Search results for: electromagnetic control valve (ECV)
4219 Effects of Rice Husk Ash on the Properties of Scrap Tyre Steel Fiber Reinforced High Performance Concrete (RHA-STSFRHAC)
Authors: Isyaka Abdulkadir, Egbe-Ngu Ntui Ogork
Abstract:
This research aims to investigate the effect of Rice Husk Ash (RHA) on Scrap Tyre Steel Fiber Reinforced High Performance Concrete (STSFRHPC). RHA was obtained by control burning of rice husk in a kiln to a temperature of 650-700oC and when cooled sieved through 75µm sieve and characterized. The effect of RHA were investigated on grade 50 STSFRHPC of 1:1.28:1.92 with water cement ratio of 0.39 at additions of Scrap Tyre Steel Fiber (STSF) of 1.5% by volume of concrete and partial replacement of cement with RHA at percentages of 0, 5, 10, 15 and 20. The fresh concrete was tested for slump while the hardened concrete was tested for compressive and splitting tensile strengths respectively at curing ages of 3, 7, 28 and 56 days in accordance with standard procedure. Results of RHA-STSFRHPC indicated a reduction in slump and compressive strength with increase in RHA content, while splitting tensile strength increased with RHA replacement up to 10% and reduction in strength above 10% RHA content. The 28 days compressive strength of RHA-STSFRHPC with up to 10% RHA attained the desired characteristic strength of 50N/mm2 and therefore up to 10% RHA is considered as the optimum replacement dosage in STSFRHPC-RHA.Keywords: compressive strength, high performance concrete, rice husk ash, scrap tyre steel fibers
Procedia PDF Downloads 3424218 The Effect of Enamel Surface Preparation on the Self-Etch Bonding of Orthodontic Tubes: An in Vitro Study
Authors: Fernandes A. C. B. C. J., de Jesus V. C., Sepideh N., Vilela OFGG, Somarin K. K., França R., Pinheiro F. H. S. L.
Abstract:
Objective: The purpose of this study was to look at the effect of pre-treatment of enamel with pumice and/or 37% phosphoric acid on the shear bond strength (SBS) of orthodontic tubes bonded to enamel while simultaneously evaluating the efficacy of orthodontic tubes bonded by self-etch primer (SEP). Materials and Methods: 39 of the crown halves were divided into 3 groups at random. Group, I was the control group utilizing both prophy paste and the conventional double etching pre-treatment method. Group II excluded the use of prophy paste prior to double etching. Group III excluded the use of both prophy paste and double etching and only utilized SEP. Bond strength of the orthodontic tubes was measured by SBS. One way ANOVA and Tukey’s HSD test were used to compare SBS values between the three groups. The statistical significance was set to p<0.05. Results: The difference in SBS values of groups I (36.672 ± 9.315 Mpa), II (34.242 ± 9.986 Mpa), and III (39.055 ± 5.565) were not statistically significant (P<0.05). Conclusion: This study suggested that the use of prophy paste or pre-acid etch of the enamel surface did not provide a statistically significant difference in SBS between the three groups.Keywords: shear bond strength, orthodontic bracket, self-etch primer, pumice, prophy
Procedia PDF Downloads 1834217 IoT and Advanced Analytics Integration in Biogas Modelling
Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma
Abstract:
The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization
Procedia PDF Downloads 244216 On the Stability Exact Analysis of Tall Buildings with Outrigger System
Authors: Mahrooz Abed, Amir R. Masoodi
Abstract:
Many structural lateral systems are used in tall buildings such as rigid frames, braced frames, shear walls, tubular structures and core structures. Some efficient structures for drift control and base moment reduction in tall buildings is outrigger and belt truss systems. When adopting outrigger beams in building design, their location should be in an optimum position for an economical design. A range of different strategies has been employed to identify the optimum locations of these outrigger beams under wind load. However, there is an absence of scientific research or case studies dealing with optimum outrigger location using buckling analysis. In this paper, one outrigger system is considered at the middle of height of structure. The optimum location of outrigger will be found based on the buckling load limitation. The core of structure is modeled by a clamped tapered beam. The exact stiffness matrix of tapered beam is formulated based on the Euler-Bernoulli theory. Finally, based on the buckling load of structure, the optimal location of outrigger will be found.Keywords: tall buildings, outrigger system, buckling load, second-order effects, Euler-Bernoulli beam theory
Procedia PDF Downloads 4014215 Internet of Things Based Patient Health Monitoring System
Authors: G. Yoga Sairam Teja, K. Harsha Vardhan, A. Vinay Kumar, K. Nithish Kumar, Ch. Shanthi Priyag
Abstract:
The emergence of the Internet of Things (IoT) has facilitated better device control and monitoring in the modern world. The constant monitoring of a patient would be drastically altered by the usage of IoT in healthcare. As we've seen in the case of the COVID-19 pandemic, it's important to keep oneself untouched while continuously checking on the patient's heart rate and temperature. Additionally, patients with paralysis should be closely watched, especially if they are elderly and in need of special care. Our "IoT BASED PATIENT HEALTH MONITORING SYSTEM" project uses IoT to track patient health conditions in an effort to address these issues. In this project, the main board is an 8051 microcontroller that connects a number of sensors, including a heart rate sensor, a temperature sensor (LM-35), and a saline water measuring circuit. These sensors are connected via an ESP832 (WiFi) module, which enables the sending of recorded data directly to the cloud so that the patient's health status can be regularly monitored. An LCD is used to monitor the data in offline mode, and a buzzer will sound if any variation from the regular readings occurs. The data in the cloud may be viewed as a graph, making it simple for a user to spot any unusual conditions.Keywords: IoT, ESP8266, 8051 microcontrollers, sensors
Procedia PDF Downloads 924214 Multi-Criteria Inventory Classification Process Based on Logical Analysis of Data
Authors: Diana López-Soto, Soumaya Yacout, Francisco Ángel-Bello
Abstract:
Although inventories are considered as stocks of money sitting on shelve, they are needed in order to secure a constant and continuous production. Therefore, companies need to have control over the amount of inventory in order to find the balance between excessive and shortage of inventory. The classification of items according to certain criteria such as the price, the usage rate and the lead time before arrival allows any company to concentrate its investment in inventory according to certain ranking or priority of items. This makes the decision making process for inventory management easier and more justifiable. The purpose of this paper is to present a new approach for the classification of new items based on the already existing criteria. This approach is called the Logical Analysis of Data (LAD). It is used in this paper to assist the process of ABC items classification based on multiple criteria. LAD is a data mining technique based on Boolean theory that is used for pattern recognition. This technique has been tested in medicine, industry, credit risk analysis, and engineering with remarkable results. An application on ABC inventory classification is presented for the first time, and the results are compared with those obtained when using the well-known AHP technique and the ANN technique. The results show that LAD presented very good classification accuracy.Keywords: ABC multi-criteria inventory classification, inventory management, multi-class LAD model, multi-criteria classification
Procedia PDF Downloads 8874213 Experimental Study of the Fiber Dispersion of Pulp Liquid Flow in Channels with Application to Papermaking
Authors: Masaru Sumida
Abstract:
This study explored the feasibility of improving the hydraulic headbox of papermaking machines by studying the flow of wood-pulp suspensions behind a flat plate inserted in parallel and convergent channels. Pulp fiber concentrations of the wake downstream of the plate were investigated by flow visualization and optical measurements. Changes in the time-averaged and fluctuation of the fiber concentration along the flow direction were examined. In addition, the control of the flow characteristics in the two channels was investigated. The behaviors of the pulp fibers and the wake flow were found to be strongly related to the flow states in the upstream passages partitioned by the plate. The distribution of the fiber concentration was complex because of the formation of a thin water layer on the plate and the generation of Karman’s vortices at the trailing edge of the plate. Compared with the flow in the parallel channel, fluctuations in the fiber concentration decreased in the convergent channel. However, at low flow velocities, the convergent channel has a weak effect on equilibrating the time-averaged fiber concentration. This shows that a rectangular trailing edge cannot adequately disperse pulp suspensions; thus, at low flow velocities, a convergent channel is ineffective in ensuring uniform fiber concentration.Keywords: fiber dispersion, headbox, pulp liquid, wake flow
Procedia PDF Downloads 3914212 Prediction of Deformations of Concrete Structures
Authors: A. Brahma
Abstract:
Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction
Procedia PDF Downloads 3404211 A Comprehensive Review of Yoga and Core Strength: Strengthening Core Muscles as Important Method for Injury Prevention (Lower Back Pain) and Performance Enhancement in Sports
Authors: Pintu Modak
Abstract:
The core strength is essential not only for athletes but also for everyone to perform everyday's household chores with ease and efficiency. Core strength means to strengthen the muscles deep within the abdomen which connect to the spine and pelvis which control the position and movement of the central portion of the body. Strengthening of core muscles is important for injury prevention (lower back pain) and performance enhancement in sports. The purpose of the study was to review the literature and findings on the effects of Yoga exercise as a part of sports training method and fitness programs. Fifteen papers were found to be relevant for this review. There are five simple yoga poses: Ardha Phalakasana (Low plank), Vasisthasana (side plank), Purvottanasana (inclined plane), Sarvangasana (shoulder stand), and Virabhadrasana (Warrior) are found to be very effective for strengthening core muscles. They are the most effective poses to build core strength and flexibility to the core muscles. The study suggests that sports and fitness trainers should include these yoga exercises in their programs to strengthen core muscles.Keywords: core strength, yoga, injuries, lower back
Procedia PDF Downloads 2804210 Mathematical Model for Flow and Sediment Yield Estimation on Tel River Basin, India
Authors: Santosh Kumar Biswal, Ramakar Jha
Abstract:
Soil erosion is a slow and continuous process and one of the prominent problems across the world leading to many serious problems like loss of soil fertility, loss of soil structure, poor internal drainage, sedimentation deposits etc. In this paper remote sensing and GIS based methods have been applied for the determination of soil erosion and sediment yield. Tel River basin which is the second largest tributary of the river Mahanadi laying between latitude 19° 15' 32.4"N and, 20° 45' 0"N and longitude 82° 3' 36"E and 84° 18' 18"E chosen for the present study. The catchment was discretized into approximately homogeneous sub-areas (grid cells) to overcome the catchment heterogeneity. The gross soil erosion in each cell was computed using Universal Soil Loss Equation (USLE). Various parameters for USLE was determined as a function of land topography, soil texture, land use/land cover, rainfall, erosivity and crop management and practice in the watershed. The concept of transport limited accumulation was formulated and the transport capacity maps were generated. The gross soil erosion was routed to the catchment outlet. This study can help in recognizing critical erosion prone areas of the study basin so that suitable control measures can be implemented.Keywords: Universal Soil Loss Equation (USLE), GIS, land use, sediment yield,
Procedia PDF Downloads 3164209 Numerical and Experimental Studies on the Characteristic of the Air Distribution in the Wind-Box of a Circulating Fluidized Bed Boiler
Authors: Xiaozhou Liu, Guangyu Zhu, Yu Zhang, Hongwei Wu
Abstract:
The wind-box is one of the important components of a Circulating Fluidized Bed (CFB) boiler. The uniformity of air flow in the wind-box of is very important for highly efficient operation of the CFB boiler. Non-uniform air flow distribution within the wind-box can reduce the boiler's thermal efficiency, leading to higher energy consumptions. An effective measure to solve this problem is to install an air flow distributing device in the wind-box. In order to validate the effectiveness of the air flow distributing device, visual and velocity distribution uniformity experiments have been carried out under five different test conditions by using a 1:64 scale model of a 220t/hr CFB boiler. It has been shown that the z component of flow velocity remains almost the same at control cross-sections of the wind-box, with a maximum variation of less than 10%. Moreover, the same methodology has been carried out to a full-scale 220t/hr CFB boiler. The hot test results depict that the thermal efficiency of the boiler has increased from 85.71% to 88.34% when tested with an air flow distributing device in place, which is equivalent to a saving of 5,000 tons of coal per year. The economic benefits of this energy-saving technology have been shown to be very significant, which clearly demonstrates that the technology is worth applying and popularizing.Keywords: circulating fluidized bed, CFB, wind-box, air flow distributing device, visual experiment, velocity distribution uniformity experiment, hot test
Procedia PDF Downloads 1794208 Developing a Web-Based Workflow Management System in Cloud Computing Platforms
Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya
Abstract:
Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System
Procedia PDF Downloads 3114207 Compatibility of Copolymer-Based Grinding Aids and Sulfonated Acetone-Formaldehyde Superplasticizer
Authors: Zhang Tailong
Abstract:
Compatibility between sulfonated acetone-formalehyde superplasticizer (SAF) and copolymer-based grinding aids (GA) were studied by fluidity, Zeta potential, setting time of cement pasts, initial slump and slump flow of concrete and compressive strength of concrete. ESEM, MIP, and XRD were used to investigate the changing of microstructure of interior concrete. The results indicated that GA could noticeably enhance the dispersion ability of SAF. It was found that better fluidity and slump-keeping ability of cement paste were obtained in the case of GA. In addition, GA and SAF together had a certain retardation effect on hydration of cement paste. With increasing of the GA dosage, the dispersion ability and retardation effect of admixture increased. The compressive strength of the sample made with SAF and GA after 28 days was higher than that of the control sample made only with SAF. The initial slump and slump flow of concrete increased by 10.0% and 22.9%, respectively, while 0.09 wt.% GA was used. XRD examination indicated that new products were not found in the case of GA. In addition, more dense arrangement of hydrates and lower porosity of the specimen were observed by ESEM and MIP, which contributed to higher compressive strength.Keywords: copolymer-based grinding aids, superplasiticizer, compatibility, microstructure, cement, concrete
Procedia PDF Downloads 2494206 Occupational Health and Safety Implications of Flower Farming on the Local Communities in Central Uganda
Authors: Charles Owenda Omulo
Abstract:
This study examines Occupational Health and Safety implications in flower farms in Central Uganda. An exploratory sequential mixed method design and methodology was employed, with multiple data collection methods, including interviews, focus group discussions, and surveys. The findings show that occupational health and safety issues remain a major problem in flower farms. While the majority of workers agreed that the farms provided them with protective equipment, the data collected from the workers point to either the improper use or ineffectiveness of this equipment. A number of workers reported skin irritations, sore and painful eyes, stiff necks, back pains, and occasional headaches that were presumably argued to have arisen from their work environment. The study also found that farms have been adjusting in an attempt to correct some of these anomalies. These included the use of biological approaches to control pests and diseases and restricting the use of some chemical formulations that are deemed to be harmful to applicators and the environment. Alongside these efforts, the study recommends increased vigilance by the flower farm owners in the provision of personal protective equipment to workers.Keywords: flower farms, personal protective equipment, agrochemicals, rural communities, occupational health and safety
Procedia PDF Downloads 674205 Aerodynamic Design Optimization of Ferrari F430 Flying Car with Enhanced Takeoff Performance
Authors: E. Manikandan, C. Chilambarasan, M. Sulthan Ariff Rahman, S. Kanagaraj, Abhimanyu Pugazhandhi, V. R. Sanal Kumar
Abstract:
The designer of any flying car has the major concern on the creation of upward force with low takeoff velocity, with minimum drag, coupled with better stability and control warranting its overall high performance both in road and air. In this paper, 3D numerical simulations of external flow of a Ferrari F430 fitted with different NACA series rectangular wings have been carried out for finding the best aerodynamic design option in road and air. The principle that allows a car to rise off the ground by creating lift using deployable wings with desirable lifting characteristics is the main theme of our paper. Additionally, the car body is streamlined in accordance with the speed range. Further, the rounded and tapered shape of the top of the car is designed to slice through the air and minimize the wind resistance. The 3D SST k-ω turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies, we have conjectured that Ferrari F430 can be converted into a lucrative flying car with best fit NACA wing through a proper aerodynamic design optimization.Keywords: aerodynamics of flying car, air taxi, Ferrari F430, roadable airplane
Procedia PDF Downloads 2114204 Effects of Soil Erosion on Vegetation Development
Authors: Josephine Wanja Nyatia
Abstract:
The relationship between vegetation and soil erosion deserves attention due to its scientific importance and practical applications. A great deal of information is available about the mechanisms and benefits of vegetation in the control of soil erosion, but the effects of soil erosion on vegetation development and succession is poorly documented. Research shows that soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil erosion interferes with the process of plant community development and vegetation succession, commencing with seed formation and impacting throughout the whole growth phase and affecting seed availability, dispersal, germination and establishment, plant community structure and spatial distribution. There have been almost no studies on the effects of soil erosion on seed development and availability, of surface flows on seed movement and redistribution, and their influences on soil seed bank and on vegetation establishment and distribution. However, these effects may be the main cause of low vegetation cover in regions of high soil erosion activity, and these issues need to be investigated. Moreover, soil erosion is not only a negative influence on vegetation succession and restoration but also a driving force of plant adaptation and evolution. Consequently, we need to study the effects of soil erosion on ecological processes and on development and regulation of vegetation succession from the points of view of pedology and vegetation, plant and seed ecology, and to establish an integrated theory and technology for deriving practical solutions to soil erosion problemsKeywords: soil erosion, vegetation, development, seed availability
Procedia PDF Downloads 914203 Stability Analysis of DC Microgrid with Varying Supercapacitor Operating Voltages
Authors: Annie B. V., Anu A. G., Harikumar R.
Abstract:
Microgrid (MG) is a self-governing miniature section of the power system. Nowadays the majority of loads and energy storage devices are inherently in DC form. This necessitates a greater scope of research in the various types of energy storage devices in DC microgrids. In a modern power system, DC microgrid is a manageable electric power system usually integrated with renewable energy sources (RESs) and DC loads with the help of power electronic converters. The stability of the DC microgrid mainly depends on the power imbalance. Power imbalance due to the presence of intermittent renewable energy resources (RERs) is supplied by energy storage devices. Battery, supercapacitor, flywheel, etc. are some of the commonly used energy storage devices. Owing to the high energy density provided by the batteries, this type of energy storage system is mainly utilized in all sorts of hybrid energy storage systems. To minimize the stability issues, a Supercapacitor (SC) is usually interfaced with the help of a bidirectional DC/DC converter. SC can exchange power during transient conditions due to its high power density. This paper analyses the stability issues of DC microgrids with hybrid energy storage systems (HESSs) arises from a reduction in SC operating voltage due to self-discharge. The stability of DC microgrid and power management is analyzed with different control strategies.Keywords: DC microgrid, hybrid energy storage system (HESS), power management, small signal modeling, supercapacitor
Procedia PDF Downloads 2554202 PDMS-Free Microfluidic Chips Fabrication and Utilisation for Pulsed Electric Fields Applications
Authors: Arunas Stirke, Neringa Bakute, Gatis Mozolevskis
Abstract:
A technology of microfluidics is an emerging tool in the field of biology, medicine and chemistry. Microfluidic device is also known as ‘lab-on-a-chip’ technology [1]. In moving from macro- to microscale, there is unprecedented control over spatial and temporal gradients and patterns that cannot be captured in conventional Petri dishes and well plates [2]. However, there is not a single standard microfluidic chip designated for all purposes – every different field of studies needs a specific microchip with certain geometries, inlet/outlet, channel depth and other parameters to precisely regulate the required function. Since our group is studying an effect of pulsed electric field (PEF) to the cells, we have manufactured a microfluidic chip designated for high-throughput electroporation of cells. In our microchip, a cell culture chamber is divided into two parallel channels by a membrane, meanwhile electrodes for electroporation are attached to the wall of the channels. Both microchannels have their own inlet and outlet, enabling injection of transfection material separately. Our perspective is to perform electroporation of mammalian cells in two different ways: (1) plasmid and cells are injected in the same microchannel and (2) injected into separate microchannels. Moreover, oxygen and pH sensors are integrated on order to analyse cell viability parameters after PEF treatment.Keywords: microfluidics, chip, fabrication, electroporation
Procedia PDF Downloads 874201 Development of Calcium Carbonate Molecular Sheets via Wet Chemical Route
Authors: Sudhir Kumar Sharma, Ramesh Jagannathan
Abstract:
The interaction of organic and inorganic matrices of biological origin resulting in self-assembled structures with unique properties is well established. The development of such self-assembled nanostructures by synthetic and bio-inspired techniques is an established field of active research. Among bio-materials, nacre, a laminar stack of calcium carbonate nanosheets, which are interleaved with organic material, has long been focused research due to its unique mechanical properties. In this paper, we present the development of nacre-like lamellar structures made up of calcium carbonate via a wet chemical route. We used the binding affinity of carboxylate anions and calcium cations using poly (acrylic) acid (PAA) to lead CaCO₃ crystallization. In these experiments, we selected calcium acetate as the precursor molecule along with PAA (Mw ~ 8000 Da). We found that Ca⁺²/COO⁻ ratio provided a tunable control for the morphology and growth of CaCO₃ nanostructures. Drop casting one such formulation on a silicon substrate followed by calcination resulted in co-planner, molecular sheets of CaCO₃, separated by a spacer layer of carbon. The scope of our process could be expanded to produce unit cell thick molecular sheets of other important inorganic materials.Keywords: self-assembled structures, bio-inspired materials, calcium carbonate, wet chemical route
Procedia PDF Downloads 1444200 The Robot Physician's (Rp-7) Management and Care in Unstable Oncology Patients
Authors: Alisher Agzamov, Hanan Al Harbi
Abstract:
BACKGROUND: The timely assessment and treatment of ICU Surgical and Medical Oncology patients is important for Oncology surgeons and Medical Oncologists and Intensivists (1). We hypothesized that the use of Robot Physician’s (RP - 7) ICU management and care in ICU can improve ICU physician rapid response to unstable ICU Oncology patients. METHODS: This is a prospective study of 1501 oncology patients using a before-after, cohort-control design to test the effectiveness of RP. We have used RP to make multidisciplinary ICU rounds in the ICU and for Emergency cases. Data concerning several aspects of the RP interaction, including the latency of the response, the problem being treated, the intervention that was ordered, and the type of information gathered using the RP, were documented. The effect of RP on ICU length of stay and cost was assessed. RESULTS: The use of RP was associated with a reduction in latency of attending physician face-to-face response for routine and urgent pages compared to conventional care (RP: 10.2 +/- 3.3 minutes vs conventional: 210 +/- 40 minutes). The response latencies to Oncology Emergency (8.0 +/- 2.8 vs 140 +/- 35 minutes) and for Respiratory Failure (12 +/- 04 vs 110 +/- 45 minutes) were reduced (P < .001), as was the LOS for oncology patients (5 days) and ARDS (10 day). There was an increase in ICU occupancy by 29 % compared with the prerobot era, and there was an ICU cost savings of KD2.2 million attributable to the use of RP. CONCLUSION: The use of RP enabled rapid face-to-face ICU Intensivist - physician response to unstable ICU Oncology patients and resulted in decreased ICU cost and LOS.Keywords: robot physician, oncology patients, icu management and care, cost and icu occupancy
Procedia PDF Downloads 674199 The Reflection Framework to Enhance the User Experience for Cultural Heritage Spaces’ Websites in Post-Pandemic Times
Authors: Duyen Lam, Thuong Hoang, Atul Sajjanhar, Feifei Chen
Abstract:
With the emerging interactive technology applications helping users connect progressively with cultural artefacts in new approaches, the cultural heritage sector gains significantly. The interactive apps’ issues can be tested via several techniques, including usability surveys and usability evaluations. The severe usability problems for museums’ interactive technologies commonly involve interactions, control, and navigation processes. This study confirms the low quality of being immersive for audio guides in navigating the exhibition and involving experience in the virtual environment, which are the most vital features of new interactive technologies such as AR and VR. In addition, our usability surveys and heuristic evaluations disclosed many usability issues of these interactive technologies relating to interaction functions. Additionally, we use the Wayback Machine to examine what interactive apps/technologies were deployed on these websites during the physical visits limited due to the COVID-19 pandemic lockdown. Based on those inputs, we propose the reflection framework to enhance the UX in the cultural heritage domain with detailed guidelines.Keywords: framework, user experience, cultural heritage, interactive technology, museum, COVID-19 pandemic, usability survey, heuristic evaluation, guidelines
Procedia PDF Downloads 724198 Smart Interior Design: A Revolution in Modern Living
Authors: Fatemeh Modirzare
Abstract:
Smart interior design represents a transformative approach to creating living spaces that integrate technology seamlessly into our daily lives, enhancing comfort, convenience, and sustainability. This paper explores the concept of smart interior design, its principles, benefits, challenges, and future prospects. It also highlights various examples and applications of smart interior design to illustrate its potential in shaping the way we live and interact with our surroundings. In an increasingly digitized world, the boundaries between technology and interior design are blurring. Smart interior design, also known as intelligent or connected interior design, involves the incorporation of advanced technologies and automation systems into residential and commercial spaces. This innovative approach aims to make living environments more efficient, comfortable, and adaptable while promoting sustainability and user well-being. Smart interior design seamlessly integrates technology into the aesthetics and functionality of a space, ensuring that devices and systems do not disrupt the overall design. Sustainable materials, energy-efficient systems, and eco-friendly practices are central to smart interior design, reducing environmental impact. Spaces are designed to be adaptable, allowing for reconfiguration to suit changing needs and preferences. Smart homes and spaces offer greater comfort through features like automated climate control, adjustable lighting, and customizable ambiance. Smart interior design can significantly reduce energy consumption through optimized heating, cooling, and lighting systems. Smart interior design integrates security systems, fire detection, and emergency response mechanisms for enhanced safety. Sustainable materials, energy-efficient appliances, and waste reduction practices contribute to a greener living environment. Implementing smart interior design can be expensive, particularly when retrofitting existing spaces with smart technologies. The increased connectivity raises concerns about data privacy and cybersecurity, requiring robust measures to protect user information. Rapid advancements in technology may lead to obsolescence, necessitating updates and replacements. Users must be familiar with smart systems to fully benefit from them, requiring education and ongoing support. Residential spaces incorporate features like voice-activated assistants, automated lighting, and energy management systems. Intelligent office design enhances productivity and employee well-being through smart lighting, climate control, and meeting room booking systems. Hospitals and healthcare facilities use smart interior design for patient monitoring, wayfinding, and energy conservation. Smart retail design includes interactive displays, personalized shopping experiences, and inventory management systems. The future of smart interior design holds exciting possibilities, including AI-powered design tools that create personalized spaces based on user preferences. Smart interior design will increasingly prioritize factors that improve physical and mental health, such as air quality monitoring and mood-enhancing lighting. Smart interior design is revolutionizing the way we interact with our living and working spaces. By embracing technology, sustainability, and user-centric design principles, smart interior design offers numerous benefits, from increased comfort and convenience to energy efficiency and sustainability. Despite challenges, the future holds tremendous potential for further innovation in this field, promising a more connected, efficient, and harmonious way of living and working.Keywords: smart interior design, home automation, sustainable living spaces, technological integration, user-centric design
Procedia PDF Downloads 754197 Guadua Bamboo as Eco-Friendly Element in Interior Design and Architecture
Authors: Sarah Noaman
Abstract:
Utilizing renewable resources has become extensive solution for most problems in Egypt nowadays. It plays role in environmental issues such as energy crisis, lake of natural resources and climate change. This paper focuses on the importance of working with the key concepts of creating eco-friendly spaces in Egypt by using traditional perennial plants, such as Guadua bamboo as renewable resources in structures manufacture. Egypt is in critical need to search for alternative raw materials. Thus, this paper focuses on studying the usage of neglected yet affordable materials, such as Guadua bamboo in light weight structures and digital fabrication. Guadua bamboo has been cultivated throughout in tropical and subtropical areas. In Egypt, they exist in many rural areas where people try to control their growth by using pesticides as it serves no economic purpose. This paper aims to discuss the usage of Guadua bamboo either in its original state or after fabrication in the context of interior design and architecture. The results will show the applicability of using perennial plants as complementary materials in the manufacturing processes; also the conclusion will focus the lights on the importance of re-forming shallow water plants in interior design and architecture.Keywords: digital fabrication, Guadua bamboo, zero-waste material, sustainable material, interior architecture
Procedia PDF Downloads 1554196 Research on Natural Lighting Design of Atriums Based on Energy-Saving Aim
Authors: Fan Yu
Abstract:
An atrium is a place for natural climate exchanging of indoor and outdoor space of buildings, which plays an active role in the overall energy conservation, climate control and environmental purification of buildings. Its greatest contribution is serving as a natural light collector and distributor to solve the problem of natural lighting in large and deep spaces. However, in real situations, the atrium space often results in energy consumption due to improper design in considering its big size and large amount use of glass. Based on the purpose of energy conservation of buildings, this paper emphasizes the significance of natural lighting of atriums. Through literature research, case analysis and other methods, four factors, namely: the light transmittance through the top of the atrium, the geometric proportion of the atrium space, the size and position of windows and the material of the surface of walls in the atrium, were studied, and the influence of different architectural compositions on the natural light distribution of the atrium is discussed. Relying on the analysis of relevant cases, it is proposed that when designing the natural lighting of the atrium, the height and width of the atrium should be paid attention to, the atrium walls are required being rough surfaces and the atrium top-level windows need to be minimized in order to introduce more natural light into the buildings and achieve the purpose of energy conservation.Keywords: energy conservation, atrium, natural lighting, architectural design
Procedia PDF Downloads 1964195 The Relation between Body Mass Index and Menstrual Cycle Disorders in Medical Students of University Pelita Harapan, Indonesia
Authors: Gabriella Tjondro, Julita Dortua Laurentina Nainggolan
Abstract:
Introduction: There are several things affecting menstrual cycle, namely, nutritional status, diet, financial status of one’s household and exercises. The most commonly used parameter to calculate the fat in a human body is body mass index. Therefore, it is necessary to do research to prevent complications caused by menstrual disorder in the future. Design Study: This research is an observational analytical study with the cross-sectional-case control approach. Participants (n = 124; median age = 19.5 years ± SD 3.5) were classified into 2 groups: normal, NM (n = 62; BMI = 18-23 kg/m2) and obese, OB (n = 62; BMI = > 25 kg/m2). BMI was calculated from the equation; BMI = weight, kg/height, m2. Results: There were 79.10% from obese group who experienced menstrual cycle disorders (n=53, 79.10%; p value 0.00; OR 5.25) and 20.90% from normal BMI group with menstrual cycle disorders. There were several factors in this research that also influence the menstrual cycle disorders such as stress (44.78%; p value 0.00; OR 1.85), sleep disorders (25.37%; p value 0.00; OR 1.01), physical activities (25.37%; p value 0.00; OR 1.24) and diet (10.45%; p value 0.00; OR 1.07). Conclusion: There is a significant relation between body mass index (obese) and menstrual cycle disorders. However, BMI is not the only factor that affects the menstrual cycle disorders. There are several factors that also can affect menstrual cycle disorders, in this study we use stress, sleep disorders, physical activities and diet, in which none of them are dominant.Keywords: menstrual disorders, menstrual cycle, obesity, body mass index, stress, sleep disorders, physical activities, diet
Procedia PDF Downloads 1524194 An Evaluation of the Impact of Social Media on Nigerian Youths
Authors: Haruna Shola Adeosun, Lekan M. Togunwa, Ajoke F. Adebiyi
Abstract:
This paper examines the impact of social media on Nigerian Youths particularly in Nigeria. This study reviewed secondary sources data. The research adopted survey method which involves the use of questionnaire that was administered to gather primary data analysis and presentation were done with the use of tables, figures, percentages and chi-square were used to test the hypotheses formulated. The study revealed that social media consumers, especially Facebook are prone to the benefits or risks aspect of its contents. At this expense, what user derived, seeks, sought and gains from such media depend on the motive they are being used for. The study also revealed that users have the tendency to be positively influenced through heavy or over exposure to numerous contents that are damaging and harmful. This means that social media usage may be considered as good or bad. As its contents may or may not subject consumers to vulnerable use depending on what is saved from it. The study recommends that the use of Facebook should be subjected to gate keeping and monitoring in order to control the activities of users that embrace depression, bullying, sexing and sexual harassment as a way of life. Parents should close watch on their children and caution them towards cultivating the habit of over exposure to social sites so at to protect them form risks social media poses.Keywords: evaluation, impact, soocial media, nigerian youths
Procedia PDF Downloads 2894193 Utilization of Complete Feed Based on Ammoniated Corn Waste on Bali Cattle Peformance
Authors: Elihasridas, Rusmana Wijaya Setia Ninggrat
Abstract:
This research aims to study the utilization of ammoniated corn waste complete ration for substitution basal ration of natural grass in Bali cattle. Four treatments (complete feed ration consisted of: R1=40% natural grass + 60% concentrate (control), R2= 50% natural grass+50% concentrate, R3=60% natural grass+40% concentrate and R4=40% ammoniated corn waste+60% concentrate) were employed in this experiment. This experiment was arranged in a latin square design. Observed variables included dry matter intake (DMI), average daily gain and feed conversion. Data were analyzed by using the Analysis of Variance following a 4 x 4 Latin Square Design. The DMI for R1was 7,15kg/day which was significantly (P < 0,05) higher than R2 (6,32 kg/day) and R3(6,07 kg/day), but was not significantly different (P < 0,05) from R4 (7,01 kg/day). Average daily gain for R1(0,75 kg/day) which was significantly (P < 0,05) higher than R2(0,66 kg/day) and R3 (0,61 kg/day),but was not significantly different (P > 0,05) from R4(0,74 kg/day). Feed conversion was not significantly affected (P > 0,05) by ration. It was concluded that ammoniated corn waste complete ration (40% ammoniated corn waste + 60% concentrate) could be utilized for substitution natural grass basal ration.Keywords: ammoniated corn waste, bali cattle, complete feed, daily gain
Procedia PDF Downloads 2084192 Enhancing Throughput for Wireless Multihop Networks
Authors: K. Kalaiarasan, B. Pandeeswari, A. Arockia John Francis
Abstract:
Wireless, Multi-hop networks consist of one or more intermediate nodes along the path that receive and forward packets via wireless links. The backpressure algorithm provides throughput optimal routing and scheduling decisions for multi-hop networks with dynamic traffic. Xpress, a cross-layer backpressure architecture was designed to reach the capacity of wireless multi-hop networks and it provides well coordination between layers of network by turning a mesh network into a wireless switch. Transmission over the network is scheduled using a throughput-optimal backpressure algorithm. But this architecture operates much below their capacity due to out-of-order packet delivery and variable packet size. In this paper, we present Xpress-T, a throughput optimal backpressure architecture with TCP support designed to reach maximum throughput of wireless multi-hop networks. Xpress-T operates at the IP layer, and therefore any transport protocol, including TCP, can run on top of Xpress-T. The proposed design not only avoids bottlenecks but also handles out-of-order packet delivery and variable packet size, optimally load-balances traffic across them when needed, improving fairness among competing flows. Our simulation results shows that Xpress-T gives 65% more throughput than Xpress.Keywords: backpressure scheduling and routing, TCP, congestion control, wireless multihop network
Procedia PDF Downloads 5244191 Randomly Casted Single-Wall Carbon Nanotubes Films for High Performance Hybrid Photovoltaic Devices
Authors: My Ali El Khakani
Abstract:
Single-wall Carbon nanotubes (SWCNTs) possess an unprecedented combination of unique properties that make them highly promising for suitable for a new generation of photovoltaic (PV) devices. Prior to discussing the integration of SWCNTs films into effective PV devices, we will briefly highlight our work on the synthesis of SWCNTs by means of the KrF pulsed laser deposition technique, their purification and transfer onto n-silicon substrates to form p-n junctions. Some of the structural and optoelectronic properties of SWCNTs relevant to PV applications will be emphasized. By varying the SWCNTs film density (µg/cm2), we were able to point out the existence of an optimum value that yields the highest photoconversion efficiency (PCE) of ~10%. Further control of the doping of the p-SWCNTs films, through their exposure to nitric acid vapors, along with the insertion of an optimized hole-extraction-layer in the p-SWCNTs/n-Si hybrid devices permitted to achieve a PCE value as high as 14.2%. Such a high PCE value demonstrates the full potential of these p-SWCNTs/n-Si devices for sunlight photoconversion. On the other hand, by examining both the optical transmission and electrical conductance of the SWCNTs’ films, we established a figure of merit (FOM) that was shown to correlate well with the PCE performance. Such a direct relationship between the FOM and the PCE can be used as a guide for further PCE enhancement of these novel p-SWCNTs/n-Si PV devices.Keywords: carbon nanotubes (CNTs), CNTs-silicon hybrid devices, photoconversion, photovoltaic devices, pulsed laser deposition
Procedia PDF Downloads 1234190 Biocontrol Potential of Trichoderma sp. against Macrophomina phaseolina
Authors: Jayarama Reddy, Anand S., H., Sundaram, Jeldi Hemachandran
Abstract:
Forty two strains of Trichoderma sp. were isolated from cultivated lands around Bangalore and analyzed for their antagonistic potential against Macrophomina phaseolina. The potential of biocontrol agents ultimately lies in their capacity to control pathogens in vivo. Bioefficacy studies were hence conducted using chickpea (Cicer arientum c.v. Annigeri) as an experimental plant by the roll paper towel method. Overall the isolates T6, T35, T30, and T25 showed better antagonistic potential in addition to enhancing plant growth. The production of chitinases to break down the mycelial cell walls of fungal plant pathogens has been implicated as a major cause of biocontrol activity. In order to study the mechanism of biocontrol against Macrophomina phaseolina, ten better performing strains were plated on media, amended with colloidal chitin and Sclerotium rolfsii cell wall extract. All the isolates showed chitinolytic activity on day three as well as day five. Production of endochitinase and exochitinase were assayed in liquid media using colloidal chitin amended broth. Strains T35 and T6 displayed maximum endochitinase and exochitinase activity. Although all strains exhibited cellulase activity, the quantum of enzyme produced was higher in T35 and T6. The results also indicate a positive correlation between enzyme production and bioefficacy.Keywords: biocontrol, bioefficacy, cellulase, chitinase
Procedia PDF Downloads 381