Search results for: computation time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18555

Search results for: computation time

17865 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

Authors: Gaelle Candel, David Naccache

Abstract:

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning

Procedia PDF Downloads 144
17864 Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework

Authors: U. S. N. Raju, Kothuri Sai Kiran, Meena G. Kamal, Vinay Nikhil Pabba, Suresh Kanaparthi

Abstract:

There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework.

Keywords: video lectures, big video data, video retrieval, hadoop

Procedia PDF Downloads 537
17863 Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm

Authors: A. K. M. Kamrul Islam, Abdelhamid Bouchachia, Suang Cang, Hongnian Yu

Abstract:

Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models.

Keywords: fuzzy time series (fts), particle swarm optimization, clustering algorithm, hybrid forecasting model

Procedia PDF Downloads 252
17862 Explainable Graph Attention Networks

Authors: David Pham, Yongfeng Zhang

Abstract:

Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.

Keywords: explainable AI, graph attention network, graph neural network, node classification

Procedia PDF Downloads 203
17861 Clustering-Based Computational Workload Minimization in Ontology Matching

Authors: Mansir Abubakar, Hazlina Hamdan, Norwati Mustapha, Teh Noranis Mohd Aris

Abstract:

In order to build a matching pattern for each class correspondences of ontology, it is required to specify a set of attribute correspondences across two corresponding classes by clustering. Clustering reduces the size of potential attribute correspondences considered in the matching activity, which will significantly reduce the computation workload; otherwise, all attributes of a class should be compared with all attributes of the corresponding class. Most existing ontology matching approaches lack scalable attributes discovery methods, such as cluster-based attribute searching. This problem makes ontology matching activity computationally expensive. It is therefore vital in ontology matching to design a scalable element or attribute correspondence discovery method that would reduce the size of potential elements correspondences during mapping thereby reduce the computational workload in a matching process as a whole. The objective of this work is 1) to design a clustering method for discovering similar attributes correspondences and relationships between ontologies, 2) to discover element correspondences by classifying elements of each class based on element’s value features using K-medoids clustering technique. Discovering attribute correspondence is highly required for comparing instances when matching two ontologies. During the matching process, any two instances across two different data sets should be compared to their attribute values, so that they can be regarded to be the same or not. Intuitively, any two instances that come from classes across which there is a class correspondence are likely to be identical to each other. Besides, any two instances that hold more similar attribute values are more likely to be matched than the ones with less similar attribute values. Most of the time, similar attribute values exist in the two instances across which there is an attribute correspondence. This work will present how to classify attributes of each class with K-medoids clustering, then, clustered groups to be mapped by their statistical value features. We will also show how to map attributes of a clustered group to attributes of the mapped clustered group, generating a set of potential attribute correspondences that would be applied to generate a matching pattern. The K-medoids clustering phase would largely reduce the number of attribute pairs that are not corresponding for comparing instances as only the coverage probability of attributes pairs that reaches 100% and attributes above the specified threshold can be considered as potential attributes for a matching. Using clustering will reduce the size of potential elements correspondences to be considered during mapping activity, which will in turn reduce the computational workload significantly. Otherwise, all element of the class in source ontology have to be compared with all elements of the corresponding classes in target ontology. K-medoids can ably cluster attributes of each class, so that a proportion of attribute pairs that are not corresponding would not be considered when constructing the matching pattern.

Keywords: attribute correspondence, clustering, computational workload, k-medoids clustering, ontology matching

Procedia PDF Downloads 250
17860 Overview of Time, Resource and Cost Planning Techniques in Construction Management Research

Authors: R. Gupta, P. Jain, S. Das

Abstract:

One way to approach construction scheduling optimization problem is to focus on the individual aspects of planning, which can be broadly classified as time scheduling, crew and resource management, and cost control. During the last four decades, construction planning has seen a lot of research, but to date, no paper had attempted to summarize the literature available under important heads. This paper addresses each of aspects separately, and presents the findings of an in-depth literature of the various planning techniques. For techniques dealing with time scheduling, the authors have adopted a rough chronological documentation. For crew and resource management, classification has been done on the basis of the different steps involved in the resource planning process. For cost control, techniques dealing with both estimation of costs and the subsequent optimization of costs have been dealt with separately.

Keywords: construction planning techniques, time scheduling, resource planning, cost control

Procedia PDF Downloads 488
17859 A Case Study of Determining the Times of Overhauls and the Number of Spare Parts for Repairable Items in Rolling Stocks with Simulation

Authors: Ji Young Lee, Jong Woon Kim

Abstract:

It is essential to secure high availability of railway vehicles to realize high quality and efficiency of railway service. Once the availability decreased, planned railway service could not be provided or more cars need to be reserved. additional cars need to be purchased or the frequency of railway service could be decreased. Such situation would be a big loss in terms of quality and cost related to railway service. Therefore, we make various efforts to get high availability of railway vehicles. Because it is a big loss to operators, we make various efforts to get high availability of railway vehicles. To secure high availability, the idle time of the vehicle needs to be reduced and the following methods are applied to railway vehicles. First, through modularization design, exchange time for line replaceable units is reduced which makes railway vehicles could be put into the service quickly. Second, to reduce periodic preventive maintenance time, preventive maintenance with short period would be proceeded test oriented to minimize the maintenance time, and reliability is secured through overhauls for each main component. With such design changes for railway vehicles, modularized components are exchanged first at the time of vehicle failure or overhaul so that vehicles could be put into the service quickly and exchanged components are repaired or overhauled. Therefore, spare components are required for any future failures or overhauls. And, as components are modularized and costs for components are high, it is considerably important to get reasonable quantities of spare components. Especially, when a number of railway vehicles were put into the service simultaneously, the time of overhauls come almost at the same time. Thus, for some vehicles, components need to be exchanged and overhauled before appointed overhaul period so that these components could be secured as spare parts for the next vehicle’s component overhaul. For this reason, components overhaul time and spare parts quantities should be decided at the same time. This study deals with the time of overhauls for repairable components of railway vehicles and the calculation of spare parts quantities in consideration of future failure/overhauls. However, as railway vehicles are used according to the service schedule, maintenance work cannot be proceeded after the service was closed thus it is quite difficult to resolve this situation mathematically. In this study, Simulation software system is used in this study for analyzing the time of overhauls for repairable components of railway vehicles and the spare parts for the railway systems.

Keywords: overhaul time, rolling stocks, simulation, spare parts

Procedia PDF Downloads 337
17858 Standard Resource Parameter Based Trust Model in Cloud Computing

Authors: Shyamlal Kumawat

Abstract:

Cloud computing is shifting the approach IT capital are utilized. Cloud computing dynamically delivers convenient, on-demand access to shared pools of software resources, platform and hardware as a service through internet. The cloud computing model—made promising by sophisticated automation, provisioning and virtualization technologies. Users want the ability to access these services including infrastructure resources, how and when they choose. To accommodate this shift in the consumption model technology has to deal with the security, compatibility and trust issues associated with delivering that convenience to application business owners, developers and users. Absent of these issues, trust has attracted extensive attention in Cloud computing as a solution to enhance the security. This paper proposes a trusted computing technology through Standard Resource parameter Based Trust Model in Cloud Computing to select the appropriate cloud service providers. The direct trust of cloud entities is computed on basis of the interaction evidences in past and sustained on its present performances. Various SLA parameters between consumer and provider are considered in trust computation and compliance process. The simulations are performed using CloudSim framework and experimental results show that the proposed model is effective and extensible.

Keywords: cloud, Iaas, Saas, Paas

Procedia PDF Downloads 332
17857 Studying the Spatial Aspects of Visual Attention Processing in Global Precedence Paradigm

Authors: Shreya Borthakur, Aastha Vartak

Abstract:

This behavioral experiment aimed to investigate the global precedence phenomenon in a South Asian sample and its correlation with mobile screen time. The global precedence effect refers to the tendency to process overall structure before attending to specific details. Participants completed attention tasks involving global and local stimuli with varying consistencies. The results showed a tendency towards local precedence, but no significant differences in reaction times were found between consistency levels or attention conditions. However, the correlation analysis revealed that participants with higher screen time exhibited a stronger negative correlation with local attention, suggesting that excessive screen usage may impact perceptual organization. Further research is needed to explore this relationship and understand the influence of screen time on cognitive processing.

Keywords: global precedence, visual attention, perceptual organization, screen time, cognition

Procedia PDF Downloads 69
17856 Different Methods Anthocyanins Extracted from Saffron

Authors: Hashem Barati, Afshin Farahbakhsh

Abstract:

The flowers of saffron contain anthocyanins. Generally, extraction of anthocyanins takes place at low temperatures (below 30 °C), preferably under vacuum (to minimize degradation) and in an acidic environment. In order to extract anthocyanins, the dried petals were added to 30 ml of acidic ethanol (pH=2). Amount of petals, extraction time, temperature, and ethanol percentage which were selected. Total anthocyanin content was a function of both variables of ethanol percent and extraction time.To prepare SW with pH of 3.5, different concentrations of 100, 400, 700, 1,000, and 2,000 ppm of sodium metabisulfite were added to aqueous sodium citrate. At this selected concentration, different extraction times of 20, 40, 60, 120, 180 min were tested to determine the optimum extraction time. When the extraction time was extended from 20 to 60 min, the total recovered anthocyanins of sulfur method changed from 650 to 710 mg/100 g. In the EW method Cellubrix and Pectinex enzymes were added separately to the buffer solution at different concentrations of 1%, 2.5%, 5%, 7%, 10%, and 12.5% and held for 2 hours reaction time at an ambient temperature of 40 °C. There was a considerable and significant difference in trends of Acys content of tepals extracted by pectinex enzymes at 5% concentration and AE solution.

Keywords: saffron, anthocyanins, acidic environment, acidic ethanol, pectinex enzymes, Cellubrix enzymes, sodium metabisulfite

Procedia PDF Downloads 514
17855 Applied Complement of Probability and Information Entropy for Prediction in Student Learning

Authors: Kennedy Efosa Ehimwenma, Sujatha Krishnamoorthy, Safiya Al‑Sharji

Abstract:

The probability computation of events is in the interval of [0, 1], which are values that are determined by the number of outcomes of events in a sample space S. The probability Pr(A) that an event A will never occur is 0. The probability Pr(B) that event B will certainly occur is 1. This makes both events A and B a certainty. Furthermore, the sum of probabilities Pr(E₁) + Pr(E₂) + … + Pr(Eₙ) of a finite set of events in a given sample space S equals 1. Conversely, the difference of the sum of two probabilities that will certainly occur is 0. This paper first discusses Bayes, the complement of probability, and the difference of probability for occurrences of learning-events before applying them in the prediction of learning objects in student learning. Given the sum of 1; to make a recommendation for student learning, this paper proposes that the difference of argMaxPr(S) and the probability of student-performance quantifies the weight of learning objects for students. Using a dataset of skill-set, the computational procedure demonstrates i) the probability of skill-set events that have occurred that would lead to higher-level learning; ii) the probability of the events that have not occurred that requires subject-matter relearning; iii) accuracy of the decision tree in the prediction of student performance into class labels and iv) information entropy about skill-set data and its implication on student cognitive performance and recommendation of learning.

Keywords: complement of probability, Bayes’ rule, prediction, pre-assessments, computational education, information theory

Procedia PDF Downloads 163
17854 A Study on the Computation of Gourava Indices for Poly-L Lysine Dendrimer and Its Biomedical Applications

Authors: M. Helen

Abstract:

Chemical graph serves as a convenient model for any real or abstract chemical system. Dendrimers are novel three dimensional hyper branched globular nanopolymeric architectures. Drug delivery scientists are especially enthusiastic about possible utility of dendrimers as drug delivery tool. Dendrimers like poly L lysine (PLL), poly-propylene imine (PPI) and poly-amidoamine (PAMAM), etc., are used as gene carrier in drug delivery system because of their chemical characteristics. These characteristics of chemical compounds are analysed using topological indices (invariants under graph isomorphism) such as Wiener index, Zagreb index, etc., Prof. V. R. Kulli motivated by the application of Zagreb indices in finding the total π energy and derived Gourava indices which is an improved version over Zagreb indices. In this paper, we study the structure of PLL-Dendrimer that has the following applications: reduction in toxicity, colon delivery, and topical delivery. Also, we determine first and second Gourava indices, first and second hyper Gourava indices, product and sum connectivity Gourava indices for PLL-Dendrimer. Gourava Indices have found applications in Quantitative Structure-Property Relationship (QSPR)/ Quantitative Structure-Activity Relationship (QSAR) studies.

Keywords: connectivity Gourava indices, dendrimer, Gourava indices, hyper GouravaG indices

Procedia PDF Downloads 140
17853 Counting People Utilizing Space-Time Imagery

Authors: Ahmed Elmarhomy, K. Terada

Abstract:

An automated method for counting passerby has been proposed using virtual-vertical measurement lines. Space-time image is representing the human regions which are treated using the segmentation process. Different color space has been used to perform the template matching. A proper template matching has been achieved to determine direction and speed of passing people. Distinguish one or two passersby has been investigated using a correlation between passerby speed and the human-pixel area. Finally, the effectiveness of the presented method has been experimentally verified.

Keywords: counting people, measurement line, space-time image, segmentation, template matching

Procedia PDF Downloads 453
17852 A Nonlinear Stochastic Differential Equation Model for Financial Bubbles and Crashes with Finite-Time Singularities

Authors: Haowen Xi

Abstract:

We propose and solve exactly a class of non-linear generalization of the Black-Scholes process of stochastic differential equations describing price bubble and crashes dynamics. As a result of nonlinear positive feedback, the faster-than-exponential price positive growth (bubble forming) and negative price growth (crash forming) are found to be the power-law finite-time singularity in which bubbles and crashes price formation ending at finite critical time tc. While most literature on the market bubble and crash process focuses on the nonlinear positive feedback mechanism aspect, very few studies concern the noise level on the same process. The present work adds to the market bubble and crashes literature by studying the external sources noise influence on the critical time tc of the bubble forming and crashes forming. Two main results will be discussed: (1) the analytical expression of expected value of the critical time is found and unexpected critical slowing down due to the coupling external noise is predicted; (2) numerical simulations of the nonlinear stochastic equation is presented, and the probability distribution of Prob(tc) is found to be the inverse gamma function.

Keywords: bubble, crash, finite-time-singular, numerical simulation, price dynamics, stochastic differential equations

Procedia PDF Downloads 133
17851 Numerical Methods versus Bjerksund and Stensland Approximations for American Options Pricing

Authors: Marasovic Branka, Aljinovic Zdravka, Poklepovic Tea

Abstract:

Numerical methods like binomial and trinomial trees and finite difference methods can be used to price a wide range of options contracts for which there are no known analytical solutions. American options are the most famous of that kind of options. Besides numerical methods, American options can be valued with the approximation formulas, like Bjerksund-Stensland formulas from 1993 and 2002. When the value of American option is approximated by Bjerksund-Stensland formulas, the computer time spent to carry out that calculation is very short. The computer time spent using numerical methods can vary from less than one second to several minutes or even hours. However to be able to conduct a comparative analysis of numerical methods and Bjerksund-Stensland formulas, we will limit computer calculation time of numerical method to less than one second. Therefore, we ask the question: Which method will be most accurate at nearly the same computer calculation time?

Keywords: Bjerksund and Stensland approximations, computational analysis, finance, options pricing, numerical methods

Procedia PDF Downloads 457
17850 Localization of Geospatial Events and Hoax Prediction in the UFO Database

Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi

Abstract:

Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.

Keywords: time-series clustering, feature extraction, hoax prediction, geospatial events

Procedia PDF Downloads 378
17849 Magnetohydrodynamic Couette Flow of Fractional Burger’s Fluid in an Annulus

Authors: Sani Isa, Ali Musa

Abstract:

Burgers’ fluid with a fractional derivatives model in an annulus was analyzed. Combining appropriately the basic equations, with the fractionalized fractional Burger’s fluid model allow us to determine the velocity field, temperature and shear stress. The governing partial differential equation was solved using the combine Laplace transformation method and Riemann sum approximation to give velocity field, temperature and shear stress on the fluid flow. The influence of various parameters like fractional parameters, relaxation time and retardation time, are drawn. The results obtained are simulated using Mathcad software and presented graphically. From the graphical results, we observed that the relaxation time and time helps the flow pattern, on the other hand, other material constants resist the fluid flow while fractional parameters effect on fluid flow is opposite to each other.

Keywords: sani isa, Ali musaburger’s fluid, Laplace transform, fractional derivatives, annulus

Procedia PDF Downloads 28
17848 Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures

Authors: Abinash Tripathy, Girish Muralidharan, Amitava Pramanik, Prosenjit Sen

Abstract:

Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.

Keywords: contact angle, contact angle hysteresis, contact time, superhydrophobic

Procedia PDF Downloads 427
17847 Regionalization of IDF Curves with L-Moments for Storm Events

Authors: Noratiqah Mohd Ariff, Abdul Aziz Jemain, Mohd Aftar Abu Bakar

Abstract:

The construction of Intensity-Duration-Frequency (IDF) curves is one of the most common and useful tools in order to design hydraulic structures and to provide a mathematical relationship between rainfall characteristics. IDF curves, especially those in Peninsular Malaysia, are often built using moving windows of rainfalls. However, these windows do not represent the actual rainfall events since the duration of rainfalls is usually prefixed. Hence, instead of using moving windows, this study aims to find regionalized distributions for IDF curves of extreme rainfalls based on storm events. Homogeneity test is performed on annual maximum of storm intensities to identify homogeneous regions of storms in Peninsular Malaysia. The L-moment method is then used to regionalized Generalized Extreme Value (GEV) distribution of these annual maximums and subsequently. IDF curves are constructed using the regional distributions. The differences between the IDF curves obtained and IDF curves found using at-site GEV distributions are observed through the computation of the coefficient of variation of root mean square error, mean percentage difference and the coefficient of determination. The small differences implied that the construction of IDF curves could be simplified by finding a general probability distribution of each region. This will also help in constructing IDF curves for sites with no rainfall station.

Keywords: IDF curves, L-moments, regionalization, storm events

Procedia PDF Downloads 529
17846 Impact of Belongingness, Relational Communication, Religiosity and Screen Time of College Student Levels of Anxiety

Authors: Cherri Kelly Seese, Renee Bourdeaux, Sarah Drivdahl

Abstract:

Emergent adults in the United States are currently experiencing high levels of anxiety. It is imperative to uncover insulating factors which mitigate the impact of anxiety. This study aims to explore how constructs such as belongingness, relational communication, screen time and religiosity impact anxiety levels of emerging adults. Approximately 250 college students from a small, private university on the West Coast were given an online assessment that included: the General Belongingness Scale, Relational Communication Scale, Duke University Religion Index (DUREL), a survey of screen time, and the Beck Anxiety Inventory. A MANOVA statistical test was conducted by assessing the effects of multiple dependent variables (scores on GBS, RCS, self-reported screen time and DUREL) on the four different levels of anxiety as measured on the BAI (minimal = 1, mild =2, moderate = 3, or severe = 4). Results indicated a significant relationship between one’s sense of belonging and one’s reported level of anxiety. These findings have implications for systems, like universities, churches, and corporations that want to improve young adults’ level of anxiety.

Keywords: anxiety, belongingness, relational communication, religiosity, screen time

Procedia PDF Downloads 175
17845 Performance Improvement of Cooperative Scheme in Wireless OFDM Systems

Authors: Ki-Ro Kim, Seung-Jun Yu, Hyoung-Kyu Song

Abstract:

Recently, the wireless communication systems are required to have high quality and provide high bit rate data services. Researchers have studied various multiple antenna scheme to meet the demand. In practical application, it is difficult to deploy multiple antennas for limited size and cost. Cooperative diversity techniques are proposed to overcome the limitations. Cooperative communications have been widely investigated to improve performance of wireless communication. Among diversity schemes, space-time block code has been widely studied for cooperative communication systems. In this paper, we propose a new cooperative scheme using pre-coding and space-time block code. The proposed cooperative scheme provides improved error performance than a conventional cooperative scheme using space-time block coding scheme.

Keywords: cooperative communication, space-time block coding, pre-coding

Procedia PDF Downloads 360
17844 A Trapezoidal-Like Integrator for the Numerical Solution of One-Dimensional Time Dependent Schrödinger Equation

Authors: Johnson Oladele Fatokun, I. P. Akpan

Abstract:

In this paper, the one-dimensional time dependent Schrödinger equation is discretized by the method of lines using a second order finite difference approximation to replace the second order spatial derivative. The evolving system of stiff ordinary differential equation (ODE) in time is solved numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10-4 in the interval of consideration. The performance of the method as compared to an existing scheme is considered favorable.

Keywords: Schrodinger’s equation, partial differential equations, method of lines (MOL), stiff ODE, trapezoidal-like integrator

Procedia PDF Downloads 418
17843 Effect of Aging Time and Mass Concentration on the Rheological Behavior of Vase of Dam

Authors: Hammadi Larbi

Abstract:

Water erosion, the main cause of the siltation of a dam, is a natural phenomenon governed by natural physical factors such as aggressiveness, climate change, topography, lithology, and vegetation cover. Currently, a vase from certain dams is released downstream of the dikes during devastation by hydraulic means. The vases are characterized by complex rheological behaviors: rheofluidification, yield stress, plasticity, and thixotropy. In this work, we studied the effect of the aging time of the vase in the dam and the mass concentration of the vase on the flow behavior of a vase from the Fergoug dam located in the Mascara region. In order to test the reproducibility of results, two replicates were performed for most of the experiments. The flow behavior of the vase studied as a function of storage time and mass concentration is analyzed by the Herschel Bulkey model. The increase in the aging time of the vase in the dam causes an increase in the yield stress and the consistency index of the vase. This phenomenon can be explained by the adsorption of the water by the vase and the increase in volume by swelling, which modifies the rheological parameters of the vase. The increase in the mass concentration in the vase leads to an increase in the yield stress and the consistency index as a function of the concentration. This behavior could be explained by interactions between the granules of the vase suspension. On the other hand, the increase in the aging time and the mass concentration of the vase in the dam causes a reduction in the flow index of the vase. The study also showed an exponential decrease in apparent viscosity with the increase in the aging time of the vase in the dam. If a vase is allowed to age long enough for the yield stress to be close to infinity, its apparent viscosity is also close to infinity; then the apparent viscosity also tends towards infinity; this can, for example, subsequently pose problems when dredging dams. For good dam management, it could be then deduced to reduce the dredging time of the dams as much as possible.

Keywords: vase of dam, aging time, rheological behavior, yield stress, apparent viscosity, thixotropy

Procedia PDF Downloads 31
17842 Travel Delay and Modal Split Analysis: A Case Study

Authors: H. S. Sathish, H. S. Jagadeesh, Skanda Kumar

Abstract:

Journey time and delay study is used to evaluate the quality of service, the travel time and study can also be used to evaluate the quality of traffic movement along the route and to determine the location types and extent of traffic delays. Components of delay are boarding and alighting, issue of tickets, other causes and distance between each stops. This study investigates the total journey time required to travel along the stretch and the influence the delays. The route starts from Kempegowda Bus Station to Yelahanka Satellite Station of Bangalore City. The length of the stretch is 16.5 km. Modal split analysis has been done for this stretch. This stretch has elevated highway connecting to Bangalore International Airport and the extension of metro transit stretch. From the regression analysis of total journey time it is affected by delay due to boarding and alighting moderately, Delay due to issue of tickets affects the journey time to a higher extent. Some of the delay factors affecting significantly the journey time are evident from F-test at 10 percent level of confidence. Along this stretch work trips are more prevalent as indicated by O-D study. Modal shift analysis indicates about 70 percent of commuters are ready to shift from current system to Metro Rail System. Metro Rail System carries maximum number of trips compared to private mode. Hence Metro is a highly viable choice of mode for Bangalore Metropolitan City.

Keywords: delay, journey time, modal choice, regression analysis

Procedia PDF Downloads 497
17841 Indoor Robot Positioning with Precise Correlation Computations over Walsh-Coded Lightwave Signal Sequences

Authors: Jen-Fa Huang, Yu-Wei Chiu, Jhe-Ren Cheng

Abstract:

Visible light communication (VLC) technique has become useful method via LED light blinking. Several issues on indoor mobile robot positioning with LED blinking are examined in the paper. In the transmitter, we control the transceivers blinking message. Orthogonal Walsh codes are adopted for such purpose on auto-correlation function (ACF) to detect signal sequences. In the robot receiver, we set the frame of time by 1 ns passing signal from the transceiver to the mobile robot. After going through many periods of time detecting the peak value of ACF in the mobile robot. Moreover, the transceiver transmits signal again immediately. By capturing three times of peak value, we can know the time difference of arrival (TDOA) between two peak value intervals and finally analyze the accuracy of the robot position.

Keywords: Visible Light Communication, Auto-Correlation Function (ACF), peak value of ACF, Time difference of Arrival (TDOA)

Procedia PDF Downloads 326
17840 Thermal and Caloric Imperfections Effect on the Supersonic Flow Parameters with Application for Air in Nozzles

Authors: Merouane Salhi, Toufik Zebbiche, Omar Abada

Abstract:

When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas does not remain perfect. Its state equation change and it becomes a real gas. In this case, the effects of molecular size and inter molecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermo dynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for molecular size and inter molecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.

Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure

Procedia PDF Downloads 526
17839 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model

Authors: Aminah Muchdar, Nuraeni, Eddy

Abstract:

The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.

Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE

Procedia PDF Downloads 182
17838 Neural Synchronization - The Brain’s Transfer of Sensory Data

Authors: David Edgar

Abstract:

To understand how the brain’s subconscious and conscious functions, we must conquer the physics of Unity, which leads to duality’s algorithm. Where the subconscious (bottom-up) and conscious (top-down) processes function together to produce and consume intelligence, we use terms like ‘time is relative,’ but we really do understand the meaning. In the brain, there are different processes and, therefore, different observers. These different processes experience time at different rates. A sensory system such as the eyes cycles measurement around 33 milliseconds, the conscious process of the frontal lobe cycles at 300 milliseconds, and the subconscious process of the thalamus cycle at 5 milliseconds. Three different observers experience time differently. To bridge observers, the thalamus, which is the fastest of the processes, maintains a synchronous state and entangles the different components of the brain’s physical process. The entanglements form a synchronous cohesion between the brain components allowing them to share the same state and execute in the same measurement cycle. The thalamus uses the shared state to control the firing sequence of the brain’s linear subconscious process. Sharing state also allows the brain to cheat on the amount of sensory data that must be exchanged between components. Only unpredictable motion is transferred through the synchronous state because predictable motion already exists in the shared framework. The brain’s synchronous subconscious process is entirely based on energy conservation, where prediction regulates energy usage. So, the eyes every 33 milliseconds dump their sensory data into the thalamus every day. The thalamus is going to perform a motion measurement to identify the unpredictable motion in the sensory data. Here is the trick. The thalamus conducts its measurement based on the original observation time of the sensory system (33 ms), not its own process time (5 ms). This creates a data payload of synchronous motion that preserves the original sensory observation. Basically, a frozen moment in time (Flat 4D). The single moment in time can then be processed through the single state maintained by the synchronous process. Other processes, such as consciousness (300 ms), can interface with the synchronous state to generate awareness of that moment. Now, synchronous data traveling through a separate faster synchronous process creates a theoretical time tunnel where observation time is tunneled through the synchronous process and is reproduced on the other side in the original time-relativity. The synchronous process eliminates time dilation by simply removing itself from the equation so that its own process time does not alter the experience. To the original observer, the measurement appears to be instantaneous, but in the thalamus, a linear subconscious process generating sensory perception and thought production is being executed. It is all just occurring in the time available because other observation times are slower than thalamic measurement time. For life to exist in the physical universe requires a linear measurement process, it just hides by operating at a faster time relativity. What’s interesting is time dilation is not the problem; it’s the solution. Einstein said there was no universal time.

Keywords: neural synchronization, natural intelligence, 99.95% IoT data transmission savings, artificial subconscious intelligence (ASI)

Procedia PDF Downloads 127
17837 Black-Hole Dimension: A Distinct Methodology of Understanding Time, Space and Data in Architecture

Authors: Alp Arda

Abstract:

Inspired by Nolan's ‘Interstellar’, this paper delves into speculative architecture, asking, ‘What if an architect could traverse time to study a city?’ It unveils the ‘Black-Hole Dimension,’ a groundbreaking concept that redefines urban identities beyond traditional boundaries. Moving past linear time narratives, this approach draws from the gravitational dynamics of black holes to enrich our understanding of urban and architectural progress. By envisioning cities and structures as influenced by black hole-like forces, it enables an in-depth examination of their evolution through time and space. The Black-Hole Dimension promotes a temporal exploration of architecture, treating spaces as narratives of their current state interwoven with historical layers. It advocates for viewing architectural development as a continuous, interconnected journey molded by cultural, economic, and technological shifts. This approach not only deepens our understanding of urban evolution but also empowers architects and urban planners to create designs that are both adaptable and resilient. Echoing themes from popular culture and science fiction, this methodology integrates the captivating dynamics of time and space into architectural analysis, challenging established design conventions. The Black-Hole Dimension champions a philosophy that welcomes unpredictability and complexity, thereby fostering innovation in design. In essence, the Black-Hole Dimension revolutionizes architectural thought by emphasizing space-time as a fundamental dimension. It reimagines our built environments as vibrant, evolving entities shaped by the relentless forces of time, space, and data. This groundbreaking approach heralds a future in architecture where the complexity of reality is acknowledged and embraced, leading to the creation of spaces that are both responsive to their temporal context and resilient against the unfolding tapestry of time.

Keywords: black-hole, timeline, urbanism, space and time, speculative architecture

Procedia PDF Downloads 73
17836 Changes in Kidney Tissue at Postmortem Magnetic Resonance Imaging Depending on the Time of Fetal Death

Authors: Uliana N. Tumanova, Viacheslav M. Lyapin, Vladimir G. Bychenko, Alexandr I. Shchegolev, Gennady T. Sukhikh

Abstract:

All cases of stillbirth undoubtedly subject to postmortem examination, since it is necessary to find out the cause of the stillbirths, as well as a forecast of future pregnancies and their outcomes. Determination of the time of death is an important issue which is addressed during the examination of the body of a stillborn. It is mean the period from the time of death until the birth of the fetus. The time for fetal deaths determination is based on the assessment of the severity of the processes of maceration. To study the possibilities of postmortem magnetic resonance imaging (MRI) for determining the time of intrauterine fetal death based on the evaluation of maceration in the kidney. We have conducted MRI morphological comparisons of 7 dead fetuses (18-21 gestational weeks) and 26 stillbirths (22-39 gestational weeks), and 15 bodies of died newborns at the age of 2 hours – 36 days. Postmortem MRI 3T was performed before the autopsy. The signal intensity of the kidney tissue (SIK), pleural fluid (SIF), external air (SIA) was determined on T1-WI and T2-WI. Macroscopic and histological signs of maceration severity and time of death were evaluated in the autopsy. Based on the results of the morphological study, the degree of maceration varied from 0 to 4. In 13 cases, the time of intrauterine death was up to 6 hours, in 2 cases - 6-12 hours, in 4 -12-24 hours, in 9 -2-3 days, in 3 -1 week, in 2 -1,5-2 weeks. At 15 dead newborns, signs of maceration were absent, naturally. Based on the data from SIK, SIF, SIA on MR-tomograms, we calculated the coefficient of MR-maceration (M). The calculation of the time of intrauterine death (MP-t) (hours) was performed by our formula: МR-t = 16,87+95,38×М²-75,32×М. A direct positive correlation of MR-t and autopsy data from the dead at the gestational ages 22-40 weeks, with a dead time, not more than 1 week, was received. The maceration at the antenatal fetal death is characterized by changes in T1-WI and T2-WI signals at postmortem MRI. The calculation of MP-t allows defining accurately the time of intrauterine death within one week at the stillbirths who died on 22-40 gestational weeks. Thus, our study convincingly demonstrates that radiological methods can be used for postmortem study of the bodies, in particular, the bodies of stillborn to determine the time of intrauterine death. Postmortem MRI allows for an objective and sufficiently accurate analysis of pathological processes with the possibility of their documentation, storage, and analysis after the burial of the body.

Keywords: intrauterine death, maceration, postmortem MRI, stillborn

Procedia PDF Downloads 126