Search results for: market data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27362

Search results for: market data

26672 Identifying Effective Strategies to Promote Vietnamese Fashion Brands in an Internationally Dominated Market

Authors: Lam Hong Lan, Gabor Sarlos

Abstract:

It is hard to search for best practices in promotion for local fashion brands in Vietnam as the industry is still very young. Local fashion start-ups have grown quickly in the last five years, thanks in part to the internet and social media. However, local designer/owners can face a huge challenge when competing with international brands in the Vietnamese market – and few local case studies are available for guidance. In response, this paper studied how local small- to medium-sized enterprises (SMEs) promote to their target customers in order to compete with international brands. Knowledge of both successful and unsuccessful approaches generated by this study is intended to both contribute to the academic literature on local fashion in Vietnam as well as to help local designers to learn from and improve their brand-building strategy. The primary study featured qualitative data collection via semi-structured depth interviews. Transcription and data analysis were conducted manually in order to identify success factors that local brands should consider as part of their promotion strategy. Purposive sampling of SMEs identified five designers in Ho Chi Minh City (the biggest city in Vietnam) and three designers in Hanoi (the second biggest) as interviewees. Participant attributes included: born in the 1980s or 1990s; familiar with internet and social media; designer/owner of a successful local fashion brand in the key middle market and/or mass market segments (which are crucial to the growth of local brands). A secondary study was conducted using social listening software to gather further qualitative data on what were considered to be successful or unsuccessful approaches to local fashion brand promotion on social media. Both the primary and secondary studies indicated that local designers had maximized their promotion budget by using owned media and earned media instead of paid media. Findings from the qualitative interviews indicate that internet and social media have been used as effective promotion platforms by local fashion start-ups. Facebook and Instagram were the most popular social networks used by the SMEs interviewed, and these social platforms were believed to offer a more affordable promotional strategy than traditional media such as TV and/or print advertising. Online stores were considered an important factor in helping the SMEs to reach customers beyond the physical store. Furthermore, a successful online store allowed some SMEs to reduce their business rental costs by maintaining their physical store in a cheaper, less central city area as opposed to a more traditional city center store location. In addition, the small comparative size of the SMEs allowed them to be more attentive to their customers, leading to higher customer satisfaction and rate of return. In conclusion, this study found that these kinds of cost savings helped the SMEs interviewed to focus their scarce resources on producing unique, high-quality collections in order to differentiate themselves from international brands. Facebook and Instagram were the main platforms used for promotion and brand-building. The main challenge to this promotion strategy identified by the SMEs interviewed was to continue to find innovative ways to maximize the impact of a limited marketing budget.

Keywords: Vietnam, SMEs, fashion brands, promotion, marketing, social listening

Procedia PDF Downloads 125
26671 From Ride-Hailing App to Diversified and Sustainable Platform Business Model

Authors: Ridwan Dewayanto Rusli

Abstract:

We show how prisoner's dilemma-type competition problems can be mitigated through rapid platform diversification and ecosystem expansion. We analyze a ride-hailing company in Southeast Asia, Gojek, whose network grew to more than 170 million users comprising consumers, partner drivers, merchants, and complementors within a few years and has already achieved higher contribution margins than ride-hailing peers Uber and Lyft. Its ecosystem integrates ride-hailing, food delivery and logistics, merchant solutions, e-commerce, marketplace and advertising, payments, and fintech offerings. The company continues growing its network of complementors and App developers, expanding content and gaining critical mass in consumer data analytics and advertising. We compare the company's growth and diversification trajectory with those of its main international rivals and peers. The company's rapid growth and future potential are analyzed using Cusumano's (2012) Staying Power and Six Principles, Hax and Wilde's (2003) and Hax's (2010) The Delta Model as well as Santos' (2016) home-market advantages frameworks. The recently announced multi-billion-dollar merger with one of Southeast Asia's largest e-commerce majors lends additional support to the above arguments.

Keywords: ride-hailing, prisoner's dilemma, platform and ecosystem strategy, digital applications, diversification, home market advantages, e-commerce

Procedia PDF Downloads 94
26670 Interactive IoT-Blockchain System for Big Data Processing

Authors: Abdallah Al-ZoubI, Mamoun Dmour

Abstract:

The spectrum of IoT devices is becoming widely diversified, entering almost all possible fields and finding applications in industry, health, finance, logistics, education, to name a few. The IoT active endpoint sensors and devices exceeded the 12 billion mark in 2021 and are expected to reach 27 billion in 2025, with over $34 billion in total market value. This sheer rise in numbers and use of IoT devices bring with it considerable concerns regarding data storage, analysis, manipulation and protection. IoT Blockchain-based systems have recently been proposed as a decentralized solution for large-scale data storage and protection. COVID-19 has actually accelerated the desire to utilize IoT devices as it impacted both demand and supply and significantly affected several regions due to logistic reasons such as supply chain interruptions, shortage of shipping containers and port congestion. An IoT-blockchain system is proposed to handle big data generated by a distributed network of sensors and controllers in an interactive manner. The system is designed using the Ethereum platform, which utilizes smart contracts, programmed in solidity to execute and manage data generated by IoT sensors and devices. such as Raspberry Pi 4, Rasbpian, and add-on hardware security modules. The proposed system will run a number of applications hosted by a local machine used to validate transactions. It then sends data to the rest of the network through InterPlanetary File System (IPFS) and Ethereum Swarm, forming a closed IoT ecosystem run by blockchain where a number of distributed IoT devices can communicate and interact, thus forming a closed, controlled environment. A prototype has been deployed with three IoT handling units distributed over a wide geographical space in order to examine its feasibility, performance and costs. Initial results indicated that big IoT data retrieval and storage is feasible and interactivity is possible, provided that certain conditions of cost, speed and thorough put are met.

Keywords: IoT devices, blockchain, Ethereum, big data

Procedia PDF Downloads 150
26669 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers

Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice

Abstract:

In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.

Keywords: churn prediction, data mining, decision-theoretic rough set, feature selection

Procedia PDF Downloads 446
26668 The School-to-Work Transition: The Case of NEET Youths from Rural Areas

Authors: Anđelka Stojanović, Ivan Mihajlović, Ivica Nikolić

Abstract:

In the past years, due to the financial crisis and the tightening of conditions on the labor market, young people are facing great challenges in achieving financial independence and finding their place in society. Higher unemployment rates, poorer living conditions, separation from the labor market, and longer school-to-work transitions particularly affect rural youth and make significant differences between youth groups in rural and urban areas. Improving employability skills and development of instruments for further learning among young people “Not in Education, Employment, or Training” (NEET) should not be only the concerns of these people, already adequately be directed and supported by the institutions. According to the World Bank data, the share of youth not in education, employment or training (NEET), in the European Union in the past few years decreases but still shows a significant share in the total percentage of the youth population. In 2017 rate was 10.96% while in 2018 that value was 10.38%. When observing individual countries in Europe, especially those with lower incomes, this rate is much higher. It was concluded that this topic was not sufficiently elaborated and presented in the social and scientific environment. Therefore, the aim of this paper is to identify and systematize the problems of school-to-work transition among young NEETs living in rural areas as well as the initiatives for addressing their problems.

Keywords: NEET youth, risks and initiatives, rural youth, school-to-work transition

Procedia PDF Downloads 114
26667 Downside Risk Analysis of the Nigerian Stock Market: A Value at Risk Approach

Authors: Godwin Chigozie Okpara

Abstract:

This paper using standard GARCH, EGARCH, and TARCH models on day of the week return series (of 246 days) from the Nigerian Stock market estimated the model variants’ VaR. An asymmetric return distribution and fat-tail phenomenon in financial time series were considered by estimating the models with normal, student t and generalized error distributions. The analysis based on Akaike Information Criterion suggests that the EGARCH model with student t innovation distribution can furnish more accurate estimate of VaR. In the light of this, we apply the likelihood ratio tests of proportional failure rates to VaR derived from EGARCH model in order to determine the short and long positions VaR performances. The result shows that as alpha ranges from 0.05 to 0.005 for short positions, the failure rate significantly exceeds the prescribed quintiles while it however shows no significant difference between the failure rate and the prescribed quantiles for long positions. This suggests that investors and portfolio managers in the Nigeria stock market have long trading position or can buy assets with concern on when the asset prices will fall. Precisely, the VaR estimates for the long position range from -4.7% for 95 percent confidence level to -10.3% for 99.5 percent confidence level.

Keywords: downside risk, value-at-risk, failure rate, kupiec LR tests, GARCH models

Procedia PDF Downloads 443
26666 Real Estate Trend Prediction with Artificial Intelligence Techniques

Authors: Sophia Liang Zhou

Abstract:

For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.

Keywords: linear regression, random forest, artificial neural network, real estate price prediction

Procedia PDF Downloads 103
26665 Filtering Momentum Life Cycles, Price Acceleration Signals and Trend Reversals for Stocks, Credit Derivatives and Bonds

Authors: Periklis Brakatsoulas

Abstract:

Recent empirical research shows a growing interest in investment decision-making under market anomalies that contradict the rational paradigm. Momentum is undoubtedly one of the most robust anomalies in the empirical asset pricing research and remains surprisingly lucrative ever since first documented. Although predominantly phenomena identified across equities, momentum premia are now evident across various asset classes. Yet few many attempts are made so far to provide traders a diversified portfolio of strategies across different assets and markets. Moreover, literature focuses on patterns from past returns rather than mechanisms to signal future price directions prior to momentum runs. The aim of this paper is to develop a diversified portfolio approach to price distortion signals using daily position data on stocks, credit derivatives, and bonds. An algorithm allocates assets periodically, and new investment tactics take over upon price momentum signals and across different ranking groups. We focus on momentum life cycles, trend reversals, and price acceleration signals. The main effort here concentrates on the density, time span and maturity of momentum phenomena to identify consistent patterns over time and measure the predictive power of buy-sell signals generated by these anomalies. To tackle this, we propose a two-stage modelling process. First, we generate forecasts on core macroeconomic drivers. Secondly, satellite models generate market risk forecasts using the core driver projections generated at the first stage as input. Moreover, using a combination of the ARFIMA and FIGARCH models, we examine the dependence of consecutive observations across time and portfolio assets since long memory behavior in volatilities of one market appears to trigger persistent volatility patterns across other markets. We believe that this is the first work that employs evidence of volatility transmissions among derivatives, equities, and bonds to identify momentum life cycle patterns.

Keywords: forecasting, long memory, momentum, returns

Procedia PDF Downloads 102
26664 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: mining big data, big data, machine learning, telecommunication

Procedia PDF Downloads 410
26663 Factors Influencing the Use of Mobile Phone by Smallholder Farmers in Vegetable Marketing in Fogera District

Authors: Molla Tadesse Lakew

Abstract:

This study was intended to identify the factors influencing the use of mobile phones in vegetable marketing in Fogera district. The use of mobile phones in vegetable marketing and factors influencing mobile phone use were specific objectives of the study. Three kebeles from the Fogera district were selected purposively based on their vegetable production potential. A simple random sampling technique (lottery method) was used to select 153 vegetable producer farmers. Interview schedule and key informants interviews were used to collect primary data. For analyzing the data, descriptive statistics like frequency and percentage, two independent t-tests, and chi-square were used. Furthermore, econometric analysis (binary logistic model) was used to assess the factors influencing mobile phone use for vegetable market information. Contingency coefficient and variance inflation factor were used to check multicollinearity problems between the independent variables. Of 153 respondents, 82 (61.72%) were mobile phone users, while 71 (38.28 %) were mobile phone nonusers. Moreover, the main use of mobile phones in vegetable marketing includes communicating at a distance to save time and minimizing transport costs, getting vegetable marketing price information, identifying markets and buyers to sell the vegetable, deciding when to sell the vegetable, negotiating with buyers for better vegetable prices and for searching of the fast market to avoid from losing of product through perishing. The model result indicated that the level of education, size of land, income, access to credit, and age were significant variables affecting the use of mobile phones in vegetable marketing. It could be recommended to encourage adult education or give training for farmers on how to operate mobile phones and create awareness for the elderly rural farmers as they are able to use the mobile phone for their vegetable marketing. Moreover, farmers should be aware that mobile phones are very important for those who own very small land to get maximum returns from their production. Lastly, providing access to credit and improving and diversifying income sources for the farmers to have mobile phones were recommended to improve the livelihood of farmers.

Keywords: mobile phone, farmers, vegetable marketing, Fogera District

Procedia PDF Downloads 73
26662 A Study of Different Factors Influencing Youngsters’ Mobile Device Buying Behaviors in Malaysia

Authors: Z. S. Yip, T. K. Tan, C. C. Geh, T. T. Ting

Abstract:

The mobile phone is an indispensable device in today’s daily living. The arising new brands in the market with different specification are targeting at the different population. The most promising market would be the younger generation who are IT savvy. Therefore, it is beneficial to find out their factors of consideration in purchasing a mobile phone. A survey is carried out in Malaysia to discover the current youngster’s mobile phone buying behavior. This study has found that the most influencing factor of consideration is Price, followed by Feature, and Battery Lifespan. Gender and Income have no relationship with certain factors of consideration. It is important to discover the factors of consideration in order to provide industry insight into the current trend of smartphone in Malaysia.

Keywords: buying behavior, smart phone, mobile brand, mobile operating system, specification, battery lifespan

Procedia PDF Downloads 355
26661 Hydrothermal Energy Application Technology Using Dam Deep Water

Authors: Yooseo Pang, Jongwoong Choi, Yong Cho, Yongchae Jeong

Abstract:

Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system.

Keywords: hydrothermal energy, HVAC, internet data center, free-cooling

Procedia PDF Downloads 81
26660 Bank Competition: On the Relationship with Revenue Diversification and Funding Strategy from Selected ASEAN Countries

Authors: Oktofa Y. Sudrajad, Didier V. Caillie

Abstract:

Association of Southeast Asian Countries Nations (ASEAN) is moving forward to the next level of regional integration by the initiation of ASEAN Economic Community (AEC) which is already started in 2015, 8 years after its declaration for the creation of AEC in 2007. This commitment imposes financial integration in the region is one of the main agenda which will be achieved until 2025. Therefore, the commitment to financial integration including banking integration will bring new landscape in the competition and business model in this region. This study investigates the effect of competition on bank business model using a sample of 324 banks from seven members of Association of Southeast Asian Nations (ASEAN) countries (Cambodia, Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam). We use market power approach and Boone indicator as competition measures, while income diversification and bank funding strategies are employed as bank business model representation. Moreover, we also evaluate bank business model based by grouping the banks based on the main banking characteristics. We use unbalanced bank-specific annual panel data over the period of 2003 – 2015. Our empirical analysis shows that the banking industries in ASEAN countries adapt their business model by increasing non-interest income proportion due to the level of competition increase in the sector.

Keywords: bank business model, banking competition, Boone indicator, market power

Procedia PDF Downloads 226
26659 Corporate Philanthropy as a Source of Competitive Advantage

Authors: Mateusz Rak

Abstract:

Objective: The paper aims to present various sources of competitive advantage which may occur when an enterprise strategically applies its concept of corporate philanthropy. Methodology: The review of the literature and available reports on the research regarding corporate philanthropy. Results: Strategic philanthropy is a positive phenomenon. Unfortunately, enterprises in Poland do not see all positive sides of such activities yet. Three kinds of corporate philanthropy may be described. They are to fulfil a social duty, improve the company reputation and gain a competitive edge. Practical implications: Showing enterprises the advantages of taking philanthropic actions, in particular, a large role of strategic philanthropy in gaining a competitive edge in the market as well as how to avoid negative consequences of corporate philanthropy. The paper presents corporate philanthropy on a few layers: as a CSR element, actions generating values in products, actions improving a corporate image in the market, altruist actions of employees.

Keywords: corporate philanthropy, corporate social responsibility, corporate foundations, CSR

Procedia PDF Downloads 251
26658 Consumers’ Preferences and Willingness to Pay for Tomato Attributes: Evidence from Pakistan

Authors: Jahangir Khan, Syed Attaullah Shah, Aditya R. Khanal

Abstract:

Vegetables are the most important component of a healthy diet; among them, tomatoes are the most purchased and consumed vegetable. Fresh and processed tomatoes are widely consumed in Pakistan and are regarded as premium products. Consumers have unique preferences regarding food choices when buying products in the market. This research paper investigates how consumers assess tomatoes and their willingness to pay for various tomato attributes while making food choices. Information on consumers’ behavior regarding food choices was collected from 1200 respondents through face-to-face interviews using a choice experiment design and an econometric evaluation of the random utility model. The data was gathered from three diverse climatic zones: Northern, Central, and Southern. The study examined consumers' WTP for tomato attributes such as production method, packaging, and variety type. The empirical results confirmed that respondents preferred organic tomatoes and were willing to pay a 65% price premium compared to the conventional method. Additionally, consumers were also willing to pay a 56% price premium for hybrid variety compared to local variety. Results of the research indicated that consumers were willing to pay a premium of 23% for labeled packaging. The findings of this research study provide useful information to stakeholders in the tomato supply chain to better align their products with consumers' preferences, ultimately enhancing market growth and consumers’ satisfaction.

Keywords: choice experiment, consumers’ behavior, tomato attributes, willingness to pay

Procedia PDF Downloads 13
26657 Climate Related Financial Risk on Automobile Industry and the Impact to the Financial Institutions

Authors: Mahalakshmi Vivekanandan S.

Abstract:

As per the recent changes happening in the global policies, climate-related changes and the impact it causes across every sector are viewed as green swan events – in essence, climate-related changes can often happen and lead to risk and a lot of uncertainty, but needs to be mitigated instead of considering them as black swan events. This brings about a question on how this risk can be computed so that the financial institutions can plan to mitigate it. Climate-related changes impact all risk types – credit risk, market risk, operational risk, liquidity risk, reputational risk and other risk types. And the models required to compute this has to consider the different industrial needs of the counterparty, as well as the factors that are contributing to this – be it in the form of different risk drivers, or the different transmission channels or the different approaches and the granular form of data availability. This brings out the suggestion that the climate-related changes, though it affects Pillar I risks, will be a Pillar II risk. This has to be modeled specifically based on the financial institution’s actual exposure to different industries instead of generalizing the risk charge. And this will have to be considered as the additional capital to be met by the financial institution in addition to their Pillar I risks, as well as the existing Pillar II risks. In this paper, the author presents a risk assessment framework to model and assess climate change risks - for both credit and market risks. This framework helps in assessing the different scenarios and how the different transition risks affect the risk associated with the different parties. This research paper delves into the topic of the increase in the concentration of greenhouse gases that in turn cause global warming. It then considers the various scenarios of having the different risk drivers impacting the Credit and market risk of an institution by understanding the transmission channels and also considering the transition risk. The paper then focuses on the industry that’s fast seeing a disruption: the automobile industry. The paper uses the framework to show how the climate changes and the change to the relevant policies have impacted the entire financial institution. Appropriate statistical models for forecasting, anomaly detection and scenario modeling are built to demonstrate how the framework can be used by the relevant agencies to understand their financial risks. The paper also focuses on the climate risk calculation for the Pillar II Capital calculations and how it will make sense for the bank to maintain this in addition to their regular Pillar I and Pillar II capital.

Keywords: capital calculation, climate risk, credit risk, pillar ii risk, scenario modeling

Procedia PDF Downloads 140
26656 Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products

Authors: Maciej Jedrzejczyk, Karolina Marzantowicz

Abstract:

Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.

Keywords: autonomous agents, Distributed computing, distributed ledger technologies, large scale systems, micro grids, peer-to-peer networks, Self-organization, self-stabilization, smart grids

Procedia PDF Downloads 300
26655 A Breakthrough Improvement Brought by Taxi-Calling APPs for Taxi Operation Level

Authors: Yuan-Lin Liu, Ye Li, Tian Xia

Abstract:

Taxi-calling APPs have been used widely, while brought both benefits and a variety of issues for the taxi market. Many countries do not know whether the benefits are remarkable than the issues or not. This paper established a comparison between the basic scenario (2009-2012) and a taxi-calling software usage scenario (2012-2015) to explain the impact of taxi-calling APPs. The impacts of taxi-calling APPs illustrated by the comparison results are: 1) The supply and demand distribution is more balanced, extending from the city center to the suburb. The availability of taxi service has been improved in low density areas, thin market attribute has also been improved; 2)The ratio of short distance taxi trip decreased, long distance service increased, the utilization of mileage increased, and the rate of empty decreased; 3) The popularity of taxi-calling APPs was able to reduce the average empty distance, cruise time, empty mileage rate and average times of loading passengers, can also enhance the average operating speed, improve the taxi operating level, and reduce social cost although there are some disadvantages. This paper argues that the taxi industry and government can establish an integrated third-party credit information platform based on credit evaluated by the data of the drivers’ driving behaviors to supervise the drivers. Taxi-calling APPs under fully covered supervision in the mobile Internet environment will become a new trend.

Keywords: taxi, taxi-calling APPs, credit, scenario comparison

Procedia PDF Downloads 254
26654 Accounting Knowledge Management and Value Creation of SME in Chatuchak Market: Case Study Ceramics Product

Authors: Runglaksamee Rodkam

Abstract:

The purpose of this research was to study the influence of accountants’ potential performance on their working process, a case study of Government Savings Banks in the northeast of Thailand. The independent variables included accounting knowledge, accounting skill, accounting value, accounting ethics, and accounting attitude, while the dependent variable included the success of the working process. A total of 155 accountants working for Government Savings Banks were selected by random sampling. A questionnaire was used as a tool for collecting data. Descriptive statistics in this research included percentage, mean, and multiple regression analyses. The findings revealed that the majority of accountants were female with an age between 35-40 years old. Most of the respondents had an undergraduate degree with ten years of experience. Moreover, the factors of accounting knowledge, accounting skill, accounting a value and accounting ethics and accounting attitude were rated at a high level. The findings from regression analysis of observation data revealed a causal relationship in that the observation data could explain at least 51 percent of the success in the accountants’ working process.

Keywords: influence, potential performance, success, working process

Procedia PDF Downloads 256
26653 Trace Metals in Natural Bottled Water on Montenegrin Market and Comaparison with Tap Water in Podgorica

Authors: Katarina Živković, Ivana Joksimović

Abstract:

Many different chemicals may occur in drinking water and cause significant human health risks after prolonged periods of exposure. In particular concern are contaminants that have cumulative toxic properties, such as heavy metals. This investigation was done to clarify concerns about chemical quality and safety of drinking tap water in Podgorica. For comparison, all available natural bottled water on Montenegrin market were bought. All samples (bottled water and tap water from Podgorica) were analyzed using ICP –OES on contents of Al, Cd, Pb, Cu, Zn,Cr, Fe, As and Mn. All results compared with the maximum concentration levels allowed by international standards and World Health Organization (WHO) guidelines. The results of analysis showed that all trace of heavy metals were very low and in same time below MCL according to WHO and International standard.

Keywords: inductively coupled plasma - optical emission spectrometry (ICP-OES), Montenegro (Podgorica), natural bottled water, tap water , trace of heavy metal

Procedia PDF Downloads 455
26652 Optimizing Organizational Performance: The Critical Role of Headcount Budgeting in Strategic Alignment and Financial Stability

Authors: Shobhit Mittal

Abstract:

Headcount budgeting stands as a pivotal element in organizational financial management, extending beyond traditional budgeting to encompass strategic resource allocation for workforce-related expenses. This process is integral to maintaining financial stability and fostering a productive workforce, requiring a comprehensive analysis of factors such as market trends, business growth projections, and evolving workforce skill requirements. It demands a collaborative approach, primarily involving Human Resources (HR) and finance departments, to align workforce planning with an organization's financial capabilities and strategic objectives. The dynamic nature of headcount budgeting necessitates continuous monitoring and adjustment in response to economic fluctuations, business strategy shifts, technological advancements, and market dynamics. Its significance in talent management is also highlighted, aligning financial planning with talent acquisition and retention strategies to ensure a competitive edge in the market. The consequences of incorrect headcount budgeting are explored, showing how it can lead to financial strain, operational inefficiencies, and hindered strategic objectives. Examining case studies like IBM's strategic workforce rebalancing and Microsoft's shift for long-term success, the importance of aligning headcount budgeting with organizational goals is underscored. These examples illustrate that effective headcount budgeting transcends its role as a financial tool, emerging as a strategic element crucial for an organization's success. This necessitates continuous refinement and adaptation to align with evolving business goals and market conditions, highlighting its role as a key driver in organizational success and sustainability.

Keywords: strategic planning, fiscal budget, headcount planning, resource allocation, financial management, decision-making, operational efficiency, risk management, headcount budget

Procedia PDF Downloads 50
26651 The Guideline of Overall Competitive Advantage Promotion with Key Success Paths

Authors: M. F. Wu, F. T. Cheng, C. S. Wu, M. C. Tan

Abstract:

It is a critical time to upgrade technology and increase value added with manufacturing skills developing and management strategies that will highly satisfy the customers need in the precision machinery global market. In recent years, the supply side, each precision machinery manufacturers in each country are facing the pressures of price reducing from the demand side voices that pushes the high-end precision machinery manufacturers adopts low-cost and high-quality strategy to retrieve the market. Because of the trend of the global market, the manufacturers must take price reducing strategies and upgrade technology of low-end machinery for differentiations to consolidate the market. By using six key success factors (KSFs), customer perceived value, customer satisfaction, customer service, product design, product effectiveness and machine structure quality are causal conditions to explore the impact of competitive advantage of the enterprise, such as overall profitability and product pricing power. This research uses key success paths (KSPs) approach and f/s QCA software to explore various combinations of causal relationships, so as to fully understand the performance level of KSFs and business objectives in order to achieve competitive advantage. In this study, the combination of a causal relationships, are called Key Success Paths (KSPs). The key success paths guide the enterprise to achieve the specific outcomes of business. The findings of this study indicate that there are thirteen KSPs to achieve the overall profitability, sixteen KSPs to achieve the product pricing power and seventeen KSPs to achieve both overall profitability and pricing power of the enterprise. The KSPs provide the directions of resources integration and allocation, improve utilization efficiency of limited resources to realize the continuous vision of the enterprise.

Keywords: precision machinery industry, key success factors (KSFs), key success paths (KSPs), overall profitability, product pricing power, competitive advantages

Procedia PDF Downloads 267
26650 Assessment of the Egyptian Agricultural Foreign Trade with Common Market for Eastern and Southern Africa Countries

Authors: Doaa H. I. Mahmoud, El-Said M. Elsharkawy, Saad Z. Soliman, Soher E. Mustfa

Abstract:

The opening of new promising foreign markets is one of the objectives of Egypt’s foreign trade policies, especially for agricultural exports. This study aims at the examination of the commodity structure of the Egyptian agricultural imports and exports with the COMESA countries. In addition, estimation of the surplus/deficit of the Egyptian commodities and agricultural balance with these countries is made. Time series data covering the period 2004-2016 is used. Estimation of the growth function along with the derivation of the annual growth rates of the study’s variables is made. Some of the results of the study period display the following: (1) The average total Egyptian exports to the COMESA (Common Market for Eastern and Southern Africa) countries is estimated at 1,491 million dollars, with an annual growth rate of 14.4% (214.7 million dollars). (2) The average annual Egyptian agricultural exports to these economies is estimated at 555 million dollars, with an annual growth rate of 19.4% (107.7 million dollars). (3) The average annual value of agricultural imports from the COMESA countries is set at 289 Million Dollars, with an annual growth rate of 14.4% (41.6 million dollars). (4) The study shows that there is a continuous surplus in the agricultural balance with these economies, whilst having a deficit in the raw-materials agricultural balance, as well as the balance of input requirements with these countries.

Keywords: COMESA, Egypt, growth rates, trade balance

Procedia PDF Downloads 209
26649 JavaScript Object Notation Data against eXtensible Markup Language Data in Software Applications a Software Testing Approach

Authors: Theertha Chandroth

Abstract:

This paper presents a comparative study on how to check JSON (JavaScript Object Notation) data against XML (eXtensible Markup Language) data from a software testing point of view. JSON and XML are widely used data interchange formats, each with its unique syntax and structure. The objective is to explore various techniques and methodologies for validating comparison and integration between JSON data to XML and vice versa. By understanding the process of checking JSON data against XML data, testers, developers and data practitioners can ensure accurate data representation, seamless data interchange, and effective data validation.

Keywords: XML, JSON, data comparison, integration testing, Python, SQL

Procedia PDF Downloads 140
26648 A Game-Theory-Based Price-Optimization Algorithm for the Simulation of Markets Using Agent-Based Modelling

Authors: Juan Manuel Sanchez-Cartas, Gonzalo Leon

Abstract:

A price competition algorithm for ABMs based on game theory principles is proposed to deal with the simulation of theoretical market models. The algorithm is applied to the classical Hotelling’s model and to a two-sided market model to show it leads to the optimal behavior predicted by theoretical models. However, when theoretical models fail to predict the equilibrium, the algorithm is capable of reaching a feasible outcome. Results highlight that the algorithm can be implemented in other simulation models to guarantee rational users and endogenous optimal behaviors. Also, it can be applied as a tool of verification given that is theoretically based.

Keywords: agent-based models, algorithmic game theory, multi-sided markets, price optimization

Procedia PDF Downloads 456
26647 Integrating Carbon Footprint into Supply Chain Management of Manufacturing Companies: Sri Lanka

Authors: Shirekha Layangani, Suneth Dharmaparakrama

Abstract:

When the manufacturing industry is concerned the Environment Management System (EMS) is a common term. Currently most organizations have obtained the environmental standard certification, ISO 14001. In the Sri Lankan context even though the organizations adopt Environmental Management, a very limited number of companies tend to calculate their Carbon Footprints. This research discusses the demotivating factors of manufacturing organizations in Sri Lanka to integrate calculation of carbon footprint into their supply chains. Further it also identifies the benefits that manufacturing organizations can gain by implementing calculation of carbon footprint. The manufacturing companies listed under “ISO 14001” certification were considered in this study in order to investigate the problems mentioned above. 100% enumeration was used when the surveys were carried out. In order to gather essential data two surveys were designed to be done among manufacturing organizations that are currently engaged in calculating their carbon footprint and the organizations that have not. The survey among the first set of manufacturing organizations revealed the benefits the organizations were able to gain by implementing calculation of carbon footprint. The latter set organizations revealed the demotivating factors that have influenced not to integrate calculation of carbon footprint into their supply chains. This paper has summarized the results obtained by the surveys and segregated depending on the market share of the manufacturing organizations. Further it has indicated the benefits that can be obtained by implementing carbon footprint calculation, depending on the market share of the manufacturing entity. Finally the research gives suggestions to manufacturing organizations on applicability of adopting carbon footprint calculation depending on the benefits that can be obtained.

Keywords: carbon footprint, environmental management systems (EMS), benefits of carbon footprint, ISO14001

Procedia PDF Downloads 374
26646 Using Machine Learning Techniques to Extract Useful Information from Dark Data

Authors: Nigar Hussain

Abstract:

It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.

Keywords: big data, dark data, machine learning, heatmap, random forest

Procedia PDF Downloads 28
26645 Opportunities for Reducing Post-Harvest Losses of Cactus Pear (Opuntia Ficus-Indica) to Improve Small-Holder Farmers Income in Eastern Tigray, Northern Ethiopia: Value Chain Approach

Authors: Meron Zenaselase Rata, Euridice Leyequien Abarca

Abstract:

The production of major crops in Northern Ethiopia, especially the Tigray Region, is at subsistence level due to drought, erratic rainfall, and poor soil fertility. Since cactus pear is a drought-resistant plant, it is considered as a lifesaver fruit and a strategy for poverty reduction in a drought-affected area of the region. Despite its contribution to household income and food security in the area, the cactus pear sub-sector is experiencing many constraints with limited attention given to its post-harvest loss management. Therefore, this research was carried out to identify opportunities for reducing post-harvest losses and recommend possible strategies to reduce post-harvest losses, thereby improving production and smallholder’s income. Both probability and non-probability sampling techniques were employed to collect the data. Ganta Afeshum district was selected from Eastern Tigray, and two peasant associations (Buket and Golea) were also selected from the district purposively for being potential in cactus pear production. Simple random sampling techniques were employed to survey 30 households from each of the two peasant associations, and a semi-structured questionnaire was used as a tool for data collection. Moreover, in this research 2 collectors, 2 wholesalers, 1 processor, 3 retailers, 2 consumers were interviewed; and two focus group discussion was also done with 14 key farmers using semi-structured checklist; and key informant interview with governmental and non-governmental organizations were interviewed to gather more information about the cactus pear production, post-harvest losses, the strategies used to reduce the post-harvest losses and suggestions to improve the post-harvest management. To enter and analyze the quantitative data, SPSS version 20 was used, whereas MS-word were used to transcribe the qualitative data. The data were presented using frequency and descriptive tables and graphs. The data analysis was also done using a chain map, correlations, stakeholder matrix, and gross margin. Mean comparisons like ANOVA and t-test between variables were used. The analysis result shows that the present cactus pear value chain involves main actors and supporters. However, there is inadequate information flow and informal market linkages among actors in the cactus pear value chain. The farmer's gross margin is higher when they sell to the processor than sell to collectors. The significant postharvest loss in the cactus pear value chain is at the producer level, followed by wholesalers and retailers. The maximum and minimum volume of post-harvest losses at the producer level is 4212 and 240 kgs per season. The post-harvest loss was caused by limited farmers skill on-farm management and harvesting, low market price, limited market information, absence of producer organization, poor post-harvest handling, absence of cold storage, absence of collection centers, poor infrastructure, inadequate credit access, using traditional transportation system, absence of quality control, illegal traders, inadequate research and extension services and using inappropriate packaging material. Therefore, some of the recommendations were providing adequate practical training, forming producer organizations, and constructing collection centers.

Keywords: cactus pear, post-harvest losses, profit margin, value-chain

Procedia PDF Downloads 130
26644 Data Collection in Protected Agriculture for Subsequent Big Data Analysis: Methodological Evaluation in Venezuela

Authors: Maria Antonieta Erna Castillo Holly

Abstract:

During the last decade, data analysis, strategic decision making, and the use of artificial intelligence (AI) tools in Latin American agriculture have been a challenge. In some countries, the availability, quality, and reliability of historical data, in addition to the current data recording methodology in the field, makes it difficult to use information systems, complete data analysis, and their support for making the right strategic decisions. This is something essential in Agriculture 4.0. where the increase in the global demand for fresh agricultural products of tropical origin, during all the seasons of the year requires a change in the production model and greater agility in the responses to the consumer market demands of quality, quantity, traceability, and sustainability –that means extensive data-. Having quality information available and updated in real-time on what, how much, how, when, where, at what cost, and the compliance with production quality standards represents the greatest challenge for sustainable and profitable agriculture in the region. The objective of this work is to present a methodological proposal for the collection of georeferenced data from the protected agriculture sector, specifically in production units (UP) with tall structures (Greenhouses), initially for Venezuela, taking the state of Mérida as the geographical framework, and horticultural products as target crops. The document presents some background information and explains the methodology and tools used in the 3 phases of the work: diagnosis, data collection, and analysis. As a result, an evaluation of the process is carried out, relevant data and dashboards are displayed, and the first satellite maps integrated with layers of information in a geographic information system are presented. Finally, some improvement proposals and tentatively recommended applications are added to the process, understanding that their objective is to provide better qualified and traceable georeferenced data for subsequent analysis of the information and more agile and accurate strategic decision making. One of the main points of this study is the lack of quality data treatment in the Latin America area and especially in the Caribbean basin, being one of the most important points how to manage the lack of complete official data. The methodology has been tested with horticultural products, but it can be extended to other tropical crops.

Keywords: greenhouses, protected agriculture, data analysis, geographic information systems, Venezuela

Procedia PDF Downloads 131
26643 Employment of Persons with Disabilities in Georgia: Challenges and Perspectives

Authors: Tamar Makharadze, Anastasia Kitiashvili, Irine Zhvania, Tamar Abashidze

Abstract:

After ratification of UN Convention on the Rights of Persons with Disabilities (UN CRPD) by the Parliament of Georgia in 2013, ensuring equal access to education and employment for people with disabilities has become one of the priorities of the government. The current research has analyzed the attitudes of people with disabilities, employers and society towards various challenges that employment of persons with disabilities faces in Georgia. The study has been carried out in the capital city and three towns in West and East Georgia. Both quantitative and qualitative research methods have been used. Employers’ attitudes have been studied by analyzing research data from six focus groups and 12 in-depth interviews. Views of persons with disabilities have been analyzed relied on data from eight focus groups and 14 in-depth interviews. The quantitative study covered 490 surveyed respondents from four cities in Georgia. The research was carried out with the employees of companies selected based on the Simple Random Sample; in each company, based on the size of the company 7–10 employees were surveyed. A survey was conducted using a specially developed structured questionnaire. Data analysis was carried out using SPSS (21.0). The research was carried out during June-August 2015. The research data shows that both qualitative and quantitative research participants view employment of persons with disabilities positively; however persons with severe intellectual disabilities and mental problems are viewed as less workable and desired at workplaces. The respondents support the idea of employment of persons with disabilities at an open labour market; at the same time idea of a development of sheltered workshops is also supported. The vast majority of research participants believe that employers should be rather encouraged to hire persons with disabilities than force them to do so. For employers it is important to have the state assistance in adjusting working place to the needs of employee with disabilities. Some tax benefits for employers having employees with disabilities also are seen as encouraging employment of persons with disabilities. Both employers and persons with disabilities believe that development of job coaching will help persons with disabilities to find and maintain a job at the open market. Majority of survey respondents think that the main reasons discouraging employment of persons with disabilities in Georgia are: poor socioeconomic background and high level of unemployment in the country, absence of related state programs and existed stigma towards persons with disabilities within the society. To conclude it can be said that both employers and persons with disabilities expect initiative from the government – development of the programs and services focusing on employment of persons with disabilities that will be rather encouraging and supporting than punishing and forcing. Relied on survey data it can be said that people have positive attitudes to see persons with disabilities at workplaces, educational institutions and public places. This creates a good background for extensive and consistent work towards social inclusion of persons with disabilities in Georgia.

Keywords: supported employment, job coaching, employment of persons with disabilities in Georgia, social inclusion

Procedia PDF Downloads 354