Search results for: surface emissivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6623

Search results for: surface emissivity

5933 Morphological and Chemical Characterization of the Surface of Orthopedic Implant Materials

Authors: Bertalan Jillek, Péter Szabó, Judit Kopniczky, István Szabó, Balázs Patczai, Kinga Turzó

Abstract:

Hip and knee prostheses are one of the most frequently used medical implants, that can significantly improve patients’ quality of life. Long term success and biointegration of these prostheses depend on several factors, like bulk and surface characteristics, construction and biocompatibility of the material. The applied surgical technique, the general health condition and life-quality of the patient are also determinant factors. Medical devices used in orthopedic surgeries have different surfaces depending on their function inside the human body. Surface roughness of these implants determines the interaction with the surrounding tissues. Numerous modifications have been applied in the recent decades to improve a specific property of an implant. Our goal was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology. Morphological and chemical structure of Vortex plate anodized titanium, cemented THR (total hip replacement) stem high nitrogen REX steel (SS), uncemented THR stem and cup titanium (Ti) alloy with titanium plasma spray coating (TPS), cemented cup and uncemented acetabular liner HXL and UHMWPE and TKR (total knee replacement) femoral component CoCrMo alloy (Sanatmetal Ltd, Hungary) discs were examined. Visualization and elemental analysis were made by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. SEM and AFM revealed the morphological and roughness features of the examined materials. TPS Ti presented the highest Ra value (25 ± 2 μm, followed by CoCrMo alloy (535 ± 19 nm), Ti (227 ± 15 nm) and stainless steel (170 ± 11 nm). The roughness of the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements on the investigated prosthesis materials: Vortex plate Ti (Ti, O, P); TPS Ti (Ti, O, Al); SS (Fe, Cr, Ni, C) CoCrMo (Co, Cr, Mo), HXL (C, Al, Ni) and UHMWPE (C, Al). The results indicate that the surface of prosthesis materials have significantly different features and the applied investigation methods are suitable for their characterization. Contact angle measurements and in vitro cell culture testing are further planned to test their surface energy characteristics and biocompatibility.

Keywords: morphology, PE, roughness, titanium

Procedia PDF Downloads 126
5932 The Effect of Balance Training on Stable and Unstable Surfaces under Cognitive Dual-Task Condition on the Two Directions of Body Sway, Functional Balance and Fear of Fall in Non-Fallers Older Adults

Authors: Elham Azimzadeh, Fahimeh Khorshidi, Alireza Farsi

Abstract:

Balance impairment and fear of falling in older adults may reduce their quality of life. Reactive balance training could improve rapid postural responses and fall prevention in the elderly during daily tasks. Performing postural training and simultaneously cognitive dual tasks could be similar to the daily circumstances. Purpose: This study aimed to determine the effect of balance training on stable and unstable surfaces under dual cognitive task conditions on postural control and fear of falling in the elderly. Methods: Thirty non-fallers of older adults (65-75 years) were randomly assigned to two training groups: stable-surface (n=10), unstable-surface (n=10), or a control group (n=10). The intervention groups underwent six weeks of balance training either on a stable (balance board) or an unstable (wobble board) surface while performing a cognitive dual task. The control group received no balance intervention. COP displacements in the anterioposterior (AP) and mediolateral (ML) directions using a computerized balance board, functional balance using TUG, and fear of falling using FES-I were measured in all participants before and after the interventions. Summary of Results: Mixed ANOVA (3 groups * 2 times) with repeated measures and post hoc test showed a significant improvement in both intervention groups in AP index (F= 11/652, P= 0/0002) and functional balance (F= 9/961, P= 0/0001). However, the unstable surface training group had more improvement. However, the fear of falling significantly improved after training on an unstable surface (p= 0/035). All groups had no significant improvement in the ML index (p= 0/817). In the present study, there was an improvement in the AP index after balance training. Conclusion: Unstable surface training may reduce reaction time in posterior ankle muscle activity. Furthermore, focusing attention on cognitive tasks can lead to maintaining balance unconsciously. Most of the daily activities need attention distribution among several activities. So, balance training concurrent to a dual cognitive task is challenging and more similar to the real world. According to the specificity of the training principle, it may improve functional independence and fall prevention in the elderly.

Keywords: cognitive dual task, elderly, fear of falling, postural control, unstable surface

Procedia PDF Downloads 63
5931 Feasibility Study of Measurement of Turning Based-Surfaces Using Perthometer, Optical Profiler and Confocal Sensor

Authors: Khavieya Anandhan, Soundarapandian Santhanakrishnan, Vijayaraghavan Laxmanan

Abstract:

In general, measurement of surfaces is carried out by using traditional methods such as contact type stylus instruments. This prevalent approach is challenged by using non-contact instruments such as optical profiler, co-ordinate measuring machine, laser triangulation sensors, machine vision system, etc. Recently, confocal sensor is trying to be used in the surface metrology field. This sensor, such as a confocal sensor, is explored in this study to determine the surface roughness value for various turned surfaces. Turning is a crucial machining process to manufacture products such as grooves, tapered domes, threads, tapers, etc. The roughness value of turned surfaces are in the range of range 0.4-12.5 µm, were taken for analysis. Three instruments were used, namely, perthometer, optical profiler, and confocal sensor. Among these, in fact, a confocal sensor is least explored, despite its good resolution about 5 nm. Thus, such a high-precision sensor was used in this study to explore the possibility of measuring turned surfaces. Further, using this data, measurement uncertainty was also studied.

Keywords: confocal sensor, optical profiler, surface roughness, turned surfaces

Procedia PDF Downloads 134
5930 Preparation of Silver and Silver-Gold, Universal and Repeatable, Surface Enhanced Raman Spectroscopy Platforms from SERSitive

Authors: Pawel Albrycht, Monika Ksiezopolska-Gocalska, Robert Holyst

Abstract:

Surface Enhanced Raman Spectroscopy (SERS) is a technique of growing importance not only in purely scientific research related to analytical chemistry. It finds more and more applications in broadly understood testing - medical, forensic, pharmaceutical, food - and everywhere works perfectly, on one condition that SERS substrates used for testing give adequate enhancement, repeatability, and homogeneity of SERS signal. This is a problem that has existed since the invention of this technique. Some laboratories use as SERS amplifiers colloids with silver or gold nanoparticles, others form rough silver or gold surfaces, but results are generally either weak or unrepeatable. Furthermore, these structures are very often highly specific - they amplify the signal only of a small group of compounds. It means that they work with some kinds of analytes but only with those which were used at a developer’s laboratory. When it comes to research on different compounds, completely new SERS 'substrates' are required. That underlay our decision to develop universal substrates for the SERS spectroscopy. Generally, each compound has different affinity for both silver and gold, which have the best SERS properties, and that's what depends on what signal we get in the SERS spectrum. Our task was to create the platform that gives a characteristic 'fingerprint' of the largest number of compounds with very high repeatability - even at the expense of the intensity of the enhancement factor (EF) (possibility to repeat research results is of the uttermost importance). As specified above SERS substrates are offered by SERSitive company. Applied method is based on cyclic potentiodynamic electrodeposition of silver or silver-gold nanoparticles on the conductive surface of ITO-coated glass at controlled temperature of the reaction solution. Silver nanoparticles are supplied in the form of silver nitrate (AgNO₃, 10 mM), gold nanoparticles are derived from tetrachloroauric acid (10 mM) while sodium sulfite (Na₂O₃, 5 mM) is used as a reductor. To limit and standardize the size of the SERS surface on which nanoparticles are deposited, photolithography is used. We secure the desired ITO-coated glass surface, and then etch the unprotected ITO layer which prevents nanoparticles from settling at these sites. On the prepared surface, we carry out the process described above, obtaining SERS surface with nanoparticles of sizes 50-400 nm. The SERSitive platforms present highly sensitivity (EF = 10⁵-10⁶), homogeneity and repeatability (70-80%).

Keywords: electrodeposition, nanoparticles, Raman spectroscopy, SERS, SERSitive, SERS platforms, SERS substrates

Procedia PDF Downloads 155
5929 The Effect of Irradiation Distance on Microhardness of Hybrid Resin Composite Polymerization Using Light-Emitting Diodes

Authors: Deli Mona, Rafika Husni

Abstract:

The aim of this research is to evaluate the effect of lighting distance on surface hardness of light composite resin. We held laboratory experimental research with post-test only group design. The samples used are 30 disc-like hybrid composite resins with the diameter is 6 mm and the thickness is 2 mm, lighted by an LED for 20 seconds. They were divided into 3 groups, and every group was consisted by 10 samples, which were 0 mm, 2 mm, and 5 mm lighting distance group. Every samples group was treated with hardness test, Vicker Hardness Test, then analyzed with one-way ANOVA test to evaluate the effect of lighting distance differences on surface hardness of light composite resin. Statistic test result shown hardness mean change of composite renin between 0 mm and 2 mm lighting distance with 0.00 significance (p<0.05), between 0 mm and 5 mm lighting distance with 0.00 significance (p<0.05), and 2 mm and 5 mm lighting distance with 0.05 significance (p<0.05). According to the result of this research, we concluded that the further lighting distance, the more surface hardness decline of hybrid composite resin.

Keywords: composite resin hybrid, tip distance, microhardness, light curing LED

Procedia PDF Downloads 346
5928 Thermal Buckling of Functionally Graded Panel Based on Mori-Tanaka Scheme

Authors: Seok-In Bae, Young-Hoon Lee, Ji-Hwan Kim

Abstract:

Due to the asymmetry of the material properties of the Functionally Graded Materials(FGMs) in the thickness direction, neutral surface of the model is not the same as the mid-plane of the symmetric structure. In order to investigate the thermal bucking behavior of FGMs, neutral surface is chosen as a reference plane. In the model, material properties are assumed to be temperature dependent, and varied continuously in the thickness direction of the plate. Further, the effective material properties such as Young’s modulus and Poisson’s ratio are homogenized using Mori-Tanaka scheme which considers the interaction among adjacent inclusions. In this work, the finite element methods are used, and the first-order shear deformation theory of plate are accounted. The thermal loads are assumed to be uniform, linear and non-linear distribution through the thickness directions, respectively. Also, the effects of various parameters for thermal buckling behavior of FGM panel are discussed in detail.

Keywords: functionally graded plate, thermal buckling analysis, neutral surface

Procedia PDF Downloads 401
5927 Surface Motion of Anisotropic Half Space Containing an Anisotropic Inclusion under SH Wave

Authors: Yuanda Ma, Zhiyong Zhang, Zailin Yang, Guanxixi Jiang

Abstract:

Anisotropy is very common in underground media, such as rock, sand, and soil. Hence, the dynamic response of anisotropy medium under elastic waves is significantly different from the isotropic one. Moreover, underground heterogeneities and structures, such as pipelines, cylinders, or tunnels, are usually made by composite materials, leading to the anisotropy of these heterogeneities and structures. Both the anisotropy of the underground medium and the heterogeneities have an effect on the surface motion of the ground. Aiming at providing theoretical references for earthquake engineering and seismology, the surface motion of anisotropic half-space with a cylindrical anisotropic inclusion embedded under the SH wave is investigated in this work. Considering the anisotropy of the underground medium, the governing equation with three elastic parameters of SH wave propagation is introduced. Then, based on the complex function method and multipolar coordinates system, the governing equation in the complex plane is obtained. With the help of a pair of transformation, the governing equation is transformed into a standard form. By means of the same methods, the governing equation of SH wave propagation in the cylindrical inclusion with another three elastic parameters is normalized as well. Subsequently, the scattering wave in the half-space and the standing wave in the inclusion is deduced. Different incident wave angle and anisotropy are considered to obtain the reflected wave. Then the unknown coefficients in scattering wave and standing wave are solved by utilizing the continuous condition at the boundary of the inclusion. Through truncating finite terms of the scattering wave and standing wave, the equation of boundary conditions can be calculated by programs. After verifying the convergence and the precision of the calculation, the validity of the calculation is verified by degrading the model of the problem as well. Some parameters which influence the surface displacement of the half-space is considered: dimensionless wave number, dimensionless depth of the inclusion, anisotropic parameters, wave number ratio, shear modulus ratio. Finally, surface displacement amplitude of the half space with different parameters is calculated and discussed.

Keywords: anisotropy, complex function method, sh wave, surface displacement amplitude

Procedia PDF Downloads 120
5926 Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer

Authors: Timothee Gidenne, Xia Pinqi

Abstract:

In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system.

Keywords: actuators, aeroelastic, aeroservoelasticity, carbon nanotubes, flutter, flutter suppression

Procedia PDF Downloads 129
5925 Flexural Properties of Halloysite Nanotubes-Polyester Nanocomposites Exposed to Aggressive Environment

Authors: Mohd Shahneel Saharudin, Jiacheng Wei, Islam Shyha, Fawad Inam

Abstract:

This study aimed to investigate the effect of aggressive environment on the flexural properties of halloysite nanotubes-polyester nanocomposites. Results showed that the addition of halloysite nanotubes into polyester matrix was found to improve flexural properties of the nanocomposites in dry condition and after water-methanol exposure. Significant increase in surface roughness was also observed and measured by Alicona Infinite Focus optical microscope.

Keywords: halloysite nanotube, composites, flexural properties, surface roughness

Procedia PDF Downloads 279
5924 Effect of Gas-Diffusion Oxynitriding on Microstructure and Hardness of Ti-6Al-4V Alloys

Authors: Dong Bok Lee, Min Jung Kim

Abstract:

The commercially available titanium alloy, Ti-6Al-4V, was oxynitrided in the deoxygenated nitrogen gas at high temperatures followed by cooling in oxygen-containing nitrogen in order to analyze the influence of oxynitriding parameters on the phase modification, hardness, and the microstructural evolution of the oxynitrided coating. The surface microhardness of the oxynitrided alloy increased due to the strengthening effect of the formed titanium oxynitrides, TiNxOy. The maximum microhardness was obtained, when TiNxOy had near equiatomic composition of nitrogen and oxygen. It could be attained under the optimum oxygen partial pressure and temperature-time condition.

Keywords: titanium alloy, oxynitriding, gas diffusion, surface treatment

Procedia PDF Downloads 317
5923 Surface Water Pollution by Open Refuse Dumpsite in North Central of Nigeria

Authors: Abimbola Motunrayo Folami, Ibironke Titilayo Enitan, Feroz Mohomed Swalaha

Abstract:

Water is a vital resource that is important in ensuring the growth and development of any country. To sustain the basic human needs and the demands for agriculture, industry, conservational and ecosystem, enough quality and quantity water is needed. Contamination of water resources is now a global and public health concern. Hence, this study assessed the water quality of Ndawuse River by measuring the physicochemical parameters and heavy metals concentrations of the river using standard methods. In total, 16 surface water samples were obtained from five locations along the river, from upstream to downstream as well as samples from the dumpsite. The results obtained were compared with the standard limits set by both the World Health Organization and the Federal Environmental Protection Agency for domestic purposes. The results of the measured parameters indicated that biological oxygen demand (85.88 mg/L), turbidity (44.51 NTU), Iron (0.014 - 3.511 mg /L) and chromium (0.078 - 0.14 mg /L) were all above the standard limits. The results further showed that the quality of surface water is being significantly affected by human activities around the Ndawuse River which could pose an adverse health risk to several communities that rely on this river as their primary source of water. Therefore, there is a need for strict enforcement of environmental laws to protect the aquatic ecosystem and to avoid long term cumulative exposure risk that heavy metals may pose on human health.

Keywords: Abuja, contaminants, heavy metals, Ndawuse River, Nigeria, surface water

Procedia PDF Downloads 157
5922 Carbon Electrode Materials for Supercapacitors

Authors: Yu. Mateyshina, A. Ulihin, N. Uvarov

Abstract:

Supercapacitors are one of the most promising devices for energy storage applications as they can provide higher power density than batteries and higher energy density than conventional dielectric capacitors. Carbon materials with various microtextures are considered as main candidates for supercapacitors in terms of high surface area, interconnected pore structure, controlled pore size, high electrical conductivity and environmental friendliness. The specific capacitance (C) of the electrode material of the Electrochemical Double Layer Capacitors (EDLC) is known to depend on the specific surface area (Ss) and the pore structure. Activated carbons are most commonly used in supercapacitors because of their high surface area (Ss ≥ 1000 m2/g), good adhesion to electrolytes and low cost. In this work, electrochemical properties of new microporous and mesoporous carbon electrode materials were studied. The aim of the work was to investigate the relationship between the specific capacitance and specific surface area in a series of materials prepared from different organic precursors.. As supporting matrixes different carbon samples with Ss = 100-2000 m2/g were used. The materials were modified by treatment in acids (H2SO4, HNO3, acetic acid) in order to enable surface hydrophilicity. Then nanoparticles of transition metal oxides (for example NiO) were deposited on the carbon surfaces using methods of salts impregnation, mechanical treatment in ball mills and the precursors decomposition. The electrochemical characteristics of electrode hybrid materials were investigated in a symmetrical two-electrode cell using an impedance spectroscopy, voltammetry in both potentiodynamic and galvanostatic modes. It was shown that the value of C for the materials under study strongly depended on the preparation method of the electrode and the type of electrolyte (1 M H2SO4, 6 M KOH, 1 M LiClO4 in acetonitryl). Specific capacity may be increased by the introduction of nanoparticles from 50-100 F/g for initial carbon materials to 150-300 F/g for nanocomposites which may be used in supercapacitors. The work is supported by the по SC-14.604.21.0013.

Keywords: supercapacitors, carbon electrode, mesoporous carbon, electrochemistry

Procedia PDF Downloads 305
5921 Heavy Metal Contamination and Environmental Risk in Surface Sediments along the Coasts of Suez and Aqaba Gulfs, Egypt

Authors: Alaa M. Younis, Ismail S. Ismail, Lamiaa I. Mohamedein, Shimaa F. Ahmed

Abstract:

Sandy surface sediments collected from fourteen sites along the gulfs of Suez and Aqaba coasts, Egypt were analyzed for heavy metals including Iron, Manganese, Zinc, Chromium, Nickel, Lead, Copper and Cadmium in order to evaluate the pollution status and environmental risk assessment of the study area. The obtained results showed that the concentrations of investigated metals are represented in the following sequence; For Gulf of Aqaba sediments Fe > Mn > Zn > Pb > Cr > Ni > Cu > Cd. While for Gulf of Suez Sediments Fe > Mn > Pb > Zn > Cu > Cr > Ni > Cd. The degree of surface sediment contamination using Geo-accumulation index (I geo) and Metal Pollution Index (MPI) was computed. Higher MPI values were observed at the sites III (Nama Bay) and VIII (Rex Beach). According to Sediment quality guidelines (SQGs) approach, Pb and Cu in the gulf of Suez at station IX (Kabanon Beach) had probably adverse ecological effects to marine organisms.

Keywords: heavy metal, environmental risk, Suez gulf, Aqaba gulf

Procedia PDF Downloads 443
5920 Tribological Study of TiC Powder Cladding on 6061 Aluminum Alloy

Authors: Yuan-Ching Lin, Sin-Yu Chen, Pei-Yu Wu

Abstract:

This study reports the improvement in the wear performance of A6061 aluminum alloy clad with mixed powders of titanium carbide (TiC), copper (Cu) and aluminum (Al) using the gas tungsten arc welding (GTAW) method. The wear performance of the A6061 clad layers was evaluated by performing pin-on-disc mode wear test. Experimental results clearly indicate an enhancement in the hardness of the clad layer by about two times that of the A6061 substrate without cladding. Wear test demonstrated a significant improvement in the wear performance of the clad layer when compared with the A6061 substrate without cladding. Moreover, the interface between the clad layer and the A6061 substrate exhibited superior metallurgical bonding. Due to this bonding, the clad layer did not spall during the wear test; as such, massive wear loss was prevented. Additionally, massive oxidized particulate debris was generated on the worn surface during the wear test; this resulted in three-body abrasive wear and reduced the wear behavior of the clad surface.

Keywords: GTAW、A6061 aluminum alloy, 、surface modification, tribological study, TiC powder cladding

Procedia PDF Downloads 463
5919 Iron Influx, Its Root-Shoot Relations and Utilization Efficiency in Wheat

Authors: Abdul Malik Dawlatzai, Shafiqullah Rahmani

Abstract:

Plant cultivars of the same species differ in their Fe efficiency. This paper studied the Fe influx and root-shoot relations of Fe at different growth stages in wheat. The four wheat cultivars (HD 2967, PDW 233, PBW 550 and PDW 291) were grown in pots in Badam Bagh agricultural researching farm, Kabul under two Fe treatments: (i) 0 mg Fe kg⁻¹ soil (soil with 2.7 mg kg⁻¹ of DTPA-extractable Fe) and (ii) 50 mg Fe kg⁻¹ soil. Root length (RL), shoot dry matter (SDM), Fe uptake, and soil parameters were measured at tillering and anthesis. Application of Fe significantly increased RL, root surface area, SDM, and Fe uptake in all wheat cultivars. Under Fe deficiency, wheat cv. HD 2967 produced 90% of its maximum RL and 75% of its maximum SDM. However, PDW 233 produced only 69% and 60%, respectively. Wheat cultivars HD 2967, and PDW 233 exhibited the highest and lowest value of root surface area and Fe uptake, respectively. The concentration difference in soil solution Fe between bulk soil and root surface (ΔCL) was maximum in wheat cultivar HD 2967, followed by PBW 550, PDW 291, and PDW 233. More depletion at the root surface causes steeper concentration gradients, which result in a high influx and transport of Fe towards root. Fe influx in all the wheat cultivars increased with the Fe application, but the increase was maximum, i.e., 4 times in HD 2967 and minimum, i.e., 2.8 times in PDW 233. It can be concluded that wheat cultivars HD 2967 and PBW 550 efficiently utilized Fe as compared to other cultivars. Additionally, iron efficiency of wheat cultivars depends upon uptake of each root segment, i.e., the influx, which in turn depends on depletion of Fe in the rhizosphere during vegetative phase and higher utilization efficiency of acquired Fe during reproductive phase that governs the ultimate grain yield.

Keywords: Fe efficiency, Fe influx, Fe uptake, Rhizosphere

Procedia PDF Downloads 132
5918 Capillary Wave Motion and Atomization Induced by Surface Acoustic Waves under the Navier-Slip Condition at the Wall

Authors: Jaime E. Munoz, Jose C. Arcos, Oscar E. Bautista, Ivan E. Campos

Abstract:

The influence of slippage phenomenon over the destabilization and atomization mechanisms induced via surface acoustic waves on a Newtonian, millimeter-sized, drop deposited on a hydrophilic substrate is studied theoretically. By implementing the Navier-slip model and a lubrication-type approach into the equations which govern the dynamic response of a drop exposed to acoustic stress, a highly nonlinear evolution equation for the air-liquid interface is derived in terms of the acoustic capillary number and the slip coefficient. By numerically solving such an evolution equation, the Spatio-temporal deformation of the drop's free surface is obtained; in this context, atomization of the initial drop into micron-sized droplets is predicted at our numerical model once the acoustically-driven capillary waves reach a critical value: the instability length. Our results show slippage phenomenon at systems with partial and complete wetting favors the formation of capillary waves at the free surface, which traduces in a major volume of liquid being atomized in comparison to the no-slip case for a given time interval. In consequence, slippage at the wall possesses the capability to affect and improve the atomization rate for a drop exposed to a high-frequency acoustic field.

Keywords: capillary instability, lubrication theory, navier-slip condition, SAW atomization

Procedia PDF Downloads 156
5917 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles

Authors: Hee-Chang Lim

Abstract:

The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.

Keywords: rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD

Procedia PDF Downloads 236
5916 Investigation of Different Surface Oxidation Methods on Pyrolytic Carbon

Authors: Lucija Pustahija, Christine Bandl, Wolfgang Kern, Christian Mitterer

Abstract:

Concerning today´s ecological demands, producing reliable materials from sustainable resources is a continuously developing topic. Such an example is the production of carbon materials via pyrolysis of natural gases or biomass. The amazing properties of pyrolytic carbon are utilized in various fields, where in particular the application in building industry is a promising way towards the utilization of pyrolytic carbon and composites based on pyrolytic carbon. For many applications, surface modification of carbon is an important step in tailoring its properties. Therefore, in this paper, an investigation of different oxidation methods was performed to prepare the carbon surface before functionalizing it with organosilanes, which act as coupling agents for epoxy and polyurethane resins. Made in such a way, a building material based on carbon composites could be used as a lightweight, durable material that can be applied where water or air filtration / purification is needed. In this work, both wet and dry oxidation were investigated. Wet oxidation was first performed in solutions of nitric acid (at 120 °C and 150 °C) followed by oxidation in hydrogen peroxide (80 °C) for 3 and 6 h. Moreover, a hydrothermal method (under oxygen gas) in autoclaves was investigated. Dry oxidation was performed under plasma and corona discharges, using different power values to elaborate optimum conditions. Selected samples were then (in preliminary experiments) subjected to a silanization of the surface with amino and glycidoxy organosilanes. The functionalized surfaces were examined by X-ray photon spectroscopy and Fourier transform infrared spectroscopy spectroscopy, and by scanning electron microscopy. The results of wet and dry oxidation methods indicated that the creation of functionalities was influenced by temperature, the concentration of the reagents (and gases) and the duration of the treatment. Sequential oxidation in aq. HNO₃ and H₂O₂ results in a higher content of oxygen functionalities at lower concentrations of oxidizing agents, when compared to oxidizing the carbon with concentrated nitric acid. Plasma oxidation results in non-permanent functionalization on the carbon surface, by which it´s necessary to find adequate parameters of oxidation treatments that could enable longer stability of functionalities. Results of the functionalization of the carbon surfaces with organosilanes will be presented as well.

Keywords: building materials, dry oxidation, organosilanes, pyrolytic carbon, resins, surface functionalization, wet oxidation

Procedia PDF Downloads 100
5915 Optimization of Temperature for Crystal Violet Dye Adsorption Using Castor Leaf Powder by Response Surface Methodology

Authors: Vipan Kumar Sohpal

Abstract:

Temperature effect on the adsorption of crystal violet dye (CVD) was investigated using a castor leaf powder (CLP) that was prepared from the mature leaves of castor trees, through chemical reaction. The optimum values of pH (8), adsorbent dose (10g/L), initial dye concentration (10g/L), time (2hrs), and stirrer speed (120 rpm) were fixed to investigate the influence of temperature on adsorption capacity, percentage of removal of dye and free energy. A central composite design (CCD) was successfully employed for experimental design and analysis of the results. The combined effect of temperature, absorbance, and concentration on the dye adsorption was studied and optimized using response surface methodology. The optimum values of adsorption capacity, percentage of removal of dye and free energy were found to be 0.965(mg/g), 93.38 %, -8202.7(J/mol) at temperature 55.97 °C having desirability > 90% for removal of crystal violet dye respectively. The experimental values were in good agreement with predicted values.

Keywords: crystal violet dye, CVD, castor leaf powder, CLP, response surface methodology, temperature, optimization

Procedia PDF Downloads 132
5914 Investigation of the Effect of Impulse Voltage to Flashover by Using Water Jet

Authors: Harun Gülan, Muhsin Tunay Gencoglu, Mehmet Cebeci

Abstract:

The main function of the insulators used in high voltage (HV) transmission lines is to insulate the energized conductor from the pole and hence from the ground. However, when the insulators fail to perform this insulation function due to various effects, failures occur. The deterioration of the insulation results either from breakdown or surface flashover. The surface flashover is caused by the layer of pollution that forms conductivity on the surface of the insulator, such as salt, carbonaceous compounds, rain, moisture, fog, dew, industrial pollution and desert dust. The source of the majority of failures and interruptions in HV lines is surface flashover. This threatens the continuity of supply and causes significant economic losses. Pollution flashover in HV insulators is still a serious problem that has not been fully resolved. In this study, a water jet test system has been established in order to investigate the behavior of insulators under dirty conditions and to determine their flashover performance. Flashover behavior of the insulators is examined by applying impulse voltages in the test system. This study aims to investigate the insulator behaviour under high impulse voltages. For this purpose, a water jet test system was installed and experimental results were obtained over a real system and analyzed. By using the water jet test system instead of the actual insulator, the damage to the insulator as a result of the flashover that would occur under impulse voltage was prevented. The results of the test system performed an important role in determining the insulator behavior and provided predictability.

Keywords: insulator, pollution flashover, high impulse voltage, water jet model

Procedia PDF Downloads 110
5913 Superhydrophobic Behavior of SnO₂-TiO₂ Composite Thin Films

Authors: Debarun Dhar Purkayastha, Talinungsang

Abstract:

SnO₂-TiO₂ nanocomposite thin films were prepared by the sol-gel method on borosilicate glass substrate. The films were annealed at a temperature of 300ᵒC, 400ᵒC, and 500ᵒC respectively for 2h in the air. The films obtained were further modified with stearic acid in order to decrease the surface energy. The X-ray diffraction patterns for the SnO₂-TiO₂ thin films after annealing at different temperatures can be indexed to the mixture of TiO₂ (rutile and anatase) and SnO₂ (tetragonal) phases. The average crystallite size calculated from Scherrer’s formula is found to be 6 nm. The SnO₂-TiO₂ thin films were hydrophilic which on modification with stearic acid exhibit superhydrophobic behavior. The increase in hydrophobicity of SnO₂ film with stearic acid modification is attributed to the change in surface energy of the film. The films exhibit superhydrophilic behavior under UV irradiation for 1h. Thus, it is observed that stearic acid modified surfaces are superhydrophobic but convert into superhydrophilic on being subjected to UV irradiation. SnO₂-TiO₂ thin films have potential for self-cleaning applications because of photoinduced hydrophilicity under UV irradiation.

Keywords: nanocomposite, self-cleaning, superhydrophobic, surface energy

Procedia PDF Downloads 180
5912 Calculating Approach of Thermal Conductivity of 8 YSZ in Different Relative Humidities Corresponding to Low Water Contents

Authors: Yun Chol Kang, Myong Nam Kong, Nam Chol Yu, Jin Sim Kim, Un Yong Paek, Song Ho Kim

Abstract:

This study focuses on the calculating approach of the thermal conductivity of 8 mol% yttria-stabilized zirconia (8YSZ) in different relative humidity corresponding to low water contents. When water content in 8YSZ is low, water droplets can accumulate in the neck regions. We assume that spherical water droplets are randomly located in the neck regions formed by grains and surrounded by the pores. Based on this, a new hypothetical pore constituted by air and water is proposed using the microstructural modeling. We consider 8YSZ is a two-phase material constituted by the solid region and the hypothetical pore region where the water droplets are penetrated in the pores, randomly. The results showed that the thermal conductivity of the hypothetical pore is calculated using the parallel resistance for low water contents, and the effective thermal conductivity of 8YSZ material constituted by solid and hypothetical pore in different relative humidities using EMPT. When the numbers of water layers on the surface of 8YSZ are less than 1.5, the proposed approach gives a good interpretation of the experimental results. When the theoretical value of the number of water layers on 8YSZ surface is 1, the water content is not enough to cover the internal solid surface completely. The proposed approach gives a better interpretation of the experimental results in different relative humidities that numbers of water layers on the surface of 8YSZ are less than 1.5.

Keywords: 8YSZ, microstructure, thermal conductivity, relative humidity

Procedia PDF Downloads 89
5911 Evaluating Surface Water Quality Using WQI, Trend Analysis, and Cluster Classification in Kebir Rhumel Basin, Algeria

Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas

Abstract:

This study evaluates the surface water quality in the Kebir Rhumel Basin by analyzing hydrochemical parameters. To assess spatial and temporal variations in water quality, we applied the Water Quality Index (WQI), Mann-Kendall (MK) trend analysis, and hierarchical cluster analysis (HCA). Monthly measurements of eleven hydrochemical parameters were collected across eight stations from January 2016 to December 2020. Calcium and sulfate emerged as the dominant cation and anion, respectively. WQI analysis indicated a high incidence of poor water quality at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khalifa (SK), where 89.5%, 90.6%, 78.2%, and 62.7% of samples, respectively, fell into this category. The MK trend analysis revealed a significant upward trend in WQI at Oued Boumerzoug (ON) and SK stations, signaling temporal deterioration in these areas. HCA grouped the dataset into three clusters, covering approximately 22%, 30%, and 48% of the months, respectively. Within these clusters, specific stations exhibited elevated WQI values: GR and ON in the first cluster, OB and SK in the second, and AS, BH, El Milia (EM), and Hammam Grouz (HG) in the third. Furthermore, approximately 38%, 41%, and 38% of samples in clusters one, two, and three, respectively, were classified as having poor water quality. These findings provide essential insights for policymakers in formulating strategies to restore and manage surface water quality in the region.

Keywords: surface water quality, water quality index (WQI), Mann-Kendall Trend Analysis, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin

Procedia PDF Downloads 19
5910 Cellulose Nanocrystals Suspensions as Water-Based Lubricants for Slurry Pump Gland Seals

Authors: Mohammad Javad Shariatzadeh, Dana Grecov

Abstract:

The tribological tests were performed on a new tribometer, in order to measure the coefficient of friction of a gland seal packing material on stainless steel shafts in presence of Cellulose Nanocrystal (CNC) suspension as a sustainable, environmentally friendly, water-based lubricant. To simulate the real situation from the slurry pumps, silica sands were used as slurry particles. The surface profiles after tests were measured by interferometer microscope to characterize the surface wear. Moreover, the coefficient of friction and surface wear were measured between stainless steel shaft and chrome steel ball to investigate the tribological effects of CNC in boundary lubrication region. Alignment of nanoparticles in the CNC suspensions are the main reason for friction and wear reduction. The homogeneous concentrated suspensions showed fingerprint patterns of a chiral nematic liquid crystal. These properties made CNC a very good lubricant additive in water.

Keywords: gland seal, lubricant additives, nanocrystalline cellulose, water-based lubricants

Procedia PDF Downloads 185
5909 The Influence of Conservation Measures, Limiting Soil Degradation, on the Quality of Surface Water Resources

Authors: V. Sobotková, B. Šarapatka, M. Dumbrovský, J. Uhrová, M. Bednář

Abstract:

The paper deals with the influence of implemented conservation measures on the quality of surface water resources. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity to improve the quality of the environment and sustainability of crop production by means of better soil and water conservation. The most important degradation factor in our study area in the Hubenov drinking water reservoir catchment basin was water erosion together with loss of organic matter. Hubenov Reservoir water resources were monitored for twenty years (1990–2010) to collect water quality data for nitrate nitrogen (N-NO3-), total P, and undissolved substances. Results obtained from measurements taken before and after land consolidation indicated a decrease in the linear trend of N-NO3- and total P concentrations, this was achieved through implementation of conservation measures limiting soil degradation in the Hubenov reservoir catchment area.

Keywords: complex land consolidation, degradation, land use, soil and water conservation, surface water resources

Procedia PDF Downloads 358
5908 Study of Parameters Affecting the Electrostatic Attractions Force

Authors: Vahid Sabermand, Yousef Hojjat, Majid Hasanzadeh

Abstract:

This paper contains two main parts. In the first part of paper we simulated and studied three type of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part, we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode Length and methods of improvement of adhesion force by changing these values.

Keywords: electrostatic force, electrostatic adhesion, electrostatic chuck, electrostatic application in industry, electroadhesive grippers

Procedia PDF Downloads 404
5907 Simulating the Surface Runoff for the Urbanized Watershed of Mula-Mutha River from Western Maharashtra, India

Authors: Anargha A. Dhorde, Deshpande Gauri, Amit G. Dhorde

Abstract:

Mula-Mutha basin is one of the speedily urbanizing watersheds, wherein two major urban centers, Pune and Pimpri-Chinchwad, have developed at a shocking rate in the last two decades. Such changing land use/land cover (LULC) is prone to hydrological problems and flash floods are a frequent, eventuality in the lower reaches of the basin. The present research brings out the impact of varying LULC, impervious surfaces on urban surface hydrology and generates storm-runoff scenarios for the hydrological units. The two multi-temporal satellite images were processed and supervised classification is performed with > 75% accuracy. The built-up has increased from 14.4% to 34.37% in the 28 years span, which is concentrated in and around the Pune-PCMC region. Impervious surfaces that were obtained by population calibrated multiple regression models. Almost 50% area of the watershed is impervious, which attribute to increase surface runoff and flash floods. The SCS-CN method was employed to calculate surface runoff of the watershed. The comparison between calculated and measured values of runoff was performed in a statistically precise way which shows no significant difference. Increasing built-up areas, as well as impervious surface areas due to rapid urbanization and industrialization, may lead to generating high runoff volumes in the basin especially in the urbanized areas of the watershed and along the major transportation arteries. Simulations generated with 50 mm and 100 mm rainstorm depth conspicuously noted that most of the changes in terms of increased runoff are constricted to the highly urbanized areas. Considering whole watershed area, the runoff values 39 m³ generated with 1'' rainfall whereas only urbanized areas of the basin (Pune and Pimpari-Chinchwad) were generated 11154 m³ runoff. Such analysis is crucial in providing information regarding their intensity and location, which proves instrumental in their analysis in order to formulate proper mitigation measures and rehabilitation strategies.

Keywords: land use/land cover, LULC, impervious surfaces, surface hydrology, storm-runoff scenarios

Procedia PDF Downloads 218
5906 The Dynamics of a Droplet Spreading on a Steel Surface

Authors: Evgeniya Orlova, Dmitriy Feoktistov, Geniy Kuznetsov

Abstract:

Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment.

Keywords: contact line speed, droplet growth rate, dynamic contact angle, shadow system, spreading

Procedia PDF Downloads 330
5905 Single Atom Manipulation with 4 Scanning Tunneling Microscope Technique

Authors: Jianshu Yang, Delphine Sordes, Marek Kolmer, Christian Joachim

Abstract:

Nanoelectronics, for example the calculating circuits integrating at molecule scale logic gates, atomic scale circuits, has been constructed and investigated recently. A major challenge is their functional properties characterization because of the connecting problem from atomic scale to micrometer scale. New experimental instruments and new processes have been proposed therefore. To satisfy a precisely measurement at atomic scale and then connecting micrometer scale electrical integration controller, the technique improvement is kept on going. Our new machine, a low temperature high vacuum four scanning tunneling microscope, as a customer required instrument constructed by Omicron GmbH, is expected to be scaling down to atomic scale characterization. Here, we will present our first testified results about the performance of this new instrument. The sample we selected is Au(111) surface. The measurements have been taken at 4.2 K. The atomic resolution surface structure was observed with each of four scanners with noise level better than 3 pm. With a tip-sample distance calibration by I-z spectra, the sample conductance has been derived from its atomic locally I-V spectra. Furthermore, the surface conductance measurement has been performed using two methods, (1) by landing two STM tips on the surface with sample floating; and (2) by sample floating and one of the landed tips turned to be grounding. In addition, single atom manipulation has been achieved with a modified tip design, which is comparable to a conventional LT-STM.

Keywords: low temperature ultra-high vacuum four scanning tunneling microscope, nanoelectronics, point contact, single atom manipulation, tunneling resistance

Procedia PDF Downloads 280
5904 Synthesis and Properties of Photocured Surface Modified Polyaniline Hybrid Composites

Authors: Asli Beyler Çi̇ği̇l, Memet Vezi̇r Kahraman

Abstract:

Organic–inorganic hybrids have become an effective source of advanced materials because they combine the advantages of both the organic moiety such as flexibility, low dielectric constant, and processability, and inorganic moiety as rigidity, strength, durability, and thermal stability. By incorporating cross-linkable side chains, the hybrid materials can be made photosensitive and UV curable, which offers many advantages including low processing temperature, low equipment cost and compatibility. In this study, uv-curable organic-inorganic hybrid material, which was contained surface modified polyaniline particles (PANI), was prepared. PANI surface photografted with hydroxy ethyl methacrylate (HEMA) to produce hydroxyl groups. Hydroxyl functionalized PANI/HEMA was acrylated using isocyanato ethyl methacrylate (IEM) in order to improve the dispersion and interfacial interaction in composites. UV-curable formulation was prepared by mixing the surface modified PANI, polyethylene glycol diacrylate (PEGDA), trimethylolpropane triacrylate (TMPTA), hydrolized 3- methacryloxypropyltrimethoxysilane (hyd. MEMO) and photoinitiator. Chemical structure of nano-hybrid material was characterized by FTIR. FTIR spectra showed that the photografting of PANI was prepared successfully. Thermal properties of the nano-hybrid material were determined by thermogravimetric analysis (TGA). The morphology of the nano-hybrid material was performed by scanning electron microscopy (SEM).

Keywords: polyaniline, photograft, sol-gel, uv-curable polymer

Procedia PDF Downloads 303