Search results for: n-3 polyunsaturated fatty acids
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1058

Search results for: n-3 polyunsaturated fatty acids

368 Natural Preservatives: An Alternative for Chemical Preservative Used in Foods

Authors: Zerrin Erginkaya, Gözde Konuray

Abstract:

Microbial degradation of foods is defined as a decrease of food safety due to microorganism activity. Organic acids, sulfur dioxide, sulfide, nitrate, nitrite, dimethyl dicarbonate and several preservative gases have been used as chemical preservatives in foods as well as natural preservatives which are indigenous in foods. It is determined that usage of herbal preservatives such as blueberry, dried grape, prune, garlic, mustard, spices inhibited several microorganisms. Moreover, it is determined that animal origin preservatives such as whey, honey, lysosomes of duck egg and chicken egg, chitosan have antimicrobial effect. Other than indigenous antimicrobials in foods, antimicrobial agents produced by microorganisms could be used as natural preservatives. The antimicrobial feature of preservatives depends on the antimicrobial spectrum, chemical and physical features of material, concentration, mode of action, components of food, process conditions, and pH and storage temperature. In this review, studies about antimicrobial components which are indigenous in food (such as herbal and animal origin antimicrobial agents), antimicrobial materials synthesized by microorganisms, and their usage as an antimicrobial agent to preserve foods are discussed.

Keywords: animal origin preservatives, antimicrobial, chemical preservatives, herbal preservatives

Procedia PDF Downloads 377
367 Facial Infiltrating Lipomatosis, a Rare Cause of Facial Asymmetry to Be Known: Case Report and Literature Review

Authors: Shantanu Vyas, Neerja Meena

Abstract:

Facial infiltrating lipomatosis is a rare lipomatous lesion, first described by Slavin in 1983. It is a benign pseudotumor pathology. It corresponds to a non-encapsulated collection of mature adipocytes infiltrating the local tissue and hyperplasia of underlying bone leading to a craniofacial deformity. Very few cases have been reported in the literature. We report the case of a 19-year-old female patient, who was consulted for a swelling of the right hemiface progressively evolving since birth. Physical examination revealed facial asymmetry. On palpation, the mass was soft, painless, not compressible, not pulsatile, not fluctuating. In view of the asymptomatic nature and slow progression of the lesion, a lipomatous tumour, namely lipoma, was suggested. CT scan image shows a hyperplastic subcutaneous fat on the right hemiface. On the right jugal and temporal areas, there is a subcutaneous formation of fatty density, poorly limited, with no detectable peripheral capsule. It merges with the adjacent fat. In the bone window, there was a hyperplasia of underlying bone. Facial lipomatosis infiltration of the face is a benign pseudotumor pathology. As a result, it can be confused with other disorders, in particular, hemifacial hyperplasia. Combination of physical and radiological findings can establish the diagnosis. Surgical treatment is done for cosmetic purposes.

Keywords: cosmetic correction and facial assemetry, aesthetic results, facial infiltration, surgery

Procedia PDF Downloads 76
366 Influence of Cure Degree in GO and CNT-Epoxy Nanocomposites

Authors: Marina Borgert Moraes, Wesley Francisco, Filipe Vargas, Gilmar Patrocínio Thim

Abstract:

In recent years, carbon nanotubes (CNT) and graphene oxide (GO), especially the functionalized ones, have been added to epoxy resin in order to increase the mechanical, electrical and thermal properties of nanocomposites. However, it's still unknown how the presence of these nanoparticles influences the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, epoxy resin, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80°C + 2h 120°C; 3h 80°C + 2h 120°C; 5h 80°C) and samples with different times at constant temperature (120°C). Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites.

Keywords: carbon nanotube, epoxy resin, Graphene oxide, nanocomposite

Procedia PDF Downloads 318
365 Assessement of Phytochemicals and Antioxidant Activity of Lavandula antineae Maire from Algeria

Authors: Soumeya Krimat, Tahar Dob, Mohamed Toumi, Aicha Kesouri, Hafidha Metidji, Chelghoum Chabane

Abstract:

Lavandula antineae Maire is an endemic medicinal plant of Algeria which is traditionally used for the treatment of chills, bruises, oedema and rheumatism. The present study was designed to investigate the phytochemical screening, total phenolic and antioxidant activity of Lavandula antineae Maire for the first time. Phytochemical screening revealed the presence of different kind of chemical groups (anthraquinones, terpenes, saponins, flavonoids, tannins, O-heterosides, C-heterosides, phenolic acids). The amounts of total phenolics in the extracts (hydromethanolic and ethyl acetate extract) were determined spectrometrically. From the analyses, ethyl acetate extract had the highest total phenolic content (262.35 mg GA/g extract) and antioxidant activity (IC50=7.10 µg/ml) using DPPH method. The ethyl acetate extract was also more potent on reducing power compared to hydromethanolic extract. The results suggested that L. antineae could be considered as a new potential source of natural antioxidant for pharmaceuticals and food preservation.

Keywords: Lavandula antineae, antioxidant activity, phytochemical screening, total phenolics

Procedia PDF Downloads 521
364 Azolla Pinnata as Promising Source for Animal Feed in India: An Experimental Study to Evaluate the Nutrient Enhancement Result of Feed

Authors: Roshni Raha, Karthikeyan S.

Abstract:

The world's largest livestock population resides in India. Existing strategies must be modified to increase the production of livestock and their by-products in order to meet the demands of the growing human population. Even though India leads the world in both milk production and the number of cows, average production is not very healthy and productive. This may be due to the animals' poor nutrition caused by a chronic under-availability of high-quality fodder and feed. This article explores Azolla pinnata to be a promising source to produce high-quality unconventional feed and fodder for effective livestock production and good quality breeding in India. This article is an exploratory study using a literature survey and experimentation analysis. In the realm of agri-biotechnology, azolla sp gained attention for helping farmers achieve sustainability, having minimal land requirements, and serving as a feed element that doesn't compete with human food sources. It has high methionine content, which is a good source of protein. It can be easily digested as the lignin content is low. It has high antioxidants and vitamins like beta carotene, vitamin A, and vitamin B12. Using this concept, the paper aims to investigate and develop a model of using azolla plants as a novel, high-potential feed source to combat the problems of low production and poor quality of animals in India. A representative sample of animal feed is collected where azolla is added. The sample is ground into a fine powder using mortar. PITC (phenylisothiocyanate) is added to derivatize the amino acids. The sample is analyzed using HPLC (High-Performance Liquid Chromatography) to measure the amino acids and monitor the protein content of the sample feed. The amino acid measurements from HPLC are converted to milligrams per gram of protein using the method of amino acid profiling via a set of calculations. The amino acid profile data is then obtained to validate the proximate results of nutrient enhancement of the composition of azolla in the sample. Based on the proximate composition of azolla meal, the enhancement results shown were higher compared to the standard values of normal fodder supplements indicating the feed to be much richer and denser in nutrient supply. Thus azolla fed sample proved to be a promising source for animal fodder. This would in turn lead to higher production and a good breed of animals that would help to meet the economic demands of the growing Indian population. Azolla plants have no side effects and can be considered as safe and effective to be immersed in the animal feed. One area of future research could begin with the upstream scaling strategy of azolla plants in India. This could involve introducing several bioreactor types for its commercial production. Since azolla sp has been proved in this paper as a promising source for high quality animal feed and fodder, large scale production of azolla plants will help to make the process much quicker, more efficient and easily accessible. Labor expenses will also be reduced by employing bioreactors for large-scale manufacturing.

Keywords: azolla, fodder, nutrient, protein

Procedia PDF Downloads 55
363 Invasion of Epithelial Cells Is Correlated with Secretion of Biosurfactant via the Type 3 Secretion System (T3SS) of Shigella flexneri

Authors: Duchel Jeanedvi Kinouani Kinavouidi, Christian Aimé Kayath, Etienne Nguimbi

Abstract:

Biosurfactants are amphipathic molecules produced by many microorganisms, usually bacteria, fungi, and yeasts. +ey possesses the property of reducing the tension of the membrane interfaces. No studies have been conducted on Shigella species showing the role of biosurfactant-like molecules (BLM) in pathogenicity. +e aim of this study is to assess the ability of Shigella environmental and clinical strains to produce BLM and investigate the involvement of biosurfactants in pathogenicity. Our study has shown that BLM is secreted in the extracellular medium with EI24 ranging from 80% to 100%. +e secretion depends on the type III secretion system (T3SS). Moreover, our results have shown that S. flexneri, S. boydii, and S. sonnei are able to interact with hydrophobic areas with 17.64%, 21.42%, and 22.22% hydrophobicity, respectively. BLM secretion is totally prevented due to the inhibition of T3SS by 100 mM benzoic and 1.5 mg/ml salicylic acids. P. aeruginosa harboring T3SS is able to produce 100% of BLM in the presence or in the absence of both T3SS inhibitors. +e secreted BLM are extractable with an organic solvent such as chloroform, and this could entirely be considered a lipopeptide or polypeptide compound. Secretion of BLM allows some Shigella strains to induce multicellular phenomena like ‘swarming.’

Keywords: shigella flexneri, biosurfactant, T3SS, Lipopeptide

Procedia PDF Downloads 9
362 Effect of Oat-Protein Peptide in Cognitive Impairment Mice via Mediating Gut-Brain Axis

Authors: Hamad Rafique

Abstract:

The bioactive peptide RDFPITWPW (RW-9) identified from oat protein has been reported to be positive in memory deficits. However, no clarity on the mechanisms responsible for the neuroprotective effects of RW-9 peptide against AD-like symptoms. Herein, it found that RW-9 intervention showed various improving effects in cognitive-behavioral tests and alleviated oxidative stress and inflammation in the scopolamine-induced mice model. The hippocampus proteomics analysis revealed the upregulation of memory-related proteins, including Grin3a, Ppp2r1b, Stat6, Pik3cd, Slc5a7, Chrm2, mainly involved in cAMP signaling, PI3K-Akt signaling, and JAK-STAT signaling pathways. The administration of RW-9 significantly upregulated the neurotransmitters, including 5-HT, DA, and Arg, in mice brains. Moreover, it regulated the serum metabolic profile and increased the expression levels of ABC transporters, biosynthesis of amino acids, and Amino acyl-tRNA biosynthesis, among others. The 16s-rRNA results illustrated that the RW-9 restored the abundance of Muribaculaceae, Lachnospiraceae, Lactobacillus, Clostridia and Bactericides. Taken together, our results suggest that the RW-9 may prevent the AD-like symptoms via modulation of the gut-serum-brain axis.

Keywords: oat protein, active peptide, neuroprotective, gut-brain axis

Procedia PDF Downloads 27
361 A Comparison of Kinetic and Mechanical Properties between Graphene Oxide (GO) and Carbon Nanotubes (CNT)-Epoxy Nanocomposites

Authors: Marina Borgert Moraes, Gilmar Patrocinio Thim

Abstract:

It is still unknown how the presence of nanoparticles such as graphene oxide (GO) or carbon nanotubes (CNT) influence the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA as well as mechanical tests. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80 °C + 2h 120 °C; 3h 80 °C + 2h 120 °C; 5h 80 °C) and samples with different times at constant temperature (120 °C). Mechanical tests were performed according to ASTM D638 and D790. Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites, and the GO reinforced samples had a slightly bigger improvement compared to functionalized CNT.

Keywords: carbon nanotube, epoxy resin, graphene oxide, nanocomposite

Procedia PDF Downloads 262
360 Characterization of Biodiesel Produced from Cow-Tallow

Authors: Nwadike Emmanuel Chinagoron, Achebe Chukwunonso, Ezeliora Chukwuemeka Daniel, Azaka Onyemazuwa Andrew

Abstract:

In this research work, the process of biodiesel production in a pilot plant was studied using cow tallow as raw material, methanol as the solvent and potassium hydroxide as catalysts. The biodiesel quality was determined by characterization. The tallow used in the production had a molecular weight of 860g. Its oil had a density value of 0.8g/ml, iodine value of 63.45, viscosity at 300C was 9.83pas, acid value was 1.96, free fatty acid (FFA) of 0.98%, saponification value of 82.75mleq/kg, specific gravity of 0.898, flash point of 1100C, cloud point of 950C and Calorific value also called Higher Heating Value (HHV) of 38.365MJ/Kg. The produced biodiesel had a density of 0.82g/ml, iodine value of 126.9, viscosity of 4.32pas at 300C, acid value of 0.561, FFA of 0.2805%, saponification value of 137.45 mleq/kg.Flash point, cloud point and centane number of the biodiesel produced are 1390C, 980C and 57.5 respectively, with fat content, protein content, ash content, moisture content, fiber content and carbohydrate content values of 10%, 2.8%, 5%, 5%, 20%, and 37.2% respectively. The biodiesel higher heating values (calorific values) when estimated from viscosity, density and flash points were 41.4MJ/Kg, 63.8MJ/Kg, and 34.6MJ/Kg respectively. The biodiesel was blended with conventional diesel. The blend B-10 had values of 1320C and 960C for flash and cloud points, with Calorific value (or HHV) of 34.6 MJ/Kg (when estimated from its Flash point) and fat content, protein content, ash content, moisture content, fiber content and carbohydrate content values of 5%, 2.1%,10%, 5%, 15%, and 62.9% respectively.

Keywords: biodiesel, characterization, cow-tallow, cetane rating

Procedia PDF Downloads 537
359 Interaction of Glycolipid S-TGA-1 with Bacteriorhodopsin and Its Functional Role

Authors: Masataka Inada, Masanao Kinoshita, Nobuaki Matsumori

Abstract:

It has been demonstrated that lipid molecules in biological membranes are responsible for the functionalization and structuration of membrane proteins. However, it is still unclear how the interaction of lipid molecules with membrane proteins is correlated with the function of the membrane proteins. Here we first developed an evaluation method for the interaction between membrane proteins and lipid molecules via surface plasmon resonance (SPR) analysis. Bacteriorhodopsin (bR), which was obtained by the culture of halobacteria, was used as a membrane protein. We prepared SPR sensor chips covered with self-assembled monolayer containing mercaptocarboxylic acids, and immobilized bR onto them. Then, we evaluated the interactions with various lipids that have different structures. As a result, the halobacterium-specific glycolipid S-TGA-1 was found to have much higher affinity with bRs than other lipids. This is probably due to not only hydrophobic and electrostatic interactions but also hydrogen bonds with sugar moieties in the glycolipid. Next, we analyzed the roles of the lipid in the structuration and functionalization of bR. CD analysis showed that S-TGA-1 could promote trimerization of bR monomers more efficiently than any other lipids. Flash photolysis further indicated that bR trimers formed by S-TGA-1 reproduced the photocyclic activity of bR in purple membrane, halobacterium-membrane. These results suggest that S-TGA-1 promotes trimerization of bR through strong interactions and consequently fulfills the bR’s function efficiently.

Keywords: membrane protein, lipid, interaction, bacteriorhodopsin, glycolipid

Procedia PDF Downloads 253
358 Untargeted Small Metabolite Identification from Thermally Treated Tualang Honey

Authors: Lee Suan Chua

Abstract:

This study investigated the effects of thermal treatment on Tualang honey sample in terms of honey colour and heat-induced small metabolites. The heating process was carried out in a temperature controlled water batch at 90 °C for 4 hours. The honey samples were put in cylinder tubes with the dimension of 1 cm diameter and 10 cm length for homogenous heat transfer. The results found that the thermal treatment produced not only hydroxylmethylfurfural, but also other harmful substances such as phthalic anhydride and radiolytic byproducts. The degradation of honey protein was reported due to the detection of free amino acids such as cysteine and phenylalanine in heat-treated honey samples. Sugar dehydration also occurred because fragmented di-galactose was identified based on the presence of characteristic ions in the mass fragmentation pattern. The honey colour was found getting darker as the heating duration was increased up to 4 hours. Approximately, 60 mm PFund of increment was noticed for the honey colour with the colour change rate of 14.8 mm PFund per hour. Based on the principal component analysis, the chemical profile of Tualang honey was significantly altered after 2 hours of heating at 90 °C.

Keywords: honey colour, hydroxylmethylfurfural, thermal treatment, tualang honey

Procedia PDF Downloads 376
357 Physico-Chemical and Antibacterial Properties of Neem Extracts

Authors: C. C. Igwe

Abstract:

Several parts of Neem tree (Azadirachta indica) are used in traditional medicine in many West African countries for the treatment of various human diseases. The leaf, stem - bark and seed were air dried for 8, 5 and 7 days, respectively. The shells were carfully separated from the seeds, each powdered sample obtained with mechanical miller and 250 mm sieve. The neem samples were individually subjected to extraction with acetone, n-hexane for 48hr and 72 hr, respectively. Physico-chemical and antibacterial evaluation were carried out using standard methods. Results of physico - chemical analyses of the extracted oil from the seed shows that it has a brownish colour, with a smell similar to garlic while the moisture content, refractive index are 0.76% and 1.47 respectively. Other vital chemical results obtained from the neem oil such as saponification value (234.62), acid value (10.84 %), free fatty acid (5.84 %) and peroxide value (10.52%) indicated the oil extracted satisfied standard oils parameters for quality soap and cosmetics production. The antibacterial screening by disc diffusion revealed the oil demonstrated high activity against Staphylococcus aureus. Both the physio-chemical and antibacterial of samples have been certified by National Agency for Food and Drugs Administration and Control. The preliminary results of this study may validate the medicinal value of the plant. Further studies are in progress to clarify the in vivo potentials of neem extracts in the management of human communicable diseases and this is a subject of investigation in our group.

Keywords: anti-bacterial, neem extract, physico-chemical analyses, staphylococcus aureus

Procedia PDF Downloads 74
356 Molecular Cloning of CSP2s, PBP1 and PBP2 Genes of Rhyzopertha dominica

Authors: Suliman A. I. Ali, Mory Mandiana Diakite, Saqib Ali, Man-Qun Wang

Abstract:

Lesser grain borer, Rhyzopertha dominica, is a causing damages of stored grains all tropical and subtropical area in the global, according to the information of antenna cDNA library of R. dominica, three olfactory protein genes, including R.domica CSPs2, R.domica PBPs1, R.domica PBPs2 genes (GenBank accessions are KJ186798.1, KJ186830.1, KJ186831.1 separately.), were successfully cloned. For sequencing and phylogenetic analysis, R.domica CSPs1 and R.domica CSPs2 belonged to Minus-C CSPs showed that have 4 conserved cysteine residues, while R.domica PBPs1 and R.domica PBPs2 showed conserved amino acids in all PBPs six conserved cysteine residues. The results of transcription expression level of PBPs1 and PBPs2 of R. dominica showed that the expression level of R.domnica PBP2 is much higher than that of R.domnica PBP1. The variation transcription level at the different developmental time suggested the PBP1, and PBP2 had their particular job in searching food sources, mates and oviposition sites.

Keywords: Rhyzopertha dominica, CSPs, PBPs, molecular cloning

Procedia PDF Downloads 146
355 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment

Authors: Iryna P. Dzieciuch, Michael D. Putman

Abstract:

Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.

Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin

Procedia PDF Downloads 161
354 Effect of Preparation Temperature on Producing Graphene Oxide by Chemical Oxidation Approach

Authors: Rashad Al-Gaashani, Muataz A. Atieh

Abstract:

In this study, the effect of preparation temperature, namely room temperature (RT), 40, 60, and 85°C, on producing of high-quality graphene oxide (GO) has been investigated. GO samples have been prepared by chemical oxidation of graphite via a safe improved chemical technique using a blend of two deferent acids: sulphuric acid (H₂SO₄) and phosphoric acid (H₃PO₄) with volume ratio 4:1, respectively. potassium permanganate (KMnO₄) and hydrogen peroxide (H₂O₂) were applied as oxidizing agents. In this work, sodium nitrate (NaNO₃) was excluded, so the emission of hazardous explosive gases such as NO₂ and N₂O₂ was shunned. Ice and oil baths were used to carefully control the temperature. Several characterization instruments including X-Ray diffraction, transmission electron microscopy, scanning electron microscopy, electron dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-vis spectroscopy were used to study and compare the synthesized samples. The results indicated that GO can be prepared at RT with graphite oxide, and the purity of GO increased with rising of the solvent temperature. Optical properties of GO samples were studied using UV-vis absorption spectra.

Keywords: chemical method, graphite, graphene oxide, optical properties

Procedia PDF Downloads 163
353 Caecotrophy Behaviour of the Rabbits (Oryctolagus cuniculus)

Authors: Awadhesh Kishore

Abstract:

One of the most unique characteristics of rabbit feeding behaviour is caecotrophy, which involves the excretion and immediate consumption of specific faeces known as soft faeces. Caecotrophy in rabbits is the instinctual behaviour of eating soft faeces; reduced caecotrophy decreases rabbit growth and lipid synthesis in the liver. Caecotroph ingestion is highest when rabbits are fed a diet high in indigestible fibre. The colon produces two types of waste: hard and soft pellets. The hard pellets are expelled, but the soft pellets are re-ingested by the rabbit directly upon being expelled from the anus by twisting itself around and sucking in those pellets as they emerge from the anus. The type of alfalfa hay in the feed of the rabbits does not affect volatile fatty acid concentration, the pattern of fermentation, or pH in the faeces. The cecal content and the soft faeces contain significant amounts of retinoids and carotenoids, while in the tissues (blood, liver, and kidney), these pigments do not occur in substantial amounts. Preventing caecotrophy reduced growth and altered lipid metabolism, depressing the development of new approaches for rabbit feeding and production. Relative abundance is depressed for genes related to metabolic pathways such as vitamin C and sugar metabolism, vitamin B2 metabolism, and bile secretion. The key microorganisms that regulate the rapid growth performance of rabbits may provide useful references for future research and the development of microecological preparations.

Keywords: caecocolonic microorganisms, caecotrophy, fasting caecotrophy, rabbits, soft pellets

Procedia PDF Downloads 50
352 Manufacturing an Eminent Mucolytic Medicine Using an Efficient Synthesis Path

Authors: Farzaneh Ziaee, Mohammad Ziaee

Abstract:

N-acetyl-L-cysteine (NAC) is a well-known mucolytic agent, and recently its efficacy has been examined for the prevention and remediation of several diseases such as lung infections caused by Coronavirus. Also, it is administrated as the main antidote in paracetamol overdose and is effective for the treatment of idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD). This medicine is used as an antioxidant to prevent diabetic kidney disease (nephropathy). In this study, a method for the acylation of amino acids is employed to manufacture this drug in a height yield. Regarding this patented path, NAC can be made in a single batch step at ambient pressure and temperature. Moreover, this study offers a technique to make peptide bonds which is of interest for pharmaceutical and medicinal industries. The separation process was undertaken using appropriate solvents to achieve an excellent purification level. The synthesized drug was characterized via proton nuclear magnetic resonance (1H NMR), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and melting point.

Keywords: N-acetylcysteine, synthesis, mucolytic medication, lung anti-inflammatory, COVID-19, antioxidant, pharmaceutical supplement, characterization

Procedia PDF Downloads 191
351 Optimizing Cellulase Production from Municipal Solid Wastes (MSW) Following a Solid State Fermentation (SSF) by Trichoderma reesei and Aspergillus niger

Authors: Jwan J. Abdullah, Greetham Darren, Gregory A, Tucker, Chenyu Du

Abstract:

Solid-state fermentation (SSF) is an alternative to liquid fermentations for the production of commercially important products such as antibiotics, single cell proteins, enzymes, organic acids, or biofuels from lignocellulosic material. This paper describes the optimisation of SSF on municipal solid waste (MSW) for the production of cellulase enzyme. Production of cellulase enzymes was optimised by Trichoderma reesei or Aspergillus niger for temperature, moisture content, inoculation, and period of incubation. Also, presence of minerals, and alternative carbon and nitrogen sources. Optimisation revealed that production of cellulolytic enzymes was optimal when using Trichoderma spp at 30°C with an incubation period of 168 hours with a 60% moisture content. Crude enzymes produced from MSW, by Trichoderma were evaluated for the saccharification of MSW and compared with activity of a commercially available enzyme, results demonstrated that MSW can be used as inexpensive lignocellulosic material for the production of cellulase enzymes using Trichoderma reesei.

Keywords: SSF, enzyme hydrolysis, municipal solid waste (MSW), optimizing conditions, enzyme hydrolysis

Procedia PDF Downloads 555
350 Molecular Docking and Synthesis of Nitrogen-Containing Bisphosphonates

Authors: S. Ghalem, M. Mesmoudi, I. Daoudand, H. Allali

Abstract:

The nitrogen-containing bisphosphonates (N-BPs) are well established as the treatments of choice for disorders of excessive bone resorption, myeloma and bone metastases, and osteoporosis. They inhibit farnesyl pyrophosphate synthase (FFPS), a key enzyme in the mevalonate pathway, resulting in inhibition of the prenylation of small GTP-binding proteins in osteoclasts and disruption of their cytoskeleton, adhesion/spreading, and invasion of cancer cells. A very few examples for synthesis of α-amino bisphosphonates based on several amino acids are known from the literature. In the present work, esters of aminoacid react with ketophsophonate (or their analog acid or acyl) to afford the desired products, α-iminophosphonates. The reaction of imine with dimethyl phosphate in the presence of catalytic amount of I2 give ester of α-aminobisphosphonate as sole product in good yield. Finally, we used computational docking methods to predict how several α-aminobisphosphonates bind to FPPS and how R and X influence. Pamidronate, β-aminobisphosphonate already marketed, was used as reference. These results are of interest since they represent a new and simple way to sythesize α-aminobisphosphonates with a free COOH group increased by R2 functionalisable and opening up the possibility of using the molecular docking to facilitate the design of other, novel FFPS inhibitors.

Keywords: drug research, cancer, α-amino bisphosphonates, molecular docking

Procedia PDF Downloads 271
349 Lipidomic Profiling of Chlorella sp. and Scenedesmus abundans towards Deciphering Phospholipids and Glycolipids under Nitrogen Limited Condition

Authors: J. Singh, Swati Dubey, R. P. Singh

Abstract:

Microalgal strains can accumulate greatly enhanced levels of lipids under nitrogen-deficient condition, making these as one of the most promising sustainable sources for biofuel production. High-grade biofuel production from microalgal biomass could be facilitated by analysing the lipid content of the microalgae and enumerating its dynamics under varying nutrient conditions. In the present study, a detailed investigation of changes in lipid composition in Chlorella species and Scenedesmus abundans in response to nitrogen limited condition was performed to provide novel mechanistic insights into the lipidome during stress conditions. The mass spectroscopic approaches mainly LC-MS and GC-MS were employed for lipidomic profiling in both the microalgal strains. The analyses of lipid profiling using LC-MS revealed distinct forms of lipids mainly phospho- and glycolipids, including betaine lipids, and various other forms of lipids in both the microalgal strains. As detected, an overall decrease in polar lipids was observed. However, GC-MS analyses had revealed that the synthesis of the storage lipid i.e. triacylglycerol (TAG) was substantially stimulated in both the strains under nitrogen limited conditions. The changes observed in the overall fatty acid profile were primarily due to the decrease in proportion of polar lipids to TAGs. This study had enabled in analysing a detailed and orchestrated form of lipidomes in two different microalgal strains having potential for biodiesel production.

Keywords: biofuel, GC-MS, LC-MS, lipid, microalgae

Procedia PDF Downloads 370
348 Development of Functional Dandelion (Tarazacum officinale) Beverage Using Lactobacillus acidophilus F46 with Cinnamoyl Esterase Activity

Authors: Yong Geun Yun, Jong Hui kim, Sang Ho Baik

Abstract:

This study was carried out to develop a fermented dandelion (Tarazacum officinale) beverage using lactic acid bacteria with cinnamoyl esterase (CE) activity isolated from human feces. Lactic acid bacteria were screened based on bacterial survival ability in dandelion extract and CE activity. Dandelion extract fermented by Lactobacillus acidophilus F-46 (LA-F46) maintained approximately 105-106 log CFU/mL over an 8 days period. After fermented dandelion beverage (FDB) with LA-46 for 8 days at 37oC the pH was decreased from pH 7.0 to 3.5. Antioxidant activity by using DPPH radical scavenging activity of the prepared FDB was significantly increased compared to that of non-fermented dandelion beverage (NFDB). Moreover, CE activity was significantly enhanced during fermentation and showed the approximately 4.3 times increased concentration of caffeic acid up to 9.91 mg/100 mL after 8 days of incubation compared to NFDB. Therefore, it concluded that dandelion can be a good source for preparing a functional beverage and fermentation by LA-F46 enhanced the food functionality with enhanced caffeic acids.

Keywords: cinnamoyl esterase, dandelion, fermented beverage, lactic acid bacteria

Procedia PDF Downloads 405
347 A Greener Approach for the Recovery of Proteins from Meat Industries

Authors: Jesus Hernandez, Zead Elzoeiry, Md. S. Islam, Abel E. Navarro

Abstract:

The adsorption of bovine serum albumin (BSA) and human hemoglobin (Hb) on naturally-occurring adsorbents was studied to evaluate the potential recovery of proteins from meat industry residues. Spent peppermint tea (PM), powdered purple corn cob (PC), natural clay (NC) and chemically-modified clay (MC) were investigated to elucidate the effects of pH, adsorbent dose, initial protein concentration, presence of salts and heavy metals. Equilibrium data were fitted according to isotherm models, reporting a maximum adsorption capacity at pH 8 of 318 and 344 mg BSA/g of PM and NC, respectively. Moreover, Hb displayed maximum adsorption capacity at pH 5 of 125 and 143 mg/g of PM and PC, respectively. Hofmeister salt effect was only observed for PM/Hb system. Salts tend to decrease protein adsorption, and the presence of Cu(II) ions had negligible impacts on the adsorption onto NC and PC. Desorption experiments confirmed that more than 85% of both proteins can be recovered with diluted acids and bases. SEM, EDX, and TGA analyses demonstrated that the adsorbents have favorable morphological and mechanical properties. The long-term goal of this study aims to recover soluble proteins from industrial wastewaters to produce animal food or any protein-based product.

Keywords: adsorption, albumin, clay, hemoglobin, spent peppermint leaf

Procedia PDF Downloads 103
346 Gene Cloning and Expression of Azoreductases from Azo-Degraders Lysinibacillus macrolides and Bacillus coagulans Isolated from Egyptian Industrial Wastewater

Authors: Omaima A. Sharaf, Wafaa M. Abd El-Rahim, Hassan Moawad, Michael J. Sadowsky

Abstract:

Textile industry is one of the important industries in the worldwide. It is known that the eco-friendly industrial and agricultural activities are significant for socio-economic stability of all countries. The absence of appropriate industrial waste water treatments is essential barrier for sustainable development in food and agricultural sectors especially in developing country like Egypt. Thus, the development of enzymatic bioremediation technology for textile dye removal will enhance the collaboration between scientists who develop the technology and industry where this technology will be implemented towards the safe disposal of the textile dye wastes. Highly efficient microorganisms are of most importance in developing and using highly effective biological treatment processes. Bacterial degradation of azo dyes is generally initiated by an enzymatic step that involves cleavage of azo linkages, usually with the aid of an azoreductase as electron donor. Thus, expanding the spectrum of microorganisms with high enzymatic activities as azoreductases and discovering novel azo-dye degrading enzymes, with enhanced stability and superior catalytic properties, are necessary for many environmental and industrial applications. Consequently, the use of molecular tools has become increasingly integrated into the understanding of enzyme properties and characterization. Researchers have utilized a gene cloning and expression methods as a tool to produce recombinant protein for decolorizing dyes more efficiently. Thus, presumptive evidence for the presence of genes encoding azoreductases in the genomes of selected local, and most potent azo-degrading strains were obtained by using specific oligonucleotides primers. These potent strains have been isolated from textile industrial wastewater in Egypt and identified using 16S rRNA sequence analysis as 'Lysinibacillus macrolidesB8, Brevibacillus parabrevisB11, Bacillus coagulansB7, and B. cereusB5'. PCR products of two full length genes designated as (AZO1;621bp and AZO2;534bp) were detected. BLASTx results indicated that AZO1 gene was corresponding to predicted azoreductase from of Bacillus sp. ABP14, complete genome, multispecies azoreductase [Bacillus], It was submitted to the gene bank by an accession no., BankIt2085371 AZO1 MG923210 (621bp; 207 amino acids). AZO1 was generated from the DNA of our identified strains Lysinibacillus macrolidesB8. On the other hand, AZO2 gene was corresponding to a predicted azoreductase from Bacillus cereus strain S2-8. Gene bank accession no. was BankIt2085839 AZO2 MG932081 (534bp;178 amino acids) and it was amplified from our Bacillus coagulansB7. Both genes were successfully cloned into pCR2.1TOPO (Invitrogen) and in pET28b+ vectors, then they transformed into E. coli DH5α and BL21(DE3) cells for heterologous expression studies. Our recombinant azoreductases (AZO1&AZO2) exhibited potential enzyme activity and efficiently decolorized an azo dye (Direct violet). They exhibited pH stability between 6 and 8 with optimum temperature up to 60°C and 37 °C after induction by 1mM and 1.5mM IPTG, for both AZO1 &AZO2, respectively. These results suggested that further optimization and purification of these recombinant proteins by using different heterologous expression systems will give great potential for the sustainable utilization of these recombinant enzymes in several industrial applications especially in wastewater treatments.

Keywords: azoreductases, decolorization, enzyme activity, gene cloning and expression

Procedia PDF Downloads 129
345 Solid-State Luminescence of Fluorenone Grafted onto Cellulose Aldehyde Backbone Using Different Organic Amine Spacers

Authors: Isam M. Arafa, Mazin Y. Shatnawi, Yaser A. Yousef, Batool Zaid Al-Momani

Abstract:

The present work describes the preparation, characterization, and luminescence of a series of fluorenone (FL) based luminophores grafted onto modified cellulose microfibers. The FL is condensed onto cellulose aldehyde using three diamine spacers (H₂N-NH₂, H₂N(CH₂)₂NH₂ and H₂N(CH₂)₃NH₂) to afford Cell=Spacer=FL. The obtained products were characterized by spectroscopic (FT-IR, UV–Vis), thermal gravimetric analysis (TGA), and microscopic (Optical, SEM) techniques. The UV-Vis spectra of the FL=N(CH₂)ₓNH₂ (x = 0, 2, 3) moieties show that they are transparent in the 375- 800 nm region while they exhibit intense absorption band below 350 nm attributed to n-π* and π-π* transitions. The solid-state photoluminescence (PLs-s) of the cold-pressed pellets of the FL=N(CH₂)ₓNH₂ and Cell=Spacer=FL placed in a quartz cuvette show strong emission in the 500-550 nm region upon irradiation with Xe lamp light (λex = 320 nm). The PLs-s green emission of the grafted Cell=Spacer=FL was evaluated relative to that of the FL-based precursor. These grafted conjugated products have the potential to be used as analyte sensors for typical nitroaromatics/aromatic amines and be further extended to immunoassay studies for aromatic amino acids such as phenylalanine and histidine.

Keywords: luminescence, cellulose, fluorenone, grafting, solid state

Procedia PDF Downloads 72
344 Comparative Study for Biodiesel Production Using a Batch and a Semi-Continuous Flow Reactor

Authors: S. S. L. Andrade, E. A. Souza, L. C. L. Santos, C. Moraes, A. K. C. L. Lobato

Abstract:

Biodiesel may be produced through transesterification reaction (or alcoholysis), that is the transformation of a long chain fatty acid in an alkyl ester. This reaction can occur in the presence of acid catalysts, alkali, or enzyme. Currently, for industrial processes, biodiesel is produced by alkaline route. The alkali most commonly used in these processes is hydroxides and methoxides of sodium and potassium. In this work, biodiesel production was conducted in two different systems. The first consisted of a batch reactor operating with a traditional washing system and the second consisted of a semi-continuous flow reactor operating with a membrane separation system. Potassium hydroxides was used as catalyst at a concentration of 1% by weight, the molar ratio oil/alcohol was 1/9 and temperature of 55 °C. Tests were performed using soybeans and palm oil and the ester conversion results were compared for both systems. It can be seen that the results for both oils are similar when using the batch reator or the semi-continuous flow reactor. The use of the semi-continuous flow reactor allows the removal of the formed products. Thus, in the case of a reversible reaction, with the removal of reaction products, the concentration of the reagents becomes higher and the equilibrium reaction is shifted towards the formation of more products. The higher conversion to ester with soybean and palm oil using the batch reactor was approximately 98%. In contrast, it was observed a conversion of 99% when using the same operating condition on a semi-continuous flow reactor.

Keywords: biodiesel, batch reactor, semi-continuous flow reactor, transesterification

Procedia PDF Downloads 384
343 A Dynamic Model for Assessing the Advanced Glycation End Product Formation in Diabetes

Authors: Victor Arokia Doss, Kuberapandian Dharaniyambigai, K. Julia Rose Mary

Abstract:

Advanced Glycation End (AGE) products are the end products due to the reaction between excess reducing sugar present in diabetes and free amino group in protein lipids and nucleic acids. Thus, non-enzymic glycation of molecules such as hemoglobin, collagen, and other structurally and functionally important proteins add to the pathogenic complications such as diabetic retinopathy, neuropathy, nephropathy, vascular changes, atherosclerosis, Alzheimer's disease, rheumatoid arthritis, and chronic heart failure. The most common non-cross linking AGE, carboxymethyl lysine (CML) is formed by the oxidative breakdown of fructosyllysine, which is a product of glucose and lysine. CML is formed in a wide variety of tissues and is an index to assess the extent of glycoxidative damage. Thus we have constructed a mathematical and computational model that predicts the effect of temperature differences in vivo, on the formation of CML, which is now being considered as an important intracellular milieu. This hybrid model that had been tested for its parameter fitting and its sensitivity with available experimental data paves the way for designing novel laboratory experiments that would throw more light on the pathological formation of AGE adducts and in the pathophysiology of diabetic complications.

Keywords: advanced glycation end-products, CML, mathematical model, computational model

Procedia PDF Downloads 129
342 Determination and Qsar Modelling of Partitioning Coefficients for Some Xenobiotics in Soils and Sediments

Authors: Alaa El-Din Rezk

Abstract:

For organic xenobiotics, sorption to Aldrich humic acid is a key process controlling their mobility, bioavailability, toxicity and fate in the soil. Hydrophobic organic compounds possessing either acid or basic groups can be partially ionized (deprotonated or protonated) within the range of natural soil pH. For neutral and ionogenicxenobiotics including (neutral, acids and bases) sorption coefficients normalized to organic carbon content, Koc, have measured at different pH values. To this end, the batch equilibrium technique has been used, employing SPME combined with GC-MSD as an analytical tool. For most ionogenic compounds, sorption has been affected by both pH and pKa and can be explained through Henderson-Hasselbalch equation. The results demonstrate that when assessing the environmental fate of ionogenic compounds, their pKa and speciation under natural conditions should be taken into account. A new model has developed to predict the relationship between log Koc and pH with full statistical evaluation against other existing predictive models. Neutral solutes have displayed a good fit with the classical model using log Kow as log Koc predictor, whereas acidic and basic compounds have displayed a good fit with the LSER approach and the new proposed model. Measurement limitations of the Batch technique and SPME-GC-MSD have been found with ionic compounds.

Keywords: humic acid, log Koc, pH, pKa, SPME-GCMSD

Procedia PDF Downloads 263
341 Cloning and Expression of Azurin: A Protein Having Antitumor and Cell Penetrating Ability

Authors: Mohsina Akhter

Abstract:

Cancer has become a wide spread disease around the globe and takes many lives every year. Different treatments are being practiced but all have potential side effects with somewhat less specificity towards target sites. Pseudomonas aeruginosa is known to secrete a protein azurin with special anti-cancer function. It has unique cell penetrating peptide comprising of 18 amino acids that have ability to enter cancer cells specifically. Reported function of Azurin is to stabilize p53 inside the tumor cells and induces apoptosis through Bax mediated cytochrome c release from mitochondria. At laboratory scale, we have made recombinant azurin through cloning rpTZ57R/T-azu vector into E.coli strain DH-5α and subcloning rpET28-azu vector into E.coli BL21-CodonPlus (DE3). High expression was ensured with IPTG induction at different concentrations then optimized high expression level at 1mM concentration of IPTG for 5 hours. Purification has been done by using Ni+2 affinity chromatography. We have concluded that azurin can be a remarkable improvement in cancer therapeutics if it produces on a large scale. Azurin does not enter into the normal cells so it will prove a safe and secure treatment for patients and prevent them from hazardous anomalies.

Keywords: azurin, pseudomonas aeruginosa, cancer, therapeutics

Procedia PDF Downloads 311
340 Toxicity of Acacia nilotica ( Garad) to Nubian Goats

Authors: B. Medani Amna, M. A. Elbadwi Samia, E. Amin Ahmed

Abstract:

Variable plants present in nature are used by simple rural and urban people, researchers and drug manufacturers for medicinal purposes. Garad is one of the most commonly used in Sudan for both treatment and prophylaxis of infections in the respiratory, urinogenital tracts and the skin. Water exctracts from Acacia nilotica bods were used in this very experiment to test for their toxicity to Nubian goats at two dose rates under proper experimental conditions. The clinical, pathological, haematological and biological changes in Nubian goats given daily oral doses of 1 and 5 g/kg body weight of Acacia nilotica to two groups of test goats. The goats of the control group were undosed with Acacia nilotica.Other than the dose co-related mortality rates, the clinical signs were observed to be salivation, staggered gait, intermittent loss of voice and low appetite. On histopathological testing, the main lesions were hepatic centrolobular necrosis and fatty changes associated with the significant changes in GGT and ALP are indicating hepatic dysfunction.Renal malfunction is indicated by haemorrhages in addition to the change in the urea concentration. The congested, haemorrhagic, emphysematous, edematous and cyanotic lungs may contribute to the development of dyspnea. Acacia nilotica poisoning may lead to an immunosuppression pointed out by the lymphocyte infiltration. On evaluation of the above results, Acacia nilotica was considered toxic to Nubian goats at the above mentioned doses. Future work for Acacia nilotica was forwarded and practical implications of the result were highlighted.

Keywords: Acaia nilotica, toxicity data, Nubian goats, Garad

Procedia PDF Downloads 459
339 Functional Relevance of Flavanones and Other Plant Products in the Remedy of Parkinson's Disease

Authors: Himanshi Allahabadi

Abstract:

Plants have found a widespread use in medicine traditionally, including the treatment of cognitive disorders, especially, neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In terms of indigenous medicine, it has been found that many potential drugs can be isolated from plant products, including those for dementia. Plant product is widely distributed in plant kingdom and forms a major antioxidant source in the human diet, is Polyphenols. There are four important groups of polyphenols: phenolic acids, flavonoids, stilbenes, and lignans. Due to their high antioxidant capacity, interest in their study has greatly increased. There are several methods for discovering and characterizing active compounds isolated from plant sources, now available. The results obtained so far seem fulfilling, but additionally, mechanism of functioning of polyphenols at the molecular level, as well as their application in human health need to be researched upon. Also, even though the neuroprotective effects of flavonoids have been much talked about, much of the data in support of this statement has come from animal studies rather than human studies. This review is based on a multi-faceted study of medicinal plants, i.e. phytochemicals, with special focus on flavanones and their relevance in remedy of Parkinson's disease.

Keywords: dementia, parkinson's disease, flavanones, polyphenols, substantia nigra

Procedia PDF Downloads 307