Search results for: operational amplifier
817 A Case for Ethics Practice under the Revised ISO 14001:2015
Authors: Reuben Govender, M. L. Woermann
Abstract:
The ISO 14001 management system standard was first published in 1996. It is a voluntary standard adopted by both private and public sector organizations globally. Adoption of the ISO 14001 standard at the corporate level is done to help manage business impacts on the environment e.g. pollution control. The International Organization for Standardization (ISO) revised the standard in 2004 and recently in 2015. The current revision of the standard appears to adopt a communitarian-type philosophy. The inclusion of requirements to consider external 'interested party' needs and expectations implies this philosophy. Therefore, at operational level businesses implementing ISO 14001 will have to consider needs and expectations beyond local laws. Should these external needs and expectations be included in the scope of the environmental management system, they become requirements to be complied with in much the same way as compliance to laws. The authors assert that the recent changes to ISO 14001 introduce an ethical dimension to the standard. The authors assert that business ethics as a discipline now finds relevance in ISO 14001 via contemporary stakeholder theory and discourse ethics. Finally, the authors postulate implications of (not) addressing these requirements before July 2018 when transition to the revised standard must be complete globally.Keywords: business ethics, environmental ethics, ethics practice, ISO 14001:2015
Procedia PDF Downloads 261816 Conceptual Design of Experimental Helium Cooling Loop for Indian TBM R&D Experiments
Authors: B. K. Yadav, A. Gandhi, A. K. Verma, T. S. Rao, A. Saraswat, E. R. Kumar, M. Sarkar, K. N. Vyas
Abstract:
This paper deals with the conceptual design of Experimental Helium Cooling Loop (EHCL) for Indian Test Blanket Module (TBM) and its related thermal hydraulic experiments. Indian TBM team is developing Lead Lithium cooled Ceramic Breeder (IN-LLCB) TBM to be tested in ITER. The TBM box structure is cooled by high pressure (8 MPa) and high temperature (300-500C) helium gas. The first wall of TBM made of complex channel geometry having several parallel channels carrying helium gas for efficient heat extraction. Several mock-ups of these channels need to be tested before finalizing the TBM first wall design and fabrication. Besides the individual testing of such mock-ups of breeding blanket, the testing of Pb-Li to helium heat exchanger, the operational experience of helium loop and understanding of the behaviour of high pressure and high temperature system components are very essential for final development of Helium Cooling System for LLCB TBM in ITER. The main requirements and characteristics of the EHCL and its conceptual design are presented in this paper.Keywords: DEMO, EHCL, ITER, LLCB TBM
Procedia PDF Downloads 383815 The Use of Artificial Intelligence in the Context of a Space Traffic Management System: Legal Aspects
Authors: George Kyriakopoulos, Photini Pazartzis, Anthi Koskina, Crystalie Bourcha
Abstract:
The need for securing safe access to and return from outer space, as well as ensuring the viability of outer space operations, maintains vivid the debate over the promotion of organization of space traffic through a Space Traffic Management System (STM). The proliferation of outer space activities in recent years as well as the dynamic emergence of the private sector has gradually resulted in a diverse universe of actors operating in outer space. The said developments created an increased adverse impact on outer space sustainability as the case of the growing number of space debris clearly demonstrates. The above landscape sustains considerable threats to outer space environment and its operators that need to be addressed by a combination of scientific-technological measures and regulatory interventions. In this context, recourse to recent technological advancements and, in particular, to Artificial Intelligence (AI) and machine learning systems, could achieve exponential results in promoting space traffic management with respect to collision avoidance as well as launch and re-entry procedures/phases. New technologies can support the prospects of a successful space traffic management system at an international scale by enabling, inter alia, timely, accurate and analytical processing of large data sets and rapid decision-making, more precise space debris identification and tracking and overall minimization of collision risks and reduction of operational costs. What is more, a significant part of space activities (i.e. launch and/or re-entry phase) takes place in airspace rather than in outer space, hence the overall discussion also involves the highly developed, both technically and legally, international (and national) Air Traffic Management System (ATM). Nonetheless, from a regulatory perspective, the use of AI for the purposes of space traffic management puts forward implications that merit particular attention. Key issues in this regard include the delimitation of AI-based activities as space activities, the designation of the applicable legal regime (international space or air law, national law), the assessment of the nature and extent of international legal obligations regarding space traffic coordination, as well as the appropriate liability regime applicable to AI-based technologies when operating for space traffic coordination, taking into particular consideration the dense regulatory developments at EU level. In addition, the prospects of institutionalizing international cooperation and promoting an international governance system, together with the challenges of establishment of a comprehensive international STM regime are revisited in the light of intervention of AI technologies. This paper aims at examining regulatory implications advanced by the use of AI technology in the context of space traffic management operations and its key correlating concepts (SSA, space debris mitigation) drawing in particular on international and regional considerations in the field of STM (e.g. UNCOPUOS, International Academy of Astronautics, European Space Agency, among other actors), the promising advancements of the EU approach to AI regulation and, last but not least, national approaches regarding the use of AI in the context of space traffic management, in toto. Acknowledgment: The present work was co-funded by the European Union and Greek national funds through the Operational Program "Human Resources Development, Education and Lifelong Learning " (NSRF 2014-2020), under the call "Supporting Researchers with an Emphasis on Young Researchers – Cycle B" (MIS: 5048145).Keywords: artificial intelligence, space traffic management, space situational awareness, space debris
Procedia PDF Downloads 258814 Collision Avoidance Maneuvers for Vessels Navigating through Traffic Separation Scheme
Authors: Aswin V. J., Sreeja S., R. Harikumar
Abstract:
Ship collision is one of the major concerns while navigating in the ocean. In congested sea routes where there are hectic offshore operations, ships are often forced to take close encounter maneuvers. Maritime rules for preventing collision at sea are defined in the International Regulations for Preventing Collision at Sea. Traffic Separation Schemes (TSS) are traffic management route systems ruled by International Maritime Organization (IMO), where the traffic lanes indicate the general direction of traffic flow. The Rule 10 of International Regulations for Preventing Collision at Sea prescribes the conduct of vessels while navigating through TSS. But no quantitative criteria regarding the procedures to detect and evaluate collision risk is specified in International Regulations for Preventing Collision at Sea. Most of the accidents that occur are due to operational errors affected by human factors such as lack of experience and loss of situational awareness. In open waters, the traffic density is less when compared to that in TSS, and hence the vessels can be operated in autopilot mode. A collision avoidance method that uses the possible obstacle trajectories in advance to predict “collision occurrence” and can generate suitable maneuvers for collision avoidance is presented in this paper. The suitable course and propulsion changes that can be used in a TSS considering International Regulations for Preventing Collision at Sea are found out for various obstacle scenarios.Keywords: collision avoidance, maneuvers, obstacle trajectories, traffic separation scheme
Procedia PDF Downloads 77813 A South African Perspective on Self-Leadership Development for Women Engineering Students
Authors: A. S. Lourens, B. Du Plooy
Abstract:
Across the world, initiatives have been introduced to encourage women to enter into and remain in engineering fields. However, research has shown that many women leave engineering or suffer a loss of self-esteem and self-confidence compared to their male counterparts. To address this problem, a South African comprehensive university developed a self-leadership intervention pilot study in 2013, aimed at improving the self-efficacy of its female engineering students and increasing retention rates. This paper is a qualitative, descriptive and interpretive study of the rationale and operational aspects of the Women in Engineering Leadership Association’s (WELA) self-leadership workshop. The objectives of this paper are to provide a framework for the design of a self-leadership workshop and to provide insight into the process of developing such a workshop specifically for women engineering students at a South African university. Finally, the paper proposes an evaluation process for the pilot workshop, which also provides a framework to improve future workshops. It is anticipated that the self-leadership development framework will be applicable to other higher education institutions wishing to improve women engineering student’s feelings of self-efficacy and therefore retention rates of women in engineering.Keywords: self-leadership, women in engineering, co-curricular interventions, self-efficacy
Procedia PDF Downloads 398812 Planning Railway Assets Renewal with a Multiobjective Approach
Authors: João Coutinho-Rodrigues, Nuno Sousa, Luís Alçada-Almeida
Abstract:
Transportation infrastructure systems are fundamental in modern society and economy. However, they need modernizing, maintaining, and reinforcing interventions which require large investments. In many countries, accumulated intervention delays arise from aging and intense use, being magnified by financial constraints of the past. The decision problem of managing the renewal of large backlogs is common to several types of important transportation infrastructures (e.g., railways, roads). This problem requires considering financial aspects as well as operational constraints under a multidimensional framework. The present research introduces a linear programming multiobjective model for managing railway infrastructure asset renewal. The model aims at minimizing three objectives: (i) yearly investment peak, by evenly spreading investment throughout multiple years; (ii) total cost, which includes extra maintenance costs incurred from renewal backlogs; (iii) priority delays related to work start postponements on the higher priority railway sections. Operational constraints ensure that passenger and freight services are not excessively delayed from having railway line sections under intervention. Achieving a balanced annual investment plan, without compromising the total financial effort or excessively postponing the execution of the priority works, was the motivation for pursuing the research which is now presented. The methodology, inspired by a real case study and tested with real data, reflects aspects of the practice of an infrastructure management company and is generalizable to different types of infrastructure (e.g., railways, highways). It was conceived for treating renewal interventions in infrastructure assets, which is a railway network may be rails, ballasts, sleepers, etc.; while a section is under intervention, trains must run at reduced speed, causing delays in services. The model cannot, therefore, allow for an accumulation of works on the same line, which may cause excessively large delays. Similarly, the lines do not all have the same socio-economic importance or service intensity, making it is necessary to prioritize the sections to be renewed. The model takes these issues into account, and its output is an optimized works schedule for the renewal project translatable in Gantt charts The infrastructure management company provided all the data for the first test case study and validated the parameterization. This case consists of several sections to be renewed, over 5 years and belonging to 17 lines. A large instance was also generated, reflecting a problem of a size similar to the USA railway network (considered the largest one in the world), so it is not expected that considerably larger problems appear in real life; an average of 25 years backlog and ten years of project horizon was considered. Despite the very large increase in the number of decision variables (200 times as large), the computational time cost did not increase very significantly. It is thus expectable that just about any real-life problem can be treated in a modern computer, regardless of size. The trade-off analysis shows that if the decision maker allows some increase in max yearly investment (i.e., degradation of objective ii), solutions improve considerably in the remaining two objectives.Keywords: transport infrastructure, asset renewal, railway maintenance, multiobjective modeling
Procedia PDF Downloads 146811 Machine Learning in Momentum Strategies
Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu
Abstract:
The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.Keywords: information coefficient, machine learning, momentum, portfolio, return prediction
Procedia PDF Downloads 53810 A Multi-Objective Methodology for Selecting Lean Initiatives in Modular Construction Companies
Authors: Saba Shams Bidhendi, Steven Goh, Andrew Wandel
Abstract:
The implementation of lean manufacturing initiatives has produced significant impacts in improving operational performance and reducing manufacturing wastes in the production process. However, selecting an appropriate set of lean strategies is critical to avoid misapplication of the lean manufacturing techniques and consequential increase in non-value-adding activities. To the author’s best knowledge, there is currently no methodology to select lean strategies that considers their impacts on manufacturing wastes and performance metrics simultaneously. In this research, a multi-objective methodology is proposed that suggests an appropriate set of lean initiatives based on their impacts on performance metrics and manufacturing wastes and within manufacturers’ resource limitation. The proposed methodology in this research suggests the best set of lean initiatives for implementation that have highest impacts on identified critical performance metrics and manufacturing wastes. Therefore, manufacturers can assure that implementing suggested lean tools improves their production performance and reduces manufacturing wastes at the same time. A case study was conducted to show the effectiveness and validate the proposed model and methodologies.Keywords: lean manufacturing, lean strategies, manufacturing wastes, manufacturing performance, optimisation, decision making
Procedia PDF Downloads 193809 A Genetic Algorithm Approach to Solve a Weaving Job Scheduling Problem, Aiming Tardiness Minimization
Authors: Carolina Silva, João Nuno Oliveira, Rui Sousa, João Paulo Silva
Abstract:
This study uses genetic algorithms to solve a job scheduling problem in a weaving factory. The underline problem regards an NP-Hard problem concerning unrelated parallel machines, with sequence-dependent setup times. This research uses real data regarding a weaving industry located in the North of Portugal, with a capacity of 96 looms and a production, on average, of 440000 meters of fabric per month. Besides, this study includes a high level of complexity once most of the real production constraints are applied, and several real data instances are tested. Topics such as data analyses and algorithm performance are addressed and tested, to offer a solution that can generate reliable and due date results. All the approaches will be tested in the operational environment, and the KPIs monitored, to understand the solution's impact on the production, with a particular focus on the total number of weeks of late deliveries to clients. Thus, the main goal of this research is to develop a solution that allows for the production of automatically optimized production plans, aiming to the tardiness minimizing.Keywords: genetic algorithms, textile industry, job scheduling, optimization
Procedia PDF Downloads 157808 Sustainability in Maritime Transport: Impact of Cruise Ships Routing in Coastal Navigation
Authors: Josip Dorigatti, Tina Perić, Gorana Jelić Mrčelić
Abstract:
This paper makes a review of present researches on sustainable development, sustainable maritime transport and presents the problem of sustainability in the cruise ships industry. It deals with cruise ships' routing in coastal navigation and its impact on sustainability from environmental, economical, and social aspects. A review of researches available on maritime sustainability brings to the attention how sustainability from a maritime transport perspective is still not enough analysed and researched as it is the case in other industries. The paper emphasises how the operational part of the cruising industry, in particular cruise ships routing in coastal navigation, is not yet researched nor analysed from the aspect of sustainability. The author, based on his extensive senior officer experience in the cruising industry, makes an overview of cruise ship routing practice. Accordingly, based on present cruise industry trends, challenges are highlighted from the aspect of sustainable cruise ships routing in coastal navigation.Keywords: sustainable development, maritime transport, cruise shipping, cruise ship routes, coastal navigation
Procedia PDF Downloads 172807 Community Radio Broadcasting in Phutthamonthon District, Nakhon Pathom, Thailand
Authors: Anchana Sooksomchitra
Abstract:
This study aims to explore and compare the current condition of community radio stations in Phutthamonthon district, Nakhon Pathom province, Thailand, as well as the challenges they are facing. Qualitative research tools including in-depth interviews, documentary analysis, focus group interviews, and observation are used to examine the content, programming, and management structure of three community radio stations currently in operation within the district. Research findings indicate that the management and operational approaches adopted by the two non-profit stations included in the study, Salaya Pattana and Voice of Dhamma, are more structured and effective than that of the for-profit Tune Radio. Salaya Pattana, backed by the Faculty of Engineering, Mahidol University, and the charity-funded Voice of Dhamma are comparatively free from political and commercial influence, and able to provide more relevant and consistent community-oriented content to meet the real demand of the audience. Tune Radio, on the other hand, has to rely solely on financial support from political factions and business groups, which heavily influence its content.Keywords: radio broadcasting, programming, management, community radio, Thailand
Procedia PDF Downloads 343806 The Factors Affecting the Operations of the Industrial Enterprises of Cassava in the Northeast of Thailand
Authors: Thanasuwit Thabhiranrak
Abstract:
This research aims to study factors that affected the operations of the cassava industrial enterprises in northeast of Thailand. Hypothesis was tested by regress analysis and also the analysis in order to determine the relationship between variables with Pearson correlation and show a class action in cassava process including the owner of business executives and supervisors. The research samples were 400 people in northeast region of Thailand. The research results revealed that success of entrepreneurs related to transformation leadership and knowledge management in a positive way at statistical significance level of 0.01 and respondents also emphasized on the importance of transformational leadership factors. The individual and the use of intelligence affect the success of entrepreneurs in cassava industry at statistical significance level of 0.05. The qualitative data were also collected by interviewing with operational level staff, supervisors, executives, and enterprise owners in the northeast of Thailand. The result was found that knowledge management was important in their business operations. Personnel in the organizations should learn from working experience, develop their skills, and increase knowledge from education.Keywords: transformational leadership, knowledge management (KM), cassava, northeast of Thailand, industrial
Procedia PDF Downloads 303805 Tape-Shaped Multiscale Fiducial Marker: A Design Prototype for Indoor Localization
Authors: Marcell Serra de Almeida Martins, Benedito de Souza Ribeiro Neto, Gerson Lima Serejo, Carlos Gustavo Resque Dos Santos
Abstract:
Indoor positioning systems use sensors such as Bluetooth, ZigBee, and Wi-Fi, as well as cameras for image capture, which can be fixed or mobile. These computer vision-based positioning approaches are low-cost to implement, mainly when it uses a mobile camera. The present study aims to create a design of a fiducial marker for a low-cost indoor localization system. The marker is tape-shaped to perform a continuous reading employing two detection algorithms, one for greater distances and another for smaller distances. Therefore, the location service is always operational, even with variations in capture distance. A minimal localization and reading algorithm were implemented for the proposed marker design, aiming to validate it. The accuracy tests consider readings varying the capture distance between [0.5, 10] meters, comparing the proposed marker with others. The tests showed that the proposed marker has a broader capture range than the ArUco and QRCode, maintaining the same size. Therefore, reducing the visual pollution and maximizing the tracking since the ambient can be covered entirely.Keywords: multiscale recognition, indoor localization, tape-shaped marker, fiducial marker
Procedia PDF Downloads 134804 The Staff Performance Efficiency of the Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Nipawan Tharasak, Ladda Hirunyava
Abstract:
The objective of the research was to study factors affecting working efficiency and the relationship between working environment, satisfaction to human resources management and operation employees’ working efficiency of Faculty of Management Science, Suan Sunandha Rajabhat University. The sample size of the research was based on 33 employees of Faculty of Management Science. The researcher had classified the support employees into 4 divisions by using Stratified Random Sampling. Individual sample was randomized by using Simple Random Sampling. Data was collected through the instrument. The Statistical Package for the Windows was utilized for data processing. Percentage, mean, standard deviation, the t-test, One-way ANOVA, and Pearson product moment correlation coefficient were applied. The result found the support employees’ satisfaction in human resources management of Faculty of Management Science in following areas: remuneration; employee recruitment & selection; manpower planning; performance evaluation; staff training & developing; and spirit & fairness were overall in good level.Keywords: faculty of management science, operational factors, practice performance, staff working
Procedia PDF Downloads 235803 Web and Android-Based Applications as a Breakthrough in Preventing Non-System Fault Disturbances Due to Work Errors in the Transmission Unit
Authors: Dhany Irvandy, Ary Gemayel, Mohammad Azhar, Leidenti Dwijayanti, Iif Hafifah
Abstract:
Work safety is among the most important things in work execution. Unsafe conditions and actions are priorities in accident prevention in the world of work, especially in the operation and maintenance of electric power transmission. Considering the scope of work, operational work in the transmission has a very high safety risk. Various efforts have been made to avoid work accidents. However, accidents or disturbances caused by non-conformities in work implementation still often occur. Unsafe conditions or actions can cause these. Along with the development of technology, website-based applications and mobile applications have been widely used as a medium to monitor work in real-time and by more people. This paper explains the use of web and android-based applications to monitor work and work processes in the field to prevent work accidents or non-system fault disturbances caused by non-conformity of work implementation with predetermined work instructions. Because every job is monitored in real-time, recorded in time and documented systemically, this application can reduce the occurrence of possible unsafe actions carried out by job executors that can cause disruption or work accidents.Keywords: work safety, unsafe action, application, non-system fault, real-time.
Procedia PDF Downloads 44802 The Effect of Artificial Intelligence on Accounting and Finance
Authors: Evrime Fawzy Ishak Gadelsayed
Abstract:
This paper presents resource intake accounting as an inventive manner to cope with control accounting, which concentrates on administrators as the crucial customers of the information and offers satisfactory statistics of conventional control accounting. This machine underscores that the association's asset motivates prices; as a consequence, in costing frameworks, the emphasis ought to be on assets and their usage. Resource consumption accounting consolidates two costing methodologies, action-based totally and the German cost accounting approach called GPK. This methodology, however, is a danger to managers when making the management accounting undertaking operational. The motive for this article is to clarify the concept of resource intake accounting, its elements and highlights and use of this approach in associations. Inside the first area, we present useful resource consumption accounting, the basis, reasons for its improvement, and the issues that are faced beyond costing frameworks. At that point, we deliver the requirements and presumptions of this approach; ultimately, we depict the execution of this approach in associations and its preferences over other costing techniques.Keywords: financial statement fraud, forensic accounting, fraud prevention and detection, auditing, audit expectation gap, corporate governance resource consumption accounting, management accounting, action based method, German cost accounting method
Procedia PDF Downloads 9801 Leveraging Information for Building Supply Chain Competitiveness
Authors: Deepika Joshi
Abstract:
Operations in automotive industry rely greatly on information shared between Supply Chain (SC) partners. This leads to efficient and effective management of SC activity. Automotive sector in India is growing at 14.2 percent per annum and has huge economic importance. We find that no study has been carried out on the role of information sharing in SC management of Indian automotive manufacturers. Considering this research gap, the present study is planned to establish the significance of information sharing in Indian auto-component supply chain activity. An empirical research was conducted for large scale auto component manufacturers from India. Twenty four Supply Chain Performance Indicators (SCPIs) were collected from existing literature. These elements belong to eight diverse but internally related areas of SC management viz., demand management, cost, technology, delivery, quality, flexibility, buyer-supplier relationship, and operational factors. A pair-wise comparison and an open ended questionnaire were designed using these twenty four SCPIs. The questionnaire was then administered among managerial level employees of twenty-five auto-component manufacturing firms. Analytic Network Process (ANP) technique was used to analyze the response of pair-wise questionnaire. Finally, twenty-five priority indexes are developed, one for each respondent. These were averaged to generate an industry specific priority index. The open-ended questions depicted strategies related to information sharing between buyers and suppliers and their influence on supply chain performance. Results show that the impact of information sharing on certain performance indicators is relatively greater than their corresponding variables. For example, flexibility, delivery, demand and cost related elements have massive impact on information sharing. Technology is relatively less influenced by information sharing but it immensely influence the quality of information shared. Responses obtained from managers reveal that timely and accurate information sharing lowers the cost, increases flexibility and on-time delivery of auto parts, therefore, enhancing the competitiveness of Indian automotive industry. Any flaw in dissemination of information can disturb the cycle time of both the parties and thus increases the opportunity cost. Due to supplier’s involvement in decisions related to design of auto parts, quality conformance is found to improve, leading to reduction in rejection rate. Similarly, mutual commitment to share right information at right time between all levels of SC enhances trust level. SC partners share information to perform comprehensive quality planning to ingrain total quality management. This study contributes to operations management literature which faces scarcity of empirical examination on this subject. It views information sharing as a building block which firms can promote and evolve to leverage the operational capability of all SC members. It will provide insights for Indian managers and researchers as every market is unique and suppliers and buyers are driven by local laws, industry status and future vision. While major emphasis in this paper is given to SC operations happening between domestic partners, placing more focus on international SC can bring in distinguished results.Keywords: Indian auto component industry, information sharing, operations management, supply chain performance indicators
Procedia PDF Downloads 550800 Enhancing Dents through Lean Six Sigma
Authors: Prateek Guleria, Shubham Sharma, Rakesh Kumar Shukla, Harshit Sharma
Abstract:
Performance measurement of small and medium-sized businesses is the primary need for all companies to survive and thrive in a dynamic global company. A structured and systematic, integrated organization increases employee reliability, sustainability, and loyalty. This paper is a case study of a gear manufacturing industry that was facing the problem of rejection due to dents and damages in gear. The DMAIC cycle, along with different tools used in the research work includes SIPOC (Supply, Input, Process, Output, Control) Pareto analysis, Root & Cause analysis, and FMEA (Failure Mode and Effect Analysis). The six-sigma level was improved from 4.06 to 3.46, and the rejection rate was reduced from 7.44% to 1.56%. These findings highlighted the influence of a Lean Six Sigma module in the gear manufacturing unit, which has already increased operational quality and continuity to increase market success and meet customer expectations. According to the findings, applying lean six sigma tools will result in increased productivity. The results could assist businesses in deciding the quality tools that were likely to improve efficiency, competitiveness, and expense.Keywords: six sigma, DMAIC, SIPOC, failure mode, effect analysis
Procedia PDF Downloads 114799 Reasons for Study of Evening Class Students, Faculty of Industrial Technology, Suan Sunandha Rajabhat University
Authors: Luedech Girdwichai, Ratchasak Sannok, Jeeranan Wueamprakhon
Abstract:
This research aims to study reasons for study of Evening Class Students, Faculty of Industrial Technology, Suan Sunandha Rajabhat University. Population is special program students of the Faculty of Industrial Technology, Suan Sunandha Rajabhat University enrolled in academic year B.E. 2012. Data were collected in February 2013 from 98 students. Tool used in this research was questionnaire. Data were analyzed by statistics: percentage, mean, and standard deviation, using a computer program. The results revealed that: 1. Most of the special program students have monthly income between 10,001–20,000 Baht. Majority of the students were private company employees, working in operational level. They were mainly single and the commuting distance to the university is between 10-30 kilometers. 2. Reasons for enrolling of special program students of the Faculty of Industrial Technology, namely, career, self advancement, personal reasons and support from others received high scores. 3. Problems identified such as facilities, services, learning media and the content of the course received average scores.Keywords: reasons, evening class students, Faculty of Industrial Technology, Suan Sunandha Rajabhat University
Procedia PDF Downloads 320798 An Ant Colony Optimization Approach for the Pollution Routing Problem
Authors: P. Parthiban, Sonu Rajak, N. Kannan, R. Dhanalakshmi
Abstract:
This paper deals with the Vehicle Routing Problem (VRP) with environmental considerations which is called Pollution Routing Problem (PRP). The objective is to minimize the operational and environmental costs. It consists of routing a number of vehicles to serve a set of customers, and determining fuel consumption, driver wages and their speed on each route segment, while respecting the capacity constraints and time windows. In this context, we presented an Ant Colony Optimization (ACO) approach, combined with a Speed Optimization Algorithm (SOA) to solve the PRP. The proposed solution method consists of two stages. Stage one is to solve a Vehicle Routing Problem with Time Window (VRPTW) using ACO and in the second stage a SOA is run on the resulting VRPTW solutions. Given a vehicle route, the SOA consists of finding the optimal speed on each arc of the route in order to minimize an objective function comprising fuel consumption costs and driver wages. The proposed algorithm tested on benchmark problem, the preliminary results show that the proposed algorithm is able to provide good solutions.Keywords: ant colony optimization, CO2 emissions, combinatorial optimization, speed optimization, vehicle routing
Procedia PDF Downloads 322797 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 20796 The Importance of Adopting Sustainable Practices in Power Projects
Authors: Sikander Ali Abbassi, Wazir Muhmmad Laghari, Bashir Ahmed Laghari
Abstract:
Attaining sustainable development is one of the greatest challenges facing Pakistan today. A challenge that can only be met by developing and deploying confidence among the people. Transparency in project activities at all stages and other measures will also enhance its social and economic growth. Adopting sustainable practices and sensible policies, we mean that project activity should be economically viable, socially acceptable and environment friendly. In order to achieve this objective, there must be a continued commitment to encourage and ensure the public participation in development of power projects. Since Pakistan is an energy deficient country, it has to initiate power projects on a large scale in the near future. Therefore, it is the need of the hour to tackle these projects in a sustainable way, so that it can be benefited to the maximum possible level and have the least adverse effects on people and the environment. In order to get desirable results, careful planning, efficient implementation, standardized operational practices and community participation are the key parameters which ensure the positive impacts on economy, prosperity and the well being of our people. This paper pinpoints the potential environmental hazards due to project activity and emphasizes to adopt sustainable approaches in power projects.Keywords: environmental hazards, sustainable practices, environment friendly, power projects
Procedia PDF Downloads 389795 Optimal Scheduling of Load and Operational Strategy of a Load Aggregator to Maximize Profit with PEVs
Authors: Md. Shafiullah, Ali T. Al-Awami
Abstract:
This project proposes optimal scheduling of imported power of a load aggregator with the utilization of EVs to maximize its profit. As with the increase of renewable energy resources, electricity price in competitive market becomes more uncertain and, on the other hand, with the penetration of renewable distributed generators in the distribution network the predicted load of a load aggregator also becomes uncertain in real time. Though there is uncertainties in both load and price, the use of EVs storage capacity can make the operation of load aggregator flexible. LA submits its offer to day-ahead market based on predicted loads and optimized use of its EVs to maximize its profit, as well as in real time operation it uses its energy storage capacity in such a way that it can maximize its profit. In this project, load aggregators profit maximization algorithm is formulated and the optimization problem is solved with the help of CVX. As in real time operation the forecasted loads differ from actual load, the mismatches are settled in real time balancing market. Simulation results compare the profit of a load aggregator with a hypothetical group of 1000 EVs and without EVs.Keywords: CVX, electricity market, load aggregator, load and price uncertainties, profit maximization, real time balancing operation
Procedia PDF Downloads 417794 A 3kW Grid Connected Residential Energy Storage System with PV and Li-Ion Battery
Authors: Moiz Masood Syed, Seong-Jun Hong, Geun-Hie Rim, Kyung-Ae Cho, Hyoung-Suk Kim
Abstract:
In the near future, energy storage will play a vital role to enhance the present changing technology. Energy storage with power generation becomes necessary when renewable energy sources are connected to the grid which consequently adjoins to the total energy in the system since utilities require more power when peak demand occurs. This paper describes the operational function of a 3 kW grid-connected residential Energy Storage System (ESS) which is connected with Photovoltaic (PV) at its input side. The system can perform bidirectional functions of charging from the grid and discharging to the grid when power demand becomes high and low respectively. It consists of PV module, Power Conditioning System (PCS) containing a bidirectional DC/DC Converter and bidirectional DC/AC inverter and a Lithium-ion battery pack. ESS Configuration, specifications, and control are described. The bidirectional DC/DC converter tracks the maximum power point (MPPT) and maintains the stability of PV array in case of power deficiency to fulfill the load requirements. The bidirectional DC/AC inverter has good voltage regulation properties like low total harmonic distortion (THD), low electromagnetic interference (EMI), faster response and anti-islanding characteristics. Experimental results satisfy the effectiveness of the proposed system.Keywords: energy storage system, photovoltaic, DC/DC converter, DC/AC inverter
Procedia PDF Downloads 641793 A South African Perspective on Self-Leadership Development for Women Engineering Students – A Pilot Study
Authors: A. S. Lourens, B. Du Plooy
Abstract:
Across the world, initiatives have been introduced to encourage women to enter into and remain in engineering fields. However, research has shown that many women leave engineering or suffer a loss of self-esteem and self-confidence compared to their male counterparts. To address this problem, a South African comprehensive university developed a self-leadership intervention pilot study in 2013, aimed at improving the self-efficacy of its female engineering students and increasing retention rates. This paper is a qualitative, descriptive, and interpretive study of the rationale and operational aspects of the Women in Engineering Leadership Association’s (WELA) self-leadership workshop. The objectives of this paper are to provide a framework for the design of a self-leadership workshop and to provide insight into the process of developing such a workshop specifically for women engineering students at a South African university. Finally, the paper proposes an evaluation process for the pilot workshop, which also provides a framework to improve future workshops. It is anticipated that the self-leadership development framework will be applicable to other higher education institutions wishing to improve women engineering student’s feelings of self-efficacy and therefore retention rates of women in engineering.Keywords: co-curricular interventions, self-efficacy, self-leadership, women in engineering
Procedia PDF Downloads 448792 Improving Forecasting Demand for Maintenance Spare Parts: Case Study
Authors: Abdulaziz Afandi
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: neural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 127791 Implementing Building Information Modelling to Attain Lean and Green Benefits
Authors: Ritu Ahuja
Abstract:
Globally the built environment sector is striving to be highly efficient, quality-centred and socially-responsible. Built environment sector is an integral part of the economy and plays an important role in urbanization, industrialization and improved quality of living. The inherent challenges such as excessive material and process waste, over reliance on resources, energy usage, and carbon footprint need to be addressed in order to meet the needs of the economy. It is envisioned that these challenges can be resolved by integration of Lean-Green-Building Information Modelling (BIM) paradigms. Ipso facto, with BIM as a catalyst, this research identifies the operational and tactical connections of lean and green philosophies by providing a conceptual integration framework and underpinning theories. The research has developed a framework for BIM-based organizational capabilities for enhanced adoption and effective use of BIM within architectural organizations. The study was conducted through a sequential mixed method approach focusing on collecting and analyzing both qualitative and quantitative data. The framework developed as part of this study will enable architectural organizations to successfully embrace BIM on projects and gain lean and green benefits.Keywords: BIM, lean, green, AEC organizations
Procedia PDF Downloads 189790 Motivations and Obstacles in the Implementation of Public Policies Encouraging the Sorting of Organic Waste: The Case of a Metropolis of 400,000 Citizens
Authors: Enola Lamy, Jean Paul Mereaux, Jean Claude Lopez
Abstract:
In the face of new regulations related to waste management, it has become essential to understand the organizational process that accompanies this change. Through an experiment on the sorting of food waste in the community of Grand Reims, this research explores the acceptability, behavior, and tools needed to manage the change. Our position within a private company, SUEZ, a key player in the waste management sector, has allowed us to set up a driven team with concerned public organizations. The research was conducted through a theoretical study combined with semi-structured interviews. This qualitative method allowed us to conduct exchanges with users to assess the motivations and obstacles linked to the sorting of bio-waste. The results revealed the action levers necessary for the project's sustainability. Making the sorting gestures accessible and simplified makes it possible to target all populations. Playful communication adapted to each type of persona allows the user and stakeholders to be placed at the heart of the strategy. These recommendations are spotlighted thanks to the combination of theoretical and operational contributions, with the aim of facilitating the new public management and inducing the notion of performance while providing an example of added value.Keywords: bio-waste, CSR approach, stakeholders, users, perception
Procedia PDF Downloads 83789 Effect of Perception on People’s Behavior in Public Space
Authors: Morteza Maleki
Abstract:
In the present study is that it tried to behave in the environment to be monitored and the respective roles of environment (assumed as a vessel) and human beings (assumed as occupants of this vessel) inevitably create effects which can be expressed as various behaviors on the part of human being. The mutual relationship between man and his environment is exhibited through perceptions, behaviors, subjective images, activities, etc. This study investigates the conceptual dimension in the form of the four components of readability, sense of place, identity, and Tenability (tenability) at the Ahmadabad Axis in Mashhad. The theoretical fundamentals and the data regarding the status quo were presented through the descriptive method and the proposed policies were derived through analyzing the available status quo information. The required data were gathered from library resources and documents related to the studied area as well as from instruments used in field methods such as questionnaires. Upon conducting the necessary investigation, the conceptual dimension within the design area was analyzed. The SWOT table was presented, and the results obtained for improving environmental perception were arranged in the form of policy-making tables and operational projects tables for improving the sense of place, creating imagery, and other investigated components.Keywords: public space, perception, environment, behavior
Procedia PDF Downloads 392788 An Investigation of Community Radio Broadcasting in Phutthamonthon District, Nakhon Pathom, Thailand
Authors: Anchana Sooksomchitra
Abstract:
This study aims to explore and compare the current condition of community radio stations in Phutthamonthon district, Nakhon Pathom province, Thailand, as well as the challenges they are facing. Qualitative research tools including in-depth interviews; documentary analysis; focus group interviews; and observation, are used to examine the content, programming, and management structure of three community radio stations currently in operation within the district. Research findings indicate that the management and operational approaches adopted by the two non-profit stations included in the study, Salaya Pattana and Voice of Dhamma, are more structured and effective than that of the for-profit Tune Radio. Salaya Pattana – backed by the Faculty of Engineering, Mahidol University, and the charity-funded Voice of Dhamma, are comparatively free from political and commercial influence, and able to provide more relevant and consistent community-oriented content to meet the real demand of the audience. Tune Radio, on the other hand, has to rely solely on financial support from political factions and business groups, which heavily influence its content.Keywords: radio broadcasting, programming, management, community radio, Thailand
Procedia PDF Downloads 400