain, mind, psycholinguistic, system, under uncertainty

Procedia PDF Downloads 177
1042 Teaching English in Low Resource-Environments: Problems and Prospects

Authors: Gift Chidi-Onwuta, Iwe Nkem Nkechinyere, Chikamadu Christabelle Chinyere

Abstract:

The teaching of English is a resource-driven activity that requires rich resource-classroom settings for the delivery of effective lessons and the acquisition of interpersonal skills for integration in a target-language environment. However, throughout the world, English is often taught in low-resource classrooms. This paper is aimed to reveal the common problems associated with teaching English in low-resource environments and the prospects for teachers who found themselves in such undefined teaching settings. Self-structured and validated questionnaire in a closed-ended format, open question format and scaling format was administered to teachers across five countries: Nigeria, Cameroun, Iraq, Turkey, and Sudan. The study adopts situational language teaching theory (SLTT), which emphasizes a performance improvement imperative. This study inclines to this model because it maintains that learning must be fun and enjoyable like playing a favorite sport, just as in real life. Since teaching resources make learning engaging, we found this model apt for the current study. The perceptions of teachers about accessibility and functionality of teaching material resources, the nature of teaching outcomes in resource-less environments, their levels of involvement in improvisation and the prospects associated with resource limitations were sourced. Data were analysed using percentages and presented in frequency tables. Results: showed that a greater number of teachers across these nations do not have access to sufficient productive resource materials that can aid effective English language teaching. Teaching outcomes, from the findings, are affected by low material resources; however, results show certain advantages to teaching English with limited resources: flexibility and autonomy with students and creativity and innovation amongst teachers. Results further revealed group work, story, critical thinking strategy, flex, cardboards and flashcards, dictation and dramatization as common teaching strategies, as well as materials adopted by teachers to overcome low resource-related challenges in classrooms.

Keywords: teaching materials, low-resource environments, English language teaching, situational language theory

Procedia PDF Downloads 130
1041 Railway Process Automation to Ensure Human Safety with the Aid of IoT and Image Processing

Authors: K. S. Vedasingha, K. K. M. T. Perera, K. I. Hathurusinghe, H. W. I. Akalanka, Nelum Chathuranga Amarasena, Nalaka R. Dissanayake

Abstract:

Railways provide the most convenient and economically beneficial mode of transportation, and it has been the most popular transportation method among all. According to the past analyzed data, it reveals a considerable number of accidents which occurred at railways and caused damages to not only precious lives but also to the economy of the countries. There are some major issues which need to be addressed in railways of South Asian countries since they fall under the developing category. The goal of this research is to minimize the influencing aspect of railway level crossing accidents by developing the “railway process automation system”, as there are high-risk areas that are prone to accidents, and safety at these places is of utmost significance. This paper describes the implementation methodology and the success of the study. The main purpose of the system is to ensure human safety by using the Internet of Things (IoT) and image processing techniques. The system can detect the current location of the train and close the railway gate automatically. And it is possible to do the above-mentioned process through a decision-making system by using past data. The specialty is both processes working parallel. As usual, if the system fails to close the railway gate due to technical or a network failure, the proposed system can identify the current location and close the railway gate through a decision-making system, which is a revolutionary feature. The proposed system introduces further two features to reduce the causes of railway accidents. Railway track crack detection and motion detection are those features which play a significant role in reducing the risk of railway accidents. Moreover, the system is capable of detecting rule violations at a level crossing by using sensors. The proposed system is implemented through a prototype, and it is tested with real-world scenarios to gain the above 90% of accuracy.

Keywords: crack detection, decision-making, image processing, Internet of Things, motion detection, prototype, sensors

Procedia PDF Downloads 177
1040 Optimization of Perfusion Distribution in Custom Vascular Stent-Grafts Through Patient-Specific CFD Models

Authors: Scott M. Black, Craig Maclean, Pauline Hall Barrientos, Konstantinos Ritos, Asimina Kazakidi

Abstract:

Aortic aneurysms and dissections are leading causes of death in cardiovascular disease. Both inevitably lead to hemodynamic instability without surgical intervention in the form of vascular stent-graft deployment. An accurate description of the aortic geometry and blood flow in patient-specific cases is vital for treatment planning and long-term success of such grafts, as they must generate physiological branch perfusion and in-stent hemodynamics. The aim of this study was to create patient-specific computational fluid dynamics (CFD) models through a multi-modality, multi-dimensional approach with boundary condition optimization to predict branch flow rates and in-stent hemodynamics in custom stent-graft configurations. Three-dimensional (3D) thoracoabdominal aortae were reconstructed from four-dimensional flow-magnetic resonance imaging (4D Flow-MRI) and computed tomography (CT) medical images. The former employed a novel approach to generate and enhance vessel lumen contrast via through-plane velocity at discrete, user defined cardiac time steps post-hoc. To produce patient-specific boundary conditions (BCs), the aortic geometry was reduced to a one-dimensional (1D) model. Thereafter, a zero-dimensional (0D) 3-Element Windkessel model (3EWM) was coupled to each terminal branch to represent the distal vasculature. In this coupled 0D-1D model, the 3EWM parameters were optimized to yield branch flow waveforms which are representative of the 4D Flow-MRI-derived in-vivo data. Thereafter, a 0D-3D CFD model was created, utilizing the optimized 3EWM BCs and a 4D Flow-MRI-obtained inlet velocity profile. A sensitivity analysis on the effects of stent-graft configuration and BC parameters was then undertaken using multiple stent-graft configurations and a range of distal vasculature conditions. 4D Flow-MRI granted unparalleled visualization of blood flow throughout the cardiac cycle in both the pre- and postsurgical states. Segmentation and reconstruction of healthy and stented regions from retrospective 4D Flow-MRI images also generated 3D models with geometries which were successfully validated against their CT-derived counterparts. 0D-1D coupling efficiently captured branch flow and pressure waveforms, while 0D-3D models also enabled 3D flow visualization and quantification of clinically relevant hemodynamic parameters for in-stent thrombosis and graft limb occlusion. It was apparent that changes in 3EWM BC parameters had a pronounced effect on perfusion distribution and near-wall hemodynamics. Results show that the 3EWM parameters could be iteratively changed to simulate a range of graft limb diameters and distal vasculature conditions for a given stent-graft to determine the optimal configuration prior to surgery. To conclude, this study outlined a methodology to aid in the prediction post-surgical branch perfusion and in-stent hemodynamics in patient specific cases for the implementation of custom stent-grafts.

Keywords: 4D flow-MRI, computational fluid dynamics, vascular stent-grafts, windkessel

Procedia PDF Downloads 181
1039 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions

Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez

Abstract:

In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.

Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval

Procedia PDF Downloads 232
1038 Investigation of Aerodynamic and Design Features of Twisting Tall Buildings

Authors: Sinan Bilgen, Bekir Ozer Ay, Nilay Sezer Uzol

Abstract:

After decades of conventional shapes, irregular forms with complex geometries are getting more popular for form generation of tall buildings all over the world. This trend has recently brought out diverse building forms such as twisting tall buildings. This study investigates both the aerodynamic and design features of twisting tall buildings through comparative analyses. Since twisting a tall building give rise to additional complexities related with the form and structural system, lateral load effects become of greater importance on these buildings. The aim of this study is to analyze the inherent characteristics of these iconic forms by comparing the wind loads on twisting tall buildings with those on their prismatic twins. Through a case study research, aerodynamic analyses of an existing twisting tall building and its prismatic counterpart were performed and the results have been compared. The prismatic twin of the original building were generated by removing the progressive rotation of its floors with the same plan area and story height. Performance-based measures under investigation have been evaluated in conjunction with the architectural design. Aerodynamic effects have been analyzed by both wind tunnel tests and computational methods. High frequency base balance tests and pressure measurements on 3D models were performed to evaluate wind load effects on a global and local scale. Comparisons of flat and real surface models were conducted to further evaluate the effects of the twisting form without façade texture contribution. Comparisons highlighted that, the twisting form under investigation shows better aerodynamic behavior both for along wind but particularly for across wind direction. Compared to the prismatic counterpart; twisting model is superior on reducing vortex-shedding dynamic response by disorganizing the wind vortices. Consequently, despite the difficulties arisen from inherent complexity of twisted forms, they could still be feasible and viable with their attractive images in the realm of tall buildings.

Keywords: aerodynamic tests, motivation for twisting, tall buildings, twisted forms, wind excitation

Procedia PDF Downloads 234
1037 Characterization of Transcription Factors Involved in Early Defense Response during Interaction of Oil Palm Elaeis guineensis Jacq. with Ganoderma boninense

Authors: Sakeh N. Mohd, Bahari M. N. Abdul, Abdullah S. N. Akmar

Abstract:

Oil palm production generates high export earnings to many countries especially in Southeast Asian region. Infection by necrotrophic fungus, Ganoderma boninense on oil palm results in basal stem rot which compromises oil palm production leading to significant economic loss. There are no reliable disease treatments nor promising resistant oil palm variety has been cultivated to eradicate the disease up to date. Thus, understanding molecular mechanisms underlying early interactions of oil palm with Ganoderma boninense may be vital to promote preventive or control measure of the disease. In the present study, four months old oil palm seedlings were infected via artificial inoculation of Ganoderma boninense on rubber wood blocks. Roots of six biological replicates of treated and untreated oil palm seedlings were harvested at 0, 3, 7 and 11 days post inoculation. Next-generation sequencing was performed to generate high-throughput RNA-Seq data and identify differentially expressed genes (DEGs) during early oil palm-Ganoderma boninense interaction. Based on de novo transcriptome assembly, a total of 427,122,605 paired-end clean reads were assembled into 30,654 unigenes. DEGs analysis revealed upregulation of 173 transcription factors on Ganoderma boninense-treated oil palm seedlings. Sixty-one transcription factors were categorized as DEGs according to stringent cut-off values of genes with log2 ratio [Number of treated oil palm seedlings/ Number of untreated oil palm seedlings] ≥ |1.0| (corresponding to 2-fold or more upregulation) and P-value ≤ 0.01. Transcription factors in response to biotic stress will be screened out from abiotic stress using reverse transcriptase polymerase chain reaction. Transcription factors unique to biotic stress will be verified using real-time polymerase chain reaction. The findings will help researchers to pinpoint defense response mechanism specific against Ganoderma boninense.

Keywords: Ganoderma boninense, necrotrophic, next-generation sequencing, transcription factors

Procedia PDF Downloads 266
1036 The Integration of Geographical Information Systems and Capacitated Vehicle Routing Problem with Simulated Demand for Humanitarian Logistics in Tsunami-Prone Area: A Case Study of Phuket, Thailand

Authors: Kiatkulchai Jitt-Aer, Graham Wall, Dylan Jones

Abstract:

As a result of the Indian Ocean tsunami in 2004, logistics applied to disaster relief operations has received great attention in the humanitarian sector. As learned from such disaster, preparing and responding to the aspect of delivering essential items from distribution centres to affected locations are of the importance for relief operations as the nature of disasters is uncertain especially in suffering figures, which are normally proportional to quantity of supplies. Thus, this study proposes a spatial decision support system (SDSS) for humanitarian logistics by integrating Geographical Information Systems (GIS) and the capacitated vehicle routing problem (CVRP). The GIS is utilised for acquiring demands simulated from the tsunami flooding model of the affected area in the first stage, and visualising the simulation solutions in the last stage. While CVRP in this study encompasses designing the relief routes of a set of homogeneous vehicles from a relief centre to a set of geographically distributed evacuation points in which their demands are estimated by using both simulation and randomisation techniques. The CVRP is modeled as a multi-objective optimization problem where both total travelling distance and total transport resources used are minimized, while demand-cost efficiency of each route is maximized in order to determine route priority. As the model is a NP-hard combinatorial optimization problem, the Clarke and Wright Saving heuristics is proposed to solve the problem for the near-optimal solutions. The real-case instances in the coastal area of Phuket, Thailand are studied to perform the SDSS that allows a decision maker to visually analyse the simulation scenarios through different decision factors.

Keywords: demand simulation, humanitarian logistics, geographical information systems, relief operations, capacitated vehicle routing problem

Procedia PDF Downloads 248
1035 A New Co(II) Metal Complex Template with 4-dimethylaminopyridine Organic Cation: Structural, Hirshfeld Surface, Phase Transition, Electrical Study and Dielectric Behavior

Authors: Mohamed dammak

Abstract:

Great attention has been paid to the design and synthesis of novel organic-inorganic compounds in recent decades because of their structural variety and the large diversity of atomic arrangements. In this work, the structure for the novel dimethyl aminopyridine tetrachlorocobaltate (C₇H₁₁N₂)₂CoCl₄ prepared by the slow evaporation method at room temperature has been successfully discussed. The X-ray diffraction results indicate that the hybrid material has a triclinic structure with a P space group and features a 0D structure containing isolated distorted [CoCl₄]2- tetrahedra interposed between [C7H11N²⁻]+ cations forming planes perpendicular to the c axis at z = 0 and z = ½. The effect of the synthesis conditions and the reactants used, the interactions between the cationic planes, and the isolated [CoCl4]2- tetrahedra are employing N-H...Cl and C-H…Cl hydrogen bonding contacts. The inspection of the Hirshfeld surface analysis helps to discuss the strength of hydrogen bonds and to quantify the inter-contacts. A phase transition was discovered by thermal analysis at 390 K, and comprehensive dielectric research was reported, showing a good agreement with thermal data. Impedance spectroscopy measurements were used to study the electrical and dielectric characteristics over a wide range of frequencies and temperatures, 40 Hz–10 MHz and 313–483 K, respectively. The Nyquist plot (Z" versus Z') from the complex impedance spectrum revealed semicircular arcs described by a Cole-Cole model. An electrical circuit consisting of a link of grain and grain boundary elements is employed. The real and imaginary parts of dielectric permittivity, as well as tg(δ) of (C₇H₁₁N₂)₂CoCl₄ at different frequencies, reveal a distribution of relaxation times. The presence of grain and grain boundaries is confirmed by the modulus investigations. Electric and dielectric analyses highlight the good protonic conduction of this material.

Keywords: organic-inorganic, phase transitions, complex impedance, protonic conduction, dielectric analysis

Procedia PDF Downloads 85
1034 Resilient Leadership in Sustainable Urban Planning: Embracing Change to Shape Future Cities

Authors: Rick Denley

Abstract:

Urban planning today faces unprecedented challenges as cities strive for sustainability in response to climate change, rapid population growth, and the increasing demand for green infrastructure. In this context, effective leadership becomes as essential as innovative design and technology. Rick Denley’s keynote, Resilient Leadership in Sustainable Urban Planning: Embracing Change to Shape Future Cities, focuses on equipping urban planners, academics, and industry leaders with the leadership tools necessary to guide their teams and projects through complex transitions. His session addresses the essential role of leadership in driving sustainable urban transformations, adapting to changing environmental demands, and fostering collaborative approaches to green infrastructure initiatives. Rick’s keynote is grounded in his Change Growth Formula, a practical framework he has developed over years of leading corporate transformations and advising on resilience and growth. His talk will focus on how urban planning professionals can cultivate adaptability, inspire innovative thinking, and lead their teams to achieve impactful urban projects that prioritize sustainable landscapes, water management, and green spaces. Attendees will gain actionable insights on building a resilient mindset, leveraging collaborative partnerships, and aligning urban planning initiatives with environmental goals. This session is aligned with the conference’s objectives to share interdisciplinary knowledge, explore innovative solutions, and address critical challenges in urban landscape and urban planning. Rick’s approach combines insights from leadership theory with real-world applications in urban planning, making his talk relevant for professionals seeking both inspiration and practical tools to lead sustainable transformations.

Keywords: resilient leadership, change management, collaborative planning, adaptive leadership, community engagement, leadership in urban design

Procedia PDF Downloads 6
1033 Contrasted Mean and Median Models in Egyptian Stock Markets

Authors: Mai A. Ibrahim, Mohammed El-Beltagy, Motaz Khorshid

Abstract:

Emerging Markets return distributions have shown significance departure from normality were they are characterized by fatter tails relative to the normal distribution and exhibit levels of skewness and kurtosis that constitute a significant departure from normality. Therefore, the classical Markowitz Mean-Variance is not applicable for emerging markets since it assumes normally-distributed returns (with zero skewness and kurtosis) and a quadratic utility function. Moreover, the Markowitz mean-variance analysis can be used in cases of moderate non-normality and it still provides a good approximation of the expected utility, but it may be ineffective under large departure from normality. Higher moments models and median models have been suggested in the literature for asset allocation in this case. Higher moments models have been introduced to account for the insufficiency of the description of a portfolio by only its first two moments while the median model has been introduced as a robust statistic which is less affected by outliers than the mean. Tail risk measures such as Value-at Risk (VaR) and Conditional Value-at-Risk (CVaR) have been introduced instead of Variance to capture the effect of risk. In this research, higher moment models including the Mean-Variance-Skewness (MVS) and Mean-Variance-Skewness-Kurtosis (MVSK) are formulated as single-objective non-linear programming problems (NLP) and median models including the Median-Value at Risk (MedVaR) and Median-Mean Absolute Deviation (MedMAD) are formulated as a single-objective mixed-integer linear programming (MILP) problems. The higher moment models and median models are compared to some benchmark portfolios and tested on real financial data in the Egyptian main Index EGX30. The results show that all the median models outperform the higher moment models were they provide higher final wealth for the investor over the entire period of study. In addition, the results have confirmed the inapplicability of the classical Markowitz Mean-Variance to the Egyptian stock market as it resulted in very low realized profits.

Keywords: Egyptian stock exchange, emerging markets, higher moment models, median models, mixed-integer linear programming, non-linear programming

Procedia PDF Downloads 315
1032 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel

Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler

Abstract:

Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.

Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process

Procedia PDF Downloads 135
1031 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 105