Search results for: data mining techniques
29136 The Reduction of Post-Blast Fumes to Improve Productivity and Safety: A Review Paper
Authors: Nhleko Monique Chiloane
Abstract:
The gold mining industry has predominantly used ammonium nitrate fuel oil (ANFO) explosives for decades, although these are known to be “gassier” and their detonation results in toxic fumes, for example, carbon monoxide (CO), nitrogen oxides (NOx) and ammonia. Re-entry into underground workings too soon after blasting can lead to fatal exposure to toxic fumes. It is, therefore, required that the polluted air be removed from the affected areas within a reasonable period before employees' re-entry into the working area. Post-blast re-entry times have therefore been described as a productivity bottleneck. The known causes of post-blast fumes are water ingress, incorrect fuel to oxygen ratio, confinement, explosive additives etc. To prevent or minimize post-blast fumes, some researchers have used neutralization, re-burning technique and non-explosive products or different oxidizing agents. The use of commercial explosives without nitrate oxidizing agents can also minimize the production of blasting fumes and thereby reduce the time needed for the clearance of these fumes to allow workers to re-enter the underground workings safely. The reduction in non-production time directly contributes to an increase in the available time per shift for productive work, thus leading to continuous mining. However, owing to its low cost and ease of use, ANFO is still widely used in South African underground blasting operations.Keywords: post-blast fumes, continuous mining, ammonium nitrate explosive, non-explosive blasting, re-entry period
Procedia PDF Downloads 18329135 Vertical Electrical Sounding and Seismic Refraction Techniques in Resolving Groundwater Problems at Kujama Prison Farm, Kaduna, Nigeria
Authors: M. D. Dogara, C. G, Afuwai, O. O. Esther, A. M. Dawai
Abstract:
For two decades, the inhabitants of Kujama Prison Farm faced problems of water for domestic and agricultural purposes, even after the drilling of three deep boreholes. The scarcity of this groundwater resource led to the geophysical investigation of the basement complex of the prison farm. Two geophysical techniques, vertical electrical sounding and seismic refraction methods were deployed to unravel the cause(s) of the non-productivity of the three boreholes. The area of investigation covered was 400,000 m2 of ten profiles with six investigative points. In all, 60 vertical electrical points were sounded, and sixty sets of seismic refraction data were collected using the forward and reverse approach. From the geoelectric sections, it is suggestive that the area is underlain by three to five geoelectric layers of varying thicknesses and resistivities. The result of the interpreted seismic data revealed two geovelocity layers, with velocities ranging between 478m/s to 1666m/s for the first layer and 1166m/s to 7141m/s for the second layer. From the combined results of the two techniques, it was suggestive that all the three unproductive boreholes were drilled at points that were neither weathered nor fractured. It was, therefore, suggested that new boreholes should be drilled at areas identified with depressed bedrock topography having geophysical evidence of intense weathering and fracturing within the fresh basement.Keywords: groundwater, Kujama prison farm, kaduna, nigeria, seismic refraction, vertical electrical sounding
Procedia PDF Downloads 15629134 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 5329133 An Efficient Approach for Speed up Non-Negative Matrix Factorization for High Dimensional Data
Authors: Bharat Singh Om Prakash Vyas
Abstract:
Now a day’s applications deal with High Dimensional Data have tremendously used in the popular areas. To tackle with such kind of data various approached has been developed by researchers in the last few decades. To tackle with such kind of data various approached has been developed by researchers in the last few decades. One of the problems with the NMF approaches, its randomized valued could not provide absolute optimization in limited iteration, but having local optimization. Due to this, we have proposed a new approach that considers the initial values of the decomposition to tackle the issues of computationally expensive. We have devised an algorithm for initializing the values of the decomposed matrix based on the PSO (Particle Swarm Optimization). Through the experimental result, we will show the proposed method converse very fast in comparison to other row rank approximation like simple NMF multiplicative, and ACLS techniques.Keywords: ALS, NMF, high dimensional data, RMSE
Procedia PDF Downloads 34229132 Improvement of Microstructure, Wear and Mechanical Properties of Modified G38NiCrMo8-4-4 Steel Used in Mining Industry
Authors: Mustafa Col, Funda Gul Koc, Merve Yangaz, Eylem Subasi, Can Akbasoglu
Abstract:
G38NiCrMo8-4-4 steel is widely used in mining industries, machine parts, gears due to its high strength and toughness properties. In this study, microstructure, wear and mechanical properties of G38NiCrMo8-4-4 steel modified with boron used in the mining industry were investigated. For this purpose, cast materials were alloyed by melting in an induction furnace to include boron with the rates of 0 ppm, 15 ppm, and 50 ppm (wt.) and were formed in the dimensions of 150x200x150 mm by casting into the sand mould. Homogenization heat treatment was applied to the specimens at 1150˚C for 7 hours. Then all specimens were austenitized at 930˚C for 1 hour, quenched in the polymer solution and tempered at 650˚C for 1 hour. Microstructures of the specimens were investigated by using light microscope and SEM to determine the effect of boron and heat treatment conditions. Changes in microstructure properties and material hardness were obtained due to increasing boron content and heat treatment conditions after microstructure investigations and hardness tests. Wear tests were carried out using a pin-on-disc tribometer under dry sliding conditions. Charpy V notch impact test was performed to determine the toughness properties of the specimens. Fracture and worn surfaces were investigated with scanning electron microscope (SEM). The results show that boron element has a positive effect on the hardness and wear properties of G38NiCrMo8-4-4 steel.Keywords: G38NiCrMo8-4-4 steel, boron, heat treatment, microstructure, wear, mechanical properties
Procedia PDF Downloads 19529131 Impact of Coal Mining on River Sediment Quality in the Sydney Basin, Australia
Authors: A. Ali, V. Strezov, P. Davies, I. Wright, T. Kan
Abstract:
The environmental impacts arising from mining activities affect the air, water, and soil quality. Impacts may result in unexpected and adverse environmental outcomes. This study reports on the impact of coal production on sediment in Sydney region of Australia. The sediment samples upstream and downstream from the discharge points from three mines were taken, and 80 parameters were tested. The results were assessed against sediment quality based on presence of metals. The study revealed the increment of metal content in the sediment downstream of the reference locations. In many cases, the sediment was above the Australia and New Zealand Environment Conservation Council and international sediment quality guidelines value (SQGV). The major outliers to the guidelines were nickel (Ni) and zinc (Zn).Keywords: coal mine, environmental impact, produced water, sediment quality guidelines value (SQGV)
Procedia PDF Downloads 30429130 A Methodology for Developing New Technology Ideas to Avoid Patent Infringement: F-Term Based Patent Analysis
Authors: Kisik Song, Sungjoo Lee
Abstract:
With the growing importance of intangible assets recently, the impact of patent infringement on the business of a company has become more evident. Accordingly, it is essential for firms to estimate the risk of patent infringement risk before developing a technology and create new technology ideas to avoid the risk. Recognizing the needs, several attempts have been made to help develop new technology opportunities and most of them have focused on identifying emerging vacant technologies from patent analysis. In these studies, the IPC (International Patent Classification) system or keywords from text-mining application to patent documents was generally used to define vacant technologies. Unlike those studies, this study adopted F-term, which classifies patent documents according to the technical features of the inventions described in them. Since the technical features are analyzed by various perspectives by F-term, F-term provides more detailed information about technologies compared to IPC while more systematic information compared to keywords. Therefore, if well utilized, it can be a useful guideline to create a new technology idea. Recognizing the potential of F-term, this paper aims to suggest a novel approach to developing new technology ideas to avoid patent infringement based on F-term. For this purpose, we firstly collected data about F-term and then applied text-mining to the descriptions about classification criteria and attributes. From the text-mining results, we could identify other technologies with similar technical features of the existing one, the patented technology. Finally, we compare the technologies and extract the technical features that are commonly used in other technologies but have not been used in the existing one. These features are presented in terms of “purpose”, “function”, “structure”, “material”, “method”, “processing and operation procedure” and “control means” and so are useful for creating new technology ideas that help avoid infringing patent rights of other companies. Theoretically, this is one of the earliest attempts to adopt F-term to patent analysis; the proposed methodology can show how to best take advantage of F-term with the wealth of technical information. In practice, the proposed methodology can be valuable in the ideation process for successful product and service innovation without infringing the patents of other companies.Keywords: patent infringement, new technology ideas, patent analysis, F-term
Procedia PDF Downloads 26929129 The Impact of Mining Activities on the Surface Water Quality: A Case Study of the Kaap River in Barberton, Mpumalanga
Authors: M. F. Mamabolo
Abstract:
Mining activities are identified as the most significant source of heavy metal contamination in river basins, due to inadequate disposal of mining waste thus resulting in acid mine drainage. Waste materials generated from gold mining and processing have severe and widespread impacts on water resources. Therefore, a total of 30 water samples were collected from Fig Tree Creek, Kaapriver, Sheba mine stream & Sauid kaap river to investigate the impact of gold mines on the Kaap River system. Physicochemical parameters (pH, EC and TDS) were taken using a BANTE 900P portable water quality meter. The concentration of Fe, Cu, Co, and SO₄²⁻ in water samples were analysed using Inductively Coupled Plasma-Mass spectrophotometry (ICP-MS) at 0.01 mg/L. The results were compared to the regulatory guideline of the World Health Organization (WHO) and the South Africa National Standards (SANS). It was found that Fe, Cu and Co were below the guideline values while SO₄²⁻ detected in Sheba mine stream exceeded the 250 mg/L limit for both seasons, attributed by mine wastewater. SO₄²⁻ was higher in wet season due to high evaporation rates and greater interaction between rocks and water. The pH of all the streams was within the limit (≥5 to ≤9.7), however EC of the Sheba mine stream, Suid Kaap River & where the tributary connects with the Fig Tree Creek exceeded 1700 uS/m, due to dissolved material. The TDS of Sheba mine stream exceeded 1000 mg/L, attributed by high SO₄²⁻ concentration. While the tributary connecting to the Fig Tree Creek exceed the value due to pollution from household waste, runoff from agriculture etc. In conclusion, the water from all sampled streams were safe for consumption due to low concentrations of physicochemical parameters. However, elevated concentration of SO₄²⁻ should be monitored and managed to avoid water quality deterioration in the Kaap River system.Keywords: Kaap river system, mines, heavy metals, sulphate
Procedia PDF Downloads 8129128 Unsupervised Domain Adaptive Text Retrieval with Query Generation
Authors: Rui Yin, Haojie Wang, Xun Li
Abstract:
Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.Keywords: dense retrieval, query generation, unsupervised training, text retrieval
Procedia PDF Downloads 7329127 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 6529126 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification
Authors: Anita Kushwaha
Abstract:
We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining
Procedia PDF Downloads 27229125 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads
Authors: Gaurav Kumar Sinha
Abstract:
In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies
Procedia PDF Downloads 6729124 Design and Development of a Computerized Medical Record System for Hospitals in Remote Areas
Authors: Grace Omowunmi Soyebi
Abstract:
A computerized medical record system is a collection of medical information about a person that is stored on a computer. One principal problem of most hospitals in rural areas is using the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This data mining application is to be designed using a structured system analysis and design method which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the design and implementation of a computerized medical record system. This computerized system will replace the file management system and help to quickly retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.Keywords: programming, data, software development, innovation
Procedia PDF Downloads 8729123 Statistical Analysis to Select Evacuation Route
Authors: Zaky Musyarof, Dwi Yono Sutarto, Dwima Rindy Atika, R. B. Fajriya Hakim
Abstract:
Each country should be responsible for the safety of people, especially responsible for the safety of people living in disaster-prone areas. One of those services is provides evacuation route for them. But all this time, the selection of evacuation route is seem doesn’t well organized, it could be seen that when a disaster happen, there will be many accumulation of people on the steps of evacuation route. That condition is dangerous to people because hampers evacuation process. By some methods in Statistical analysis, author tries to give a suggestion how to prepare evacuation route which is organized and based on people habit. Those methods are association rules, sequential pattern mining, hierarchical cluster analysis and fuzzy logic.Keywords: association rules, sequential pattern mining, cluster analysis, fuzzy logic, evacuation route
Procedia PDF Downloads 50429122 Soil Properties and Yam Performance as Influenced by Poultry Manure and Tillage on an Alfisol in Southwestern Nigeria
Authors: E. O. Adeleye
Abstract:
Field experiments were conducted to investigate the effect of soil tillage techniques and poultry manure application on the soil properties and yam (Dioscorea rotundata) performance in Ondo, southwestern Nigeria for two farming seasons. Five soil tillage techniques, namely ploughing (P), ploughing plus harrowing (PH), manual ridging (MR), manual heaping (MH) and zero-tillage (ZT) each combined with and without poultry manure at the rate of 10 tha-1 were investigated. Data were obtained on soil properties, nutrient uptake, growth and yield of yam. Soil moisture content, bulk density, total porosity and post harvest soil chemical characteristics were significantly (p>0.05) influenced by soil tillage-manure treatments. Addition of poultry manure to the tillage techniques in the study increased soil total porosity, soil moisture content and reduced soil bulk density. Poultry manure improved soil organic matter, total nitrogen, available phosphorous, exchangeable Ca, k, leaf nutrients content of yam, yam growth and tuber yield relative to tillage techniques plots without poultry manure application. It is concluded that the possible deleterious effect of tillage on soil properties, growth and yield of yam on an alfisol in southwestern Nigeria can be reduced by combining tillage with poultry manure.Keywords: poultry manure, tillage, soil chemical properties, yield
Procedia PDF Downloads 44629121 Anthropogenic Impact on Migration Process of River Yamuna in Delhi-NCR Using Geospatial Techniques
Authors: Mohd Asim, K. Nageswara Rao
Abstract:
The present work was carried out on River Yamuna passing through Delhi- National Capital Region (Delhi-NCR) of India for a stretch of about 130 km to assess the anthropogenic impact on the channel migration process for a period of 200 years with the help of satellite data and topographical maps with integration of geographic information system environment. Digital Shoreline Analysis System (DSAS) application was used to quantify river channel migration in ArcGIS environment. The average river channel migration was calculated to be 22.8 m/year for the entire study area. River channel migration was found to be moving in westward and eastward direction. Westward migration is more than 4 km maximum in length and eastward migration is about 4.19 km. The river has migrated a total of 32.26 sq. km of area. The results reveal that the river is being impacted by various human activities. The impact indicators include engineering structures, sand mining, embankments, urbanization, land use/land cover, canal network. The DSAS application was also used to predict the position of river channel in future for 2032 and 2042 by analyzing the past and present rate and direction of movement. The length of channel in 2032 and 2042 will be 132.5 and 141.6 km respectively. The channel will migrate maximum after crossing Okhla Barrage near Faridabad for about 3.84 sq. km from 2022 to 2042 from west to east.Keywords: river migration, remote sensing, river Yamuna, anthropogenic impacts, DSAS, Delhi-NCR
Procedia PDF Downloads 12429120 Language Errors Used in “The Space between Us” Movie and Their Effects on Translation Quality: Translation Study toward Discourse Analysis Approach
Authors: Mochamad Nuruz Zaman, Mangatur Rudolf Nababan, M. A. Djatmika
Abstract:
Both society and education areas teach to have good communication for building the interpersonal skills up. Everyone has the capacity to understand something new, either well comprehension or worst understanding. Worst understanding makes the language errors when the interactions are done by someone in the first meeting, and they do not know before it because of distance area. “The Space between Us” movie delivers the love-adventure story between Mars Boy and Earth Girl. They are so many missing conversations because of the different climate and environment. As the moviegoer also must be focused on the subtitle in order to enjoy well the movie. Furthermore, Indonesia subtitle and English conversation on the movie still have overlapping understanding in the translation. Translation hereby consists of source language -SL- (English conversation) and target language -TL- (Indonesia subtitle). These research gap above is formulated in research question by how the language errors happened in that movie and their effects on translation quality which is deepest analyzed by translation study toward discourse analysis approach. The research goal is to expand the language errors and their translation qualities in order to create a good atmosphere in movie media. The research is studied by embedded research in qualitative design. The research locations consist of setting, participant, and event as focused determined boundary. Sources of datum are “The Space between Us” movie and informant (translation quality rater). The sampling is criterion-based sampling (purposive sampling). Data collection techniques use content analysis and questioner. Data validation applies data source and method triangulation. Data analysis delivers domain, taxonomy, componential, and cultural theme analysis. Data findings on the language errors happened in the movie are referential, register, society, textual, receptive, expressive, individual, group, analogical, transfer, local, and global errors. Data discussions on their effects to translation quality are concentrated by translation techniques on their data findings; they are amplification, borrowing, description, discursive creation, established equivalent, generalization, literal, modulation, particularization, reduction, substitution, and transposition.Keywords: discourse analysis, language errors, The Space between Us movie, translation techniques, translation quality instruments
Procedia PDF Downloads 21929119 Design and Construction Validation of Pile Performance through High Strain Pile Dynamic Tests for both Contiguous Flight Auger and Drilled Displacement Piles
Authors: S. Pirrello
Abstract:
Sydney’s booming real estate market has pushed property developers to invest in historically “no-go” areas, which were previously too expensive to develop. These areas are usually near rivers where the sites are underlain by deep alluvial and estuarine sediments. In these ground conditions, conventional bored pile techniques are often not competitive. Contiguous Flight Auger (CFA) and Drilled Displacement (DD) Piles techniques are on the other hand suitable for these ground conditions. This paper deals with the design and construction challenges encountered with these piling techniques for a series of high-rise towers in Sydney’s West. The advantages of DD over CFA piles such as reduced overall spoil with substantial cost savings and achievable rock sockets in medium strength bedrock are discussed. Design performances were assessed with PIGLET. Pile performances are validated in two stages, during constructions with the interpretation of real-time data from the piling rigs’ on-board computer data, and after construction with analyses of results from high strain pile dynamic testing (PDA). Results are then presented and discussed. High Strain testing data are presented as Case Pile Wave Analysis Program (CAPWAP) analyses.Keywords: contiguous flight auger (CFA) , DEFPIG, case pile wave analysis program (CAPWAP), drilled displacement piles (DD), pile dynamic testing (PDA), PIGLET, PLAXIS, repute, pile performance
Procedia PDF Downloads 28229118 Data Transformations in Data Envelopment Analysis
Authors: Mansour Mohammadpour
Abstract:
Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.Keywords: data transformation, data envelopment analysis, undesirable data, negative data
Procedia PDF Downloads 2029117 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm
Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn
Abstract:
Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.Keywords: binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct
Procedia PDF Downloads 22529116 Seasonal Variation of the Impact of Mining Activities on Ga-Selati River in Limpopo Province, South Africa
Authors: Joshua N. Edokpayi, John O. Odiyo, Patience P. Shikwambana
Abstract:
Water is a very rare natural resource in South Africa. Ga-Selati River is used for both domestic and industrial purposes. This study was carried out in order to assess the quality of Ga-Selati River in a mining area of Limpopo Province-Phalaborwa. The pH, Electrical Conductivity (EC) and Total Dissolved Solids (TDS) were determined using a Crinson multimeter while turbidity was measured using a Labcon Turbidimeter. The concentrations of Al, Ca, Cd, Cr, Fe, K, Mg, Mn, Na and Pb were analysed in triplicate using a Varian 520 flame atomic absorption spectrometer (AAS) supplied by PerkinElmer, after acid digestion with nitric acid in a fume cupboard. The average pH of the river from eight different sampling sites was 8.00 and 9.38 in wet and dry season respectively. Higher EC values were determined in the dry season (138.7 mS/m) than in the wet season (96.93 mS/m). Similarly, TDS values were higher in dry (929.29 mg/L) than in the wet season (640.72 mg/L) season. These values exceeded the recommended guideline of South Africa Department of Water Affairs and Forestry (DWAF) for domestic water use (70 mS/m) and that of the World Health Organization (WHO) (600 mS/m), respectively. Turbidity varied between 1.78-5.20 and 0.95-2.37 NTU in both wet and dry seasons. Total hardness of 312.50 mg/L and 297.75 mg/L as the concentration of CaCO3 was computed for the river in both the wet and the dry seasons and the river water was categorised as very hard. Mean concentration of the metals studied in both the wet and the dry seasons are: Na (94.06 mg/L and 196.3 mg/L), K (11.79 mg/L and 13.62 mg/L), Ca (45.60 mg/L and 41.30 mg/L), Mg (48.41 mg/L and 44.71 mg/L), Al (0.31 mg/L and 0.38 mg/L), Cd (0.01 mg/L and 0.01 mg/L), Cr (0.02 mg/L and 0.09 mg/L), Pb (0.05 mg/L and 0.06 mg/L), Mn (0.31 mg/L and 0.11 mg/L) and Fe (0.76 mg/L and 0.69 mg/L). Results from this study reveal that most of the metals were present in concentrations higher than the recommended guidelines of DWAF and WHO for domestic use and the protection of aquatic life.Keywords: contamination, mining activities, surface water, trace metals
Procedia PDF Downloads 31729115 Design and Simulation of an Inter-Satellite Optical Wireless Communication System Using Diversity Techniques
Authors: Sridhar Rapuru, D. Mallikarjunreddy, Rajanarendra Sai
Abstract:
In this reign of the internet, the access of any multimedia file to the users at any time with a superior quality is needed. To achieve this goal, it is very important to have a good network without any interruptions between the satellites along with various earth stations. For that purpose, a high speed inter-satellite optical wireless communication system (IsOWC) is designed with space and polarization diversity techniques. IsOWC offers a high bandwidth, small size, less power requirement and affordable when compared with the present microwave satellite systems. To improve the efficiency and to reduce the propagation delay, inter-satellite link is established between the satellites. High accurate tracking systems are required to establish the reliable connection between the satellites as they have their own orbits. The only disadvantage of this IsOWC system is laser beam width is narrower than the RF because of this highly accurate tracking system to meet this requirement. The satellite uses the 'ephemerides data' for rough pointing and tracking system for fine pointing to the other satellite. In this proposed IsOWC system, laser light is used as a wireless connectedness between the source and destination and free space acts as the channel to carry the message. The proposed system will be designed, simulated and analyzed for 6000km with an improvement of data rate over previously existing systems. The performance parameters of the system are Q-factor, eye opening, bit error rate, etc., The proposed system for Inter-satellite Optical Wireless Communication System Design Using Diversity Techniques finds huge scope of applications in future generation communication purposes.Keywords: inter-satellite optical wireless system, space and polarization diversity techniques, line of sight, bit error rate, Q-factor
Procedia PDF Downloads 26929114 Variants of Mathematical Induction as Strong Proof Techniques in Theory of Computing
Authors: Ahmed Tarek, Ahmed Alveed
Abstract:
In the theory of computing, there are a wide variety of direct and indirect proof techniques. However, mathematical induction (MI) stands out to be one of the most powerful proof techniques for proving hypotheses, theorems, and new results. There are variations of mathematical induction-based proof techniques, which are broadly classified into three categories, such as structural induction (SI), weak induction (WI), and strong induction (SI). In this expository paper, several different variants of the mathematical induction techniques are explored, and the specific scenarios are discussed where a specific induction technique stands out to be more advantageous as compared to other induction strategies. Also, the essential difference among the variants of mathematical induction are explored. The points of separation among mathematical induction, recursion, and logical deduction are precisely analyzed, and the relationship among variations of recurrence relations, and mathematical induction are being explored. In this context, the application of recurrence relations, and mathematical inductions are considered together in a single framework for codewords over a given alphabet.Keywords: alphabet, codeword, deduction, mathematical, induction, recurrence relation, strong induction, structural induction, weak induction
Procedia PDF Downloads 16429113 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors
Authors: Duc V. Nguyen
Abstract:
Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest benet based on their requirements. These are the key requirements of a robust prognostics and health management system.Keywords: fault detection, FFT, induction motor, predictive maintenance
Procedia PDF Downloads 17029112 Digital Image Forensics: Discovering the History of Digital Images
Authors: Gurinder Singh, Kulbir Singh
Abstract:
Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques.Keywords: Computer Forensics, Multimedia Forensics, Image Ballistics, Camera Source Identification, Forgery Detection
Procedia PDF Downloads 24729111 Secret Sharing in Visual Cryptography Using NVSS and Data Hiding Techniques
Authors: Misha Alexander, S. B. Waykar
Abstract:
Visual Cryptography is a special unbreakable encryption technique that transforms the secret image into random noisy pixels. These shares are transmitted over the network and because of its noisy texture it attracts the hackers. To address this issue a Natural Visual Secret Sharing Scheme (NVSS) was introduced that uses natural shares either in digital or printed form to generate the noisy secret share. This scheme greatly reduces the transmission risk but causes distortion in the retrieved secret image through variation in settings and properties of digital devices used to capture the natural image during encryption / decryption phase. This paper proposes a new NVSS scheme that extracts the secret key from randomly selected unaltered multiple natural images. To further improve the security of the shares data hiding techniques such as Steganography and Alpha channel watermarking are proposed.Keywords: decryption, encryption, natural visual secret sharing, natural images, noisy share, pixel swapping
Procedia PDF Downloads 40429110 Changes in Student Definition of De-Escalation in Professional Peace Officer Education
Authors: Pat Nelson
Abstract:
Since the release of the 21st century policing report in the United States, the techniques of de-escalation have received a lot of attention and focus in political systems, policy changes, and the media. The challenge in professional peace officer education is that there is a vast range of defining de-escalation and understanding the various techniques involved, many of which are based on popular media. This research surveyed professional peace officer education university students on their definition of de-escalation and the techniques associated with de-escalation before specific communications coursework was completed. The students were then surveyed after the communication coursework was completed to determine the changes in defining and understanding de-escalation techniques. This research has found that clearly defining de-escalation and emphasizing the broad range of techniques available enhances the students’ understanding and application of proper de-escalation. This research demonstrates the need for professional peace officer education to move students from media concepts of law enforcement to theoretical concepts.Keywords: criminal justice education, communication theory, de-escalation, peace officer communication
Procedia PDF Downloads 16529109 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm
Procedia PDF Downloads 14229108 Relationship Between Quetelet Equation and Skin Fold Teckniques in Determining Obesity Among Adolescents in Maiduguri, Borno State, Nigeria
Authors: A. Kaidal, M. M. Abdllahi, O. L. Badaki
Abstract:
The study was conducted to determine the relationship between Quetelet Equation and Skin fold measurement in determining obesity among adolescent male students of University of Maiduguri Demonstration Secondary School, Borno State, Nigeria. A total of 66 students participated in the study, their age ranges from 15-18 years. The ex-post-facto research design was used for this study. Anthropometric measurements were taken at three sites (thigh, abdomen and chest) using accu–measure Skin fold caliper. The values of the three measurements were used to determine the percentage body fat of the participants using the 3-Point Skin Fold Bodyfat calculator of Jackson-Pollock. Body mass index (BMI) was determined using weight (kg) divided by height in (m2). The data obtained was analyzed using descriptive statistics (mean and standard deviation) and inferential statistics of Pearson product moment correlation coefficient to determine the relationship between the two techniques. The result showed a significant positive relationship r=0.673 p<0.05 between body mass index and skin fold measurement techniques. It was however observed that BMI techniques of determining body fat tend to overestimate the actual percent body fat of adolescents studied. Based on this result, it is recommended that the use of BMI as a technique for determining obesity should be used with caution.Keywords: body max index, skin fold, quetelet, techniques
Procedia PDF Downloads 54229107 Heart Ailment Prediction Using Machine Learning Methods
Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula
Abstract:
The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting
Procedia PDF Downloads 51