Search results for: optimization for learning and data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 46816

Search results for: optimization for learning and data analysis

46126 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 128
46125 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration

Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich

Abstract:

Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.

Keywords: optimization, zero-coupon curve, Nelson-Siegel-Svensson, particle swarm optimization, Nelder-Mead algorithm

Procedia PDF Downloads 430
46124 Distance Learning and Modern Challenges of Education Management in Georgia

Authors: Giorgi Gaganidze, Eter Kharaishvili

Abstract:

The atypical crisis has created new challenges in the education system. Globally, including in Georgia, traditional methods of managing the education system have appeared particularly vulnerable. In addition, new opportunities for the introduction of innovative management of learning processes have emerged. The aim of the research is to identify the main challenges in the field of education management in the distance learning process in Georgia and to develop recommendations on the opportunities for the introduction of innovative management. The paper substantiates the relevance of the research, in particular, it notes that in Georgia, as in many countries, distance learning in higher education institutions became particularly crucial during the Covid-19 pandemic. What is more, theoretical and practical aspects of distance learning are less proven, and a number of problems have been identified in the field of education management in Georgia. The article justifies the need to study the challenges of distance learning for the formation of a sustainable education management system. Within the bibliographic research, there are grouped the opinions of researchers on the modern problems of distance learning and education management in the article. Based on scientific papers, the expectations formed about distance learning are studied, and the main focus is on the existing problems of education management during the atypical crisis. The article discusses the forms and opportunities of distance learning in different countries, evaluates different approaches and challenges to distance learning, and justifies the role of education management in effective distance learning. The paper uses various theoretical-methodological tools of research, including desk research on the research topic; Data selection-grouping, problem identification is carried out by analysis, synthesis, sampling, induction, and other methods;SWOT analysis is used to assess the strengths, weaknesses, opportunities, and threats of distance education and management; The level of student satisfaction with distance learning is determined through the Population-based / Census-based approach; The results of the research are processed by SPSS program. Quantitative research and semi-structured interviews with relevant focus groups were conducted to identify working directions for innovative management of distance learning and education. Research has shown that the demand for distance education is growing in Georgia, but the need to introduce innovative education management remains a particular challenge. Conclusions have been made on the introduction of innovative education management, and the relevant recommendations have been developed.

Keywords: distance learning, management challenges, education management, innovative management

Procedia PDF Downloads 125
46123 Analysis of a CO₂ Two-Phase Ejector Performances with Taguchi and Anova Optimization

Authors: Karima Megdouli

Abstract:

The ejector, a central element within the CO₂ transcritical ejection refrigeration system, holds significant importance in enhancing refrigeration capacity and minimizing compressor power usage. This study's objective is to introduce a technique for enhancing the effectiveness of the CO₂ transcritical two-phase ejector, utilizing Taguchi and ANOVA analysis. The investigation delves into the impact of geometric parameters, secondary flow temperature, and primary flow pressure on the efficiency of the ejector. Results indicate that employing a combination of Taguchi and ANOVA offers increased reliability and superior performance when optimizing the design of the CO₂ two-phase ejector.

Keywords: ejector, supersonic, Taguchi, ANOVA, optimization

Procedia PDF Downloads 88
46122 Extent of I.C.T Application in Record Management and Factors Hindering the Utilization of E-Learning in the Government Owned Universities in Enugu State, Nigeria

Authors: Roseline Unoma Chidobi

Abstract:

The purpose of this study is to identify the extent of Information Communication Technology (ICT) application in record management and some factors militating against the utilization of e-learning in the universities in Enugu state. The study was a survey research the quantitative data were collected through a 30 – item questionnaire title extent of ICT Application in Record management and militating Factors in the utilization of e-learning (EIARMMFUE). This was administered on a population of 603 respondents made up of university academic staff and senior administrative staff. The data were analyzed using mean, standard deviation and t-test statistics on a modified 4 point rating scale. Findings of the study revealed among others that ICT are not adequately applied in the management of records in the Universities in Nigeria. Factors like wrong notion or superstitious believe hinder the effective utilization of e – learning approach. The study recommended that the use of ICT in record management should be enhanced in order to achieve effective school management. All the factors militating against the effective utilization of e-learning approach should be addressed for the maximum realization of teaching and learning.

Keywords: e-learning, information communication, teaching, technology, tertiary institution

Procedia PDF Downloads 525
46121 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 80
46120 Language and Culture Exchange: Tandem Language Learning for University Students

Authors: Hebe Wong, Luz Fernandez Calventos

Abstract:

Tandem language learning, a language exchange process based on the principles of autonomy and reciprocity, provides opportunities for interlocutors to learn each other’s language by communicating online or face-to-face. While much attention has been paid to the process and outcomes of tandem learning via email, little has been discussed about the effectiveness of face-to-face tandem learning on language and culture exchange for university students. The LACTS (Language and Culture Tandem Scheme), an 8-week project, was set up to study students’ perceptions of conducting tandem learning to assist their language and culture exchange. Students of both post-graduate and undergraduate programmes (N=103) from a Hong Kong SAR university were put in groups of 4 to 6 according to their availability and language preferences and met for an hour a week. While sample task sheets on a range of topics were provided to assist the language exchange, all groups were encouraged to take charge of their meeting format and choose their own topics. At the end of the project, a 19-item questionnaire, which included both open-and closed-ended questions investigating students’ perceptions of reciprocal teaching and cultural exchange, was administered. Thirty-minute individual interviews were conducted to elicit students’ views and experiences in the LACTS activities. Quantitative and qualitative data analysis showed that most students agreed that the project had enhanced their cultural awareness and helped create an inclusive and participatory learning environment. Significant differences were found in students’ confidence in speaking their targeted language after joining the scheme. The interviews also provided rich data on the variety of formats and leadership patterns in student-led meetings, which could shed light on student autonomy and future tandem language learning projects.

Keywords: autonomy, reciprocity, tandem language learning, university students

Procedia PDF Downloads 58
46119 The Context of Teaching and Learning Primary Science to Gifted Students: An Analysis of Australian Curriculum and New South Wales Science Syllabus

Authors: Rashedul Islam

Abstract:

A firmly-validated aim of teaching science is to support student enthusiasm for science learning with an outspread interest in scientific issues in future life. This is in keeping with the recent development in Gifted and Talented Education statement which instructs that gifted students have a renewed interest and natural aptitude in science. Yet, the practice of science teaching leaves many students with the feeling that science is difficult and compared to other school subjects, students interest in science is declining at the final years of the primary school. As a curriculum guides the teaching-learning activities in school, where significant consequences may result from the context of the curricula and syllabi, are a major feature of certain educational jurisdictions in NSW, Australia. The purpose of this study was an exploration of the curriculum sets the context to identify how science education is practiced through primary schools in Sydney, Australia. This phenomenon was explored through document review from two publicly available documents namely: the NSW Science Syllabus K-6, and Australian Curriculum: Foundation - 10 Science. To analyse the data, this qualitative study applied themed content analysis at three different levels, i.e., first cycle coding, second cycle coding- pattern codes, and thematic analysis. Preliminary analysis revealed the phenomenon of teaching-learning practices drawn from eight themes under three phenomena aligned with teachers’ practices and gifted student’s learning characteristics based on Gagné’s Differentiated Model of Gifted and Talent (DMGT). From the results, it appears that, overall, the two documents are relatively well-placed in terms of identifying the context of teaching and learning primary science to gifted students. However, educators need to make themselves aware of the ways in which the curriculum needs to be adapted to meet gifted students learning needs in science. It explores the important phenomena of teaching-learning context to provide gifted students with optimal educational practices including inquiry-based learning, problem-solving, open-ended tasks, creativity in science, higher order thinking, integration, and challenges. The significance of such a study lies in its potential to schools and further research in the field of gifted education.

Keywords: teaching primary science, gifted student learning, curriculum context, science syllabi, Australia

Procedia PDF Downloads 421
46118 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning

Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu

Abstract:

This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.

Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning

Procedia PDF Downloads 78
46117 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: anomaly detection, autoencoder, data centers, deep learning

Procedia PDF Downloads 194
46116 Gardening as a Contextual Scaffold for Learning: Connecting Community Wisdom for Science and Health Learning through Participatory Action Research

Authors: Kamal Prasad Acharya

Abstract:

The related literature suggests that teaching and learning science at the basic level community schools in Nepal is based on book recitation. Consequently, the achievement levels and the understanding of basic science concepts is much below the policy expectations. In this context, this study intended to gain perception in the implementation practices of school gardens ‘One Garden One School’ for science learning and to meet the target of sustainable development goals that connects community wisdom regarding school gardening activities (SGAs) for science learning. This Participatory Action Research (PAR) study was done at the action school located in Province 3, Chitwan of Federal Nepal, supported under the NORHED/Rupantaran project. The purpose of the study was to connect the community wisdom related to gardening activities as contextual scaffolds for science learning. For this, in-depth interviews and focus group discussions were applied to collect data which were analyzed using a thematic analysis. Basic level students, science teachers, and parents reported having wonderful experiences such as active and meaningful engagement in school gardening activities for science learning as well as science teachers’ motivation in activity-based science learning. Overall, teachers, students, and parents reported that the school gardening activities have been found to have had positive effects on students’ science learning as they develop basic scientific concepts by connecting community wisdom as a contextual scaffold. It is recommended that the establishment of a school garden is important for science learning in community schools throughout Nepal.

Keywords: contextual scaffold, community wisdom, science and health learning, school garden

Procedia PDF Downloads 178
46115 Production and Distribution Network Planning Optimization: A Case Study of Large Cement Company

Authors: Lokendra Kumar Devangan, Ajay Mishra

Abstract:

This paper describes the implementation of a large-scale SAS/OR model with significant pre-processing, scenario analysis, and post-processing work done using SAS. A large cement manufacturer with ten geographically distributed manufacturing plants for two variants of cement, around 400 warehouses serving as transshipment points, and several thousand distributor locations generating demand needed to optimize this multi-echelon, multi-modal transport supply chain separately for planning and allocation purposes. For monthly planning as well as daily allocation, the demand is deterministic. Rail and road networks connect any two points in this supply chain, creating tens of thousands of such connections. Constraints include the plant’s production capacity, transportation capacity, and rail wagon batch size constraints. Each demand point has a minimum and maximum for shipments received. Price varies at demand locations due to local factors. A large mixed integer programming model built using proc OPTMODEL decides production at plants, demand fulfilled at each location, and the shipment route to demand locations to maximize the profit contribution. Using base SAS, we did significant pre-processing of data and created inputs for the optimization. Using outputs generated by OPTMODEL and other processing completed using base SAS, we generated several reports that went into their enterprise system and created tables for easy consumption of the optimization results by operations.

Keywords: production planning, mixed integer optimization, network model, network optimization

Procedia PDF Downloads 67
46114 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services

Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme

Abstract:

Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.

Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing

Procedia PDF Downloads 113
46113 Transmit Power Optimization for Cooperative Beamforming in Reverse-Link MIMO Ad-Hoc Networks

Authors: Younghyun Jeon, Seungjoo Maeng

Abstract:

In the Ad-hoc network, the great interests regarding MIMO scheme leads to their combination, which is also utilized into its applicable network. We manage the field of the problem into Reverse-link MIMO Ad-hoc Network (RMAN) and propose the methodology to maximize the data rate with its power consumption using Node-Cooperative beamforming technique. Based on the result of mathematical optimization formulation, we design the algorithm to construct optimal orthogonal weight vector according to channel feedback and control its transmission power according to QoS-pricing value level. In simulation results, we show the validity of the proposed mathematical optimization result and algorithm which mean that the sum-rate of each link is converged into some point.

Keywords: ad-hoc network, MIMO, cooperative beamforming, transmit power

Procedia PDF Downloads 398
46112 Use of Artificial Intelligence in Teaching Practices: A Meta-Analysis

Authors: Azmat Farooq Ahmad Khurram, Sadaf Aslam

Abstract:

This meta-analysis systematically examines the use of artificial intelligence (AI) in instructional methods across diverse educational settings through a thorough analysis of empirical research encompassing various disciplines, educational levels, and regions. This study aims to assess the effects of AI integration on teaching methodologies, classroom dynamics, teachers' roles, and student engagement. Various research methods were used to gather data, including literature reviews, surveys, interviews, and focus group discussions. Findings indicate paradigm shifts in teaching and education, identify emerging trends, practices, and the application of artificial intelligence in learning, and provide educators, policymakers, and stakeholders with guidelines and recommendations for effectively integrating AI in educational contexts. The study concludes by suggesting future research directions and practical considerations for maximizing AI's positive influence on pedagogical practices.

Keywords: artificial intelligence, teaching practices, meta-analysis, teaching-learning

Procedia PDF Downloads 77
46111 MIMIC: A Multi Input Micro-Influencers Classifier

Authors: Simone Leonardi, Luca Ardito

Abstract:

Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.

Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media

Procedia PDF Downloads 183
46110 Optimization of Structures Subjected to Earthquake

Authors: Alireza Lavaei, Alireza Lohrasbi, Mohammadali M. Shahlaei

Abstract:

To reduce the overall time of structural optimization for earthquake loads two strategies are adopted. In the first strategy, a neural system consisting self-organizing map and radial basis function neural networks, is utilized to predict the time history responses. In this case, the input space is classified by employing a self-organizing map neural network. Then a distinct RBF neural network is trained in each class. In the second strategy, an improved genetic algorithm is employed to find the optimum design. A 72-bar space truss is designed for optimal weight using exact and approximate analysis for the El Centro (S-E 1940) earthquake loading. The numerical results demonstrate the computational advantages and effectiveness of the proposed method.

Keywords: optimization, genetic algorithm, neural networks, self-organizing map

Procedia PDF Downloads 311
46109 Research on Hangzhou Commercial Center System Based on Point of Interest Data

Authors: Chen Wang, Qiuxiao Chen

Abstract:

With the advent of the information age and the era of big data, urban planning research is no longer satisfied with the analysis and application of traditional data. Because of the limitations of traditional urban commercial center system research, big data provides new opportunities for urban research. Therefore, based on the quantitative evaluation method of big data, the commercial center system of the main city of Hangzhou is analyzed and evaluated, and the scale and hierarchical structure characteristics of the urban commercial center system are studied. In order to make up for the shortcomings of the existing POI extraction method, it proposes a POI extraction method based on adaptive adjustment of search window, which can accurately and efficiently extract the POI data of commercial business in the main city of Hangzhou. Through the visualization and nuclear density analysis of the extracted Point of Interest (POI) data, the current situation of the commercial center system in the main city of Hangzhou is evaluated. Then it compares with the commercial center system structure of 'Hangzhou City Master Plan (2001-2020)', analyzes the problems existing in the planned urban commercial center system, and provides corresponding suggestions and optimization strategy for the optimization of the planning of Hangzhou commercial center system. Then get the following conclusions: The status quo of the commercial center system in the main city of Hangzhou presents a first-level main center, a two-level main center, three third-level sub-centers, and multiple community-level business centers. Generally speaking, the construction of the main center in the commercial center system is basically up to standard, and there is still a big gap in the construction of the sub-center and the regional-level commercial center, further construction is needed. Therefore, it proposes an optimized hierarchical functional system, organizes commercial centers in an orderly manner; strengthens the central radiation to drive surrounding areas; implements the construction guidance of the center, effectively promotes the development of group formation and further improves the commercial center system structure of the main city of Hangzhou.

Keywords: business center system, business format, main city of Hangzhou, POI extraction method

Procedia PDF Downloads 140
46108 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence

Authors: Muhammad Bilal Shaikh

Abstract:

Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.

Keywords: multimodal AI, computer vision, NLP, mineral processing, mining

Procedia PDF Downloads 68
46107 Optimization of Switched Reluctance Motor for Drive System in Automotive Applications

Authors: A. Peniak, J. Makarovič, P. Rafajdus, P. Dúbravka

Abstract:

The purpose of this work is to optimize a Switched Reluctance Motor (SRM) for an automotive application, specifically for a fully electric car. A new optimization approach is proposed. This unique approach transforms automotive customer requirements into an optimization problem, based on sound knowledge of a SRM theory. The approach combines an analytical and a finite element analysis of the motor to quantify static nonlinear and dynamic performance parameters, as phase currents and motor torque maps, an output power and power losses in order to find the optimal motor as close to the reality as possible, within reasonable time. The new approach yields the optimal motor which is competitive with other types of already proposed motors for automotive applications. This distinctive approach can also be used to optimize other types of electrical motors, when parts specifically related to the SRM are adjusted accordingly.

Keywords: automotive, drive system, electric car, finite element method, hybrid car, optimization, switched reluctance motor

Procedia PDF Downloads 521
46106 Optimization of FGM Sandwich Beams Using Imperialist Competitive Algorithm

Authors: Saeed Kamarian, Mahmoud Shakeri

Abstract:

Sandwich structures are used in a variety of engineering applications including aircraft, construction and transportation where strong, stiff and light structures are required. In this paper, frequency maximization of Functionally Graded Sandwich (FGS) beams resting on Pasternak foundations is investigated. A generalized power-law distribution with four parameters is considered for material distribution through the thicknesses of face layers. Since the search space is large, the optimization processes becomes so complicated and too much time consuming. Thus a novel meta–heuristic called Imperialist Competitive Algorithm (ICA) which is a socio-politically motivated global search strategy is implemented to improve the speed of optimization process. Results show the success of applying ICA for engineering problems especially for design optimization of FGM sandwich beams.

Keywords: sandwich beam, functionally graded materials, optimization, imperialist competitive algorithm

Procedia PDF Downloads 569
46105 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm

Authors: Kristian Bautista, Ruben A. Idoy

Abstract:

A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.

Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization

Procedia PDF Downloads 230
46104 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges

Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars

Abstract:

In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.

Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting

Procedia PDF Downloads 153
46103 Review on Optimization of Drinking Water Treatment Process

Authors: M. Farhaoui, M. Derraz

Abstract:

In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, filtration and disinfection. The optimization of the process consists of some measures to decrease the managing and monitoring expenses and improve the quality of the produced water. The objective of this study is to provide water treatment operators with methods and practices that enable to attain the most effective use of the facility and, in consequence, optimize the of the cubic meter price of the treated water. This paper proposes a review on optimization of drinking water treatment process by analyzing all of the water treatment units and gives some solutions in order to maximize the water treatment performances without compromising the water quality standards. Some solutions and methods are performed in the water treatment plant located in the middle of Morocco (Meknes).

Keywords: coagulation process, optimization, turbidity removal, water treatment

Procedia PDF Downloads 423
46102 Immersive Learning in University Classrooms

Authors: Raminder Kaur

Abstract:

This paper considers the emerging area of integrating Virtual Reality (VR) technologies into the teaching of Visual Anthropology, Research Methods, and the Anthropology of Contemporary India in the University of Sussex. If deployed in a critical and self-reflexive manner, there are several advantages to VR-based immersive learning: (i) Based on data available for British schools, it has been noted that ‘Learning through experience can boost knowledge retention by up to 75%’. (ii) It can tutor students to learn with and from virtual worlds, devising new collaborative methods where suited. (iii) It can foster inclusive learning by aiding students with SEN and disabilities who may not be able to explore such areas in the physical world. (iv) It can inspire and instill confidence in students with anxieties about approaching new subjects, realms, or regions. (v) It augments our provision of ‘smart classrooms’ synchronised to the kinds of emerging immersive learning environments that students come from in schools.

Keywords: virtual reality, anthropology, immersive learning, university

Procedia PDF Downloads 83
46101 An Appraisal of Blended Learning Approach for English Language Teaching in Saudi Arabia

Authors: H. Alqunayeer, S. Zamir

Abstract:

Blended learning, an ideal amalgamation of online learning and face to face traditional approach is a new approach that may result in outstanding outcomes in the realm of teaching and learning. The dexterity and effectiveness offered by e-learning experience cannot be guaranteed in a traditional classroom, whereas one-to-one interaction the essential element of learning that can only be found in a traditional classroom. In recent years, a spectacular expansion in the incorporation of technology in language teaching and learning is observed in many universities of Saudi Arabia. Some universities recognize the importance of blending face-to-face with online instruction in language pedagogy, Qassim University is one of the many universities adopting Blackboard Learning Management system (LMS). The university has adopted this new mode of teaching/learning in year 2015. Although the experience is immature; however great pedagogical transformations are anticipated in the university through this new approach. This paper examines the role of blended language learning with particular reference to the influence of Blackboard Learning Management System on the development of English language learning for EFL learners registered in Bachelors of English language program. This paper aims at exploring three main areas: (i) the present status of Blended learning in the educational process in Saudi Arabia especially in Qassim University by providing a survey report on the number of training courses on Blackboard LMS conducted for the male and female teachers at various colleges of Qassim University, (ii) a survey on teachers perception about the utility, application and the outcome of using blended Learning approach in teaching English language skills courses, (iii) the students’ views on the efficiency of Blended learning approach in learning English language skills courses. Besides, analysis of students’ limitations and challenges related to the experience of blended learning via Blackboard, the suggestion and recommendations offered by the language learners have also been thought-out. The study is empirical in nature. In order to gather data on the afore mentioned areas survey questionnaire method has been used: in order to study students’ perception, a 5 point Likert-scale questionnaire has been distributed to 200 students of English department registered in Bachelors in English program (level 5 through level 8). Teachers’ views have been surveyed with the help of interviewing 25 EFL teachers skilled in using Blackboard LMS in their lectures. In order to ensure the validity and reliability of questionnaire, the inter-rater approach and Cronbach’s Alpha analysis have been used respectively. Analysis of variance (ANOVA) has been used to analyze the students’ perception about the productivity of the Blended approach in learning English language skills. The analysis of feedback by Saudi teachers and students about the usefulness, ingenuity, and productivity of Blended Learning via Blackboard LMS highlights the need of encouraging and expanding the implementation of this new approach into the field of English language teaching in Saudi Arabia, in order to augment congenial learning aura. Furthermore, it is hoped that the propositions and practical suggestions offered by the study will be functional for other similar learning environments.

Keywords: blended learning, black board learning management system, English as foreign language (EFL) learners, EFL teachers

Procedia PDF Downloads 156
46100 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 141
46099 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features

Authors: Bushra Zafar, Usman Qamar

Abstract:

Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.

Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection

Procedia PDF Downloads 316
46098 Examination of Public Hospital Unions Technical Efficiencies Using Data Envelopment Analysis and Machine Learning Techniques

Authors: Songul Cinaroglu

Abstract:

Regional planning in health has gained speed for developing countries in recent years. In Turkey, 89 different Public Hospital Unions (PHUs) were conducted based on provincial levels. In this study technical efficiencies of 89 PHUs were examined by using Data Envelopment Analysis (DEA) and machine learning techniques by dividing them into two clusters in terms of similarities of input and output indicators. Number of beds, physicians and nurses determined as input variables and number of outpatients, inpatients and surgical operations determined as output indicators. Before performing DEA, PHUs were grouped into two clusters. It is seen that the first cluster represents PHUs which have higher population, demand and service density than the others. The difference between clusters was statistically significant in terms of all study variables (p ˂ 0.001). After clustering, DEA was performed for general and for two clusters separately. It was found that 11% of PHUs were efficient in general, additionally 21% and 17% of them were efficient for the first and second clusters respectively. It is seen that PHUs, which are representing urban parts of the country and have higher population and service density, are more efficient than others. Random forest decision tree graph shows that number of inpatients is a determinative factor of efficiency of PHUs, which is a measure of service density. It is advisable for public health policy makers to use statistical learning methods in resource planning decisions to improve efficiency in health care.

Keywords: public hospital unions, efficiency, data envelopment analysis, random forest

Procedia PDF Downloads 126
46097 Optimization of Cloud Classification Using Particle Swarm Algorithm

Authors: Riffi Mohammed Amine

Abstract:

A cloud is made up of small particles of liquid water or ice suspended in the atmosphere, which generally do not reach the ground. Various methods are used to classify clouds. This article focuses specifically on a technique known as particle swarm optimization (PSO), an AI approach inspired by the collective behaviors of animals living in groups, such as schools of fish and flocks of birds, and a method used to solve complex classification and optimization problems with approximate solutions. The proposed technique was evaluated using a series of second-generation METOSAT images taken by the MSG satellite. The acquired results indicate that the proposed method gave acceptable results.

Keywords: remote sensing, particle swarm optimization, clouds, meteorological image

Procedia PDF Downloads 17