Search results for: artificial animal intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3785

Search results for: artificial animal intelligence

3095 Artificial Habitat Mapping in Adriatic Sea

Authors: Annalisa Gaetani, Anna Nora Tassetti, Gianna Fabi

Abstract:

The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on.

Keywords: artificial habitat mapping, fish assemblages, hydroacustic technology, multibeam echosounder

Procedia PDF Downloads 260
3094 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd

Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic

Abstract:

Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.

Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization

Procedia PDF Downloads 110
3093 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.

Keywords: time estimation, machine learning, Artificial neural network, project design phase

Procedia PDF Downloads 98
3092 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 53
3091 Influence of Animal Assisted Activity with Cat on Emotions of People with Intellectual Disabilities: Preliminary Study

Authors: Angelika Magiera, Weronika Penar, Czesław Klocek

Abstract:

Intellectual disability (ID) affects approximately 1.55% of children and adults in the society of developed countries. Depending on the ID degree, the patient is burdened with additional disease entities. Intellectual disability does not only limits a person’s opportunities to participate in social life but also affects whole families. People with ID belong to the group of risk of mental illnesses, they are less emotionally stable, while families are predisposed to depression. The study was held in a day care center for people with intellectual disabilities (of various degrees of disability) on 26 people. Nurses and carers also took part. The age range of study groups ranged from 22 to 67 years. Therapeutic classes were held for four independent mixed groups (sex and intellectual disability degree) from 6 to 7 people each, lasting no more than 30 minutes. They were created by the facility's staff to make sure that a group is stable. The animal assisted activity took place with a 2.5-year-old Ragdoll cat. The animal has passed the exam (certificate entitling her to take part in felinotherapy) and had 1.5 years of work experience. Due to the different degrees of ID, an individual emotional state survey was conducted among the caregivers of those who were involved in the activity, to assess the impact of animal assisted activity with a cat on patients. A positive effect on the emotional state of people with different types of intellectual disability was observed. Caregivers and nurses of those participating in the study express willingness to continue these types of classes and consider them necessary for this group of people.

Keywords: intellectual disabilities, animal-assisted activity, cat, feline, emotions

Procedia PDF Downloads 138
3090 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 172
3089 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili

Abstract:

Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network.

Keywords: artificial neural network, cement, circular economy, concrete, by products

Procedia PDF Downloads 114
3088 Development of Visual Working Memory Precision: A Cross-Sectional Study of Simultaneously Delayed Responses Paradigm

Authors: Yao Fu, Xingli Zhang, Jiannong Shi

Abstract:

Visual working memory (VWM) capacity is the ability to maintain and manipulate short-term information which is not currently available. It is well known for its significance to form the basis of numerous cognitive abilities and its limitation in holding information. VWM span, the most popular measurable indicator, is found to reach the adult level (3-4 items) around 12-13 years’ old, while less is known about the precision development of the VWM capacity. By using simultaneously delayed responses paradigm, the present study investigates the development of VWM precision among 6-18-year-old children and young adults, besides its possible relationships with fluid intelligence and span. Results showed that precision and span both increased with age, and precision reached the maximum in 16-17 age-range. Moreover, when remembering 3 simultaneously presented items, the probability of remembering target item correlated with fluid intelligence and the probability of wrap errors (misbinding target and non-target items) correlated with age. When remembering more items, children had worse performance than adults due to their wrap errors. Compared to span, VWM precision was effective predictor of intelligence even after controlling for age. These results suggest that unlike VWM span, precision developed in a slow, yet longer fashion. Moreover, decreasing probability of wrap errors might be the main reason for the development of precision. Last, precision correlated more closely with intelligence than span in childhood and adolescence, which might be caused by the probability of remembering target item.

Keywords: fluid intelligence, precision, visual working memory, wrap errors

Procedia PDF Downloads 277
3087 A Drawing Software for Designers: AutoCAD

Authors: Mayar Almasri, Rosa Helmi, Rayana Enany

Abstract:

This report describes the features of AutoCAD software released by Adobe. It explains how the program makes it easier for engineers and designers and reduces their time and effort spent using AutoCAD. Moreover, it highlights how AutoCAD works, how some of the commands used in it, such as Shortcut, make it easy to use, and features that make it accurate in measurements. The results of the report show that most users of this program are designers and engineers, but few people know about it and find it easy to use. They prefer to use it because it is easy to use, and the shortcut commands shorten a lot of time for them. The feature got a high rate and some suggestions for improving AutoCAD in Aperture, but it was a small percentage, and the highest percentage was that they didn't need to improve the program, and it was good.

Keywords: artificial intelligence, design, planning, commands, autodesk, dimensions

Procedia PDF Downloads 132
3086 An Automated Procedure for Estimating the Glomerular Filtration Rate and Determining the Normality or Abnormality of the Kidney Stages Using an Artificial Neural Network

Authors: Hossain A., Chowdhury S. I.

Abstract:

Introduction: The use of a gamma camera is a standard procedure in nuclear medicine facilities or hospitals to diagnose chronic kidney disease (CKD), but the gamma camera does not precisely stage the disease. The authors sought to determine whether they could use an artificial neural network to determine whether CKD was in normal or abnormal stages based on GFR values (ANN). Method: The 250 kidney patients (Training 188, Testing 62) who underwent an ultrasonography test to diagnose a renal test in our nuclear medical center were scanned using a gamma camera. Before the scanning procedure, the patients received an injection of ⁹⁹ᵐTc-DTPA. The gamma camera computes the pre- and post-syringe radioactive counts after the injection has been pushed into the patient's vein. The artificial neural network uses the softmax function with cross-entropy loss to determine whether CKD is normal or abnormal based on the GFR value in the output layer. Results: The proposed ANN model had a 99.20 % accuracy according to K-fold cross-validation. The sensitivity and specificity were 99.10 and 99.20 %, respectively. AUC was 0.994. Conclusion: The proposed model can distinguish between normal and abnormal stages of CKD by using an artificial neural network. The gamma camera could be upgraded to diagnose normal or abnormal stages of CKD with an appropriate GFR value following the clinical application of the proposed model.

Keywords: artificial neural network, glomerular filtration rate, stages of the kidney, gamma camera

Procedia PDF Downloads 103
3085 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence

Authors: Muhammad Bilal Shaikh

Abstract:

Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.

Keywords: multimodal AI, computer vision, NLP, mineral processing, mining

Procedia PDF Downloads 68
3084 Design of a Computational Model to Support the Calculation of a Structural Health Index for Bridges

Authors: Jeison Sánchez Araya, Cesar Garita, Giannina Ortiz

Abstract:

In many Latin American countries, including Costa Rica, the poor condition of national road bridges significantly hinders socioeconomic progress. Addressing this issue, this article introduces a computational method designed to evaluate and monitor bridge health over time. It outlines a business intelligence model that facilitates data storage from bridge inspections and supports structural health index calculations. A Power BI prototype displays crucial visualizations that improve decision making on infrastructure investments. This approach leverages business intelligence and hierarchical visualization techniques, offering a solution to quantitatively assess bridge health and prioritize investments in national infrastructure efficiently.

Keywords: bridges, business intelligence, structural health index, structural health monitoring

Procedia PDF Downloads 13
3083 Antecedents of Perceptions About Halal Foods Among Non-Muslims in United States of America

Authors: Saira Naeem, Rana Muhammad Ayyub

Abstract:

The main objective of this study is to empirically study the antecedents of perceptions of non-Muslim consumers towards Halal foods. The questionnaire survey was conducted through surveymonkey.com from non-Muslims (n=222) of USA. The validated scales of knowledge about Halal foods, animal welfare concerns, acculturation and perception about Halal foods were adopted after necessary adaptation as measures. The structural equation modelling (SEM) approach was used to study the structural model. It was found that Knowledge about Halal foods and ongoing acculturation among non-Muslims has a positive effect on perception about Halal food whereas; animal welfare concerns have negative effect on it. Furthermore, the acculturation has moderating effects but it was found non-significant. It is recommended that Halal food marketers should increase their efforts to educate customers by updating their knowledge about it. Furthermore, it is recommended that the non-Muslim consumers must be apprised of the fact that their animal welfare concerns are adequately addressed while Halal food production and supply chain. Online data collection is the only limitation of this study. This study will guide the Halal marketers of western countries about how to market the Halal food products and services to serve the non-Muslim customers.

Keywords: non-Muslims, consumer perceptions, animal welfare concerns, acculturation, knowledge about Halal

Procedia PDF Downloads 116
3082 Inspiring Woman: The Emotional Intelligence Leadership of Khadijah Bint Khuwaylid

Authors: Eman S. Soliman, Sana Hawamdeh, Najmus S. Mahfooz

Abstract:

Purpose: The purpose of this paper was to examine various components of applied emotional intelligence as demonstrated in the leadership style of Khadijah Bint Khuwaylid in pre and post-Islamic society. Methodology: The research used a qualitative research method, specifically historical and ethnographic techniques. Data collection included both primary and secondary sources. Data from sources were analyzed to document the use of emotional intelligent leadership behaviors throughout Khadijah Bint Khuwaylid leadership experience from 596 A.D. to 621 A.D. Findings: Demonstration of four cornerstones of emotional intelligence which are self-awareness, self-management, social awareness and relationship management. Apply them on khadejah Bint Khuwaylid leadership style reveal that she possess main behavioral competences in the form of emotionally self-aware, self-.confidence, adaptability, empathy and influence. Conclusions: Khadijah Bint Khuwaylid serves as a historical model of effective leadership that included the use of emotional intelligence in her leadership behavior. The inclusion of the effective portion of the brain created a successful leadership style that can be learned by present day and future leadership. The recommendations for future leaders are to include the use of emotionally self-aware and self-confidence, adaptability, empathy and influence as components of leadership. This will then demonstrate in a leadership a basic knowledge and understanding of feelings, the keenness to be emotionally open with others, the ability to prototype beliefs and values, and the use of emotions in future communications, vision and progress.

Keywords: emotional intelligence, leadership, Khadijah Bint Khuwaylid, women

Procedia PDF Downloads 276
3081 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks

Authors: S. Neelima, P. S. Subramanyam

Abstract:

The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.

Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)

Procedia PDF Downloads 438
3080 Utilizing Artificial Intelligence to Predict Post Operative Atrial Fibrillation in Non-Cardiac Transplant

Authors: Alexander Heckman, Rohan Goswami, Zachi Attia, Paul Friedman, Peter Noseworthy, Demilade Adedinsewo, Pablo Moreno-Franco, Rickey Carter, Tathagat Narula

Abstract:

Background: Postoperative atrial fibrillation (POAF) is associated with adverse health consequences, higher costs, and longer hospital stays. Utilizing existing predictive models that rely on clinical variables and circulating biomarkers, multiple societies have published recommendations on the treatment and prevention of POAF. Although reasonably practical, there is room for improvement and automation to help individualize treatment strategies and reduce associated complications. Methods and Results: In this retrospective cohort study of solid organ transplant recipients, we evaluated the diagnostic utility of a previously developed AI-based ECG prediction for silent AF on the development of POAF within 30 days of transplant. A total of 2261 non-cardiac transplant patients without a preexisting diagnosis of AF were found to have a 5.8% (133/2261) incidence of POAF. While there were no apparent sex differences in POAF incidence (5.8% males vs. 6.0% females, p=.80), there were differences by race and ethnicity (p<0.001 and 0.035, respectively). The incidence in white transplanted patients was 7.2% (117/1628), whereas the incidence in black patients was 1.4% (6/430). Lung transplant recipients had the highest incidence of postoperative AF (17.4%, 37/213), followed by liver (5.6%, 56/1002) and kidney (3.6%, 32/895) recipients. The AUROC in the sample was 0.62 (95% CI: 0.58-0.67). The relatively low discrimination may result from undiagnosed AF in the sample. In particular, 1,177 patients had at least 1 AI-ECG screen for AF pre-transplant above .10, a value slightly higher than the published threshold of 0.08. The incidence of POAF in the 1104 patients without an elevated prediction pre-transplant was lower (3.7% vs. 8.0%; p<0.001). While this supported the hypothesis that potentially undiagnosed AF may have contributed to the diagnosis of POAF, the utility of the existing AI-ECG screening algorithm remained modest. When the prediction for POAF was made using the first postoperative ECG in the sample without an elevated screen pre-transplant (n=1084 on account of n=20 missing postoperative ECG), the AUROC was 0.66 (95% CI: 0.57-0.75). While this discrimination is relatively low, at a threshold of 0.08, the AI-ECG algorithm had a 98% (95% CI: 97 – 99%) negative predictive value at a sensitivity of 66% (95% CI: 49-80%). Conclusions: This study's principal finding is that the incidence of POAF is rare, and a considerable fraction of the POAF cases may be latent and undiagnosed. The high negative predictive value of AI-ECG screening suggests utility for prioritizing monitoring and evaluation on transplant patients with a positive AI-ECG screening. Further development and refinement of a post-transplant-specific algorithm may be warranted further to enhance the diagnostic yield of the ECG-based screening.

Keywords: artificial intelligence, atrial fibrillation, cardiology, transplant, medicine, ECG, machine learning

Procedia PDF Downloads 137
3079 The Effect of Emotional Intelligence on Performance and Motivation of Staff: A Case Study of East Azerbaijan Red Crescent

Authors: Bahram Asghari Aghdam, Ali Mahjoub

Abstract:

The purpose of this study is to evaluate the effect of emotional intelligence on the motivation and performance of East Azarbaijan the Red Crescent staff. In this study, EI is determined as the independent variable component of self awareness, self management, social awareness, and relations management, motivation and performance as dependent variables. The research method is descriptive-survey. In this study, simple random sampling method is used and research sample consists of 130 East Azarbaijan the Red Crescent staff that uses Cochran's formula 100 of them were selected and questionnaires were filled by them. Three types of questionnaires were used in this study for emotional intelligence, consisting of the Bradbury Travis and Jane Greaves standard questionnaire; and for motivation and performance a questionnaire is regulated by the researcher with help of professionals and experts in this field that consists of 33 questions about the motivation and 15 questions about performance and content validity were used to obtain the necessary credit. Reliability by using the Cronbach's alpha coefficient /948 was approved. Also, in this study to test the hypothesis of the Spearman correlation coefficient and linear regressions and determine fitness of variables' of structural equation modeling is used. The results show that emotional intelligence with coefficient /865, motivation and performance of in East Azerbaijan the Red Crescent employees has a positive effect. Based on Friedman Test ranking the most influence in motivation and performance of staff in respondents' opinion is in order of self-awareness, relations management, social awareness and self-management.

Keywords: emotional intelligence, self-awareness, self-management, social awareness, relations management, motivation, performance

Procedia PDF Downloads 486
3078 Exploring the Influence of Climate Change on Food Behavior in Medieval France: A Multi-Method Analysis of Human-Animal Interactions

Authors: Unsain Dianne, Roussel Audrey, Goude Gwenaëlle, Magniez Pierre, Storå Jan

Abstract:

This paper aims to investigate the changes in husbandry practices and meat consumption during the transition from the Medieval Climate Anomaly to the Little Ice Age in the South of France. More precisely, we will investigate breeding strategies, animal size and health status, carcass exploitation strategies, and the impact of socioeconomic status on human-environment interactions. For that purpose, we will analyze faunal remains from ten sites equally distributed between the two periods. Those include consumers from different socio-economic backgrounds (peasants, city dwellers, soldiers, lords, and the Popes). The research will employ different methods used in zooarchaeology: comparative anatomy, biometry, pathologies analyses, traceology, and utility indices, as well as experimental archaeology, to reconstruct and understand the changes in animal breeding and consumption practices. Their analysis will allow the determination of modifications in the animal production chain, with the composition of the flocks (species, size), their management (age, sex, health status), culinary practices (strategies for the exploitation of carcasses, cooking, tastes) or the importance of trade (butchers, sales of processed animal products). The focus will also be on the social extraction of consumers. The aim will be to determine whether climate change has had a greater impact on the most modest groups (such as peasants), whether the consequences have been global and have also affected the highest levels of society, or whether the social and economic factors have been sufficient to balance out the climatic hazards, leading to no significant changes. This study will contribute to our understanding of the impact of climate change on breeding and consumption strategies in medieval society from a historical and social point of view. It combines various research methods to provide a comprehensive analysis of the changes in human-animal interactions during different climatic periods.

Keywords: archaeology, animal economy, cooking, husbandry practices, climate change, France

Procedia PDF Downloads 60
3077 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms

Authors: Julio Vega

Abstract:

Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.

Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node

Procedia PDF Downloads 130
3076 Obstacle Detection and Path Tracking Application for Disables

Authors: Aliya Ashraf, Mehreen Sirshar, Fatima Akhtar, Farwa Kazmi, Jawaria Wazir

Abstract:

Vision, the basis for performing navigational tasks, is absent or greatly reduced in visually impaired people due to which they face many hurdles. For increasing the navigational capabilities of visually impaired people a desktop application ODAPTA is presented in this paper. The application uses camera to capture video from surroundings, apply various image processing algorithms to get information about path and obstacles, tracks them and delivers that information to user through voice commands. Experimental results show that the application works effectively for straight paths in daylight.

Keywords: visually impaired, ODAPTA, Region of Interest (ROI), driver fatigue, face detection, expression recognition, CCD camera, artificial intelligence

Procedia PDF Downloads 552
3075 Planktivorous Fish Schooling Responses to Current at Natural and Artificial Reefs

Authors: Matthew Holland, Jason Everett, Martin Cox, Iain Suthers

Abstract:

High spatial-resolution distribution of planktivorous reef fish can reveal behavioural adaptations to optimise the balance between feeding success and predator avoidance. We used a multi-beam echosounder to record bathymetry and the three-dimensional distribution of fish schools associated with natural and artificial reefs. We utilised generalised linear models to assess the distribution, orientation, and aggregation of fish schools relative to the structure, vertical relief, and currents. At artificial reefs, fish schooled more closely to the structure and demonstrated a preference for the windward side, particularly when exposed to strong currents. Similarly, at natural reefs fish demonstrated a preference for windward aspects of bathymetry, particularly when associated with high vertical relief. Our findings suggest that under conditions with stronger current velocity, fish can exercise their preference to remain close to structure for predator avoidance, while still receiving an adequate supply of zooplankton delivered by the current. Similarly, when current velocity is low, fish tend to disperse for better access to zooplankton. As artificial reefs are generally deployed with the goal of creating productivity rather than simply attracting fish from elsewhere, we advise that future artificial reefs be designed as semi-linear arrays perpendicular to the prevailing current, with multiple tall towers. This will facilitate the conversion of dispersed zooplankton into energy for higher trophic levels, enhancing reef productivity and fisheries.

Keywords: artificial reef, current, forage fish, multi-beam, planktivorous fish, reef fish, schooling

Procedia PDF Downloads 159
3074 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination

Authors: Gilberto Goracci, Fabio Curti

Abstract:

This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.

Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field

Procedia PDF Downloads 105
3073 Hidden Markov Movement Modelling with Irregular Data

Authors: Victoria Goodall, Paul Fatti, Norman Owen-Smith

Abstract:

Hidden Markov Models have become popular for the analysis of animal tracking data. These models are being used to model the movements of a variety of species in many areas around the world. A common assumption of the model is that the observations need to have regular time steps. In many ecological studies, this will not be the case. The objective of the research is to modify the movement model to allow for irregularly spaced locations and investigate the effect on the inferences which can be made about the latent states. A modification of the likelihood function to allow for these irregular spaced locations is investigated, without using interpolation or averaging the movement rate. The suitability of the modification is investigated using GPS tracking data for lion (Panthera leo) in South Africa, with many observations obtained during the night, and few observations during the day. Many nocturnal predator tracking studies are set up in this way, to obtain many locations at night when the animal is most active and is difficult to observe. Few observations are obtained during the day, when the animal is expected to rest and is potentially easier to observe. Modifying the likelihood function allows the popular Hidden Markov Model framework to be used to model these irregular spaced locations, making use of all the observed data.

Keywords: hidden Markov Models, irregular observations, animal movement modelling, nocturnal predator

Procedia PDF Downloads 249
3072 Detection of Autistic Children's Voice Based on Artificial Neural Network

Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono

Abstract:

In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.

Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform

Procedia PDF Downloads 461
3071 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen

Abstract:

In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence

Procedia PDF Downloads 656
3070 The Integration of Fintech Technologies in Crowdfunding: A Catalyst for Financial Inclusion and Responsible Finance

Authors: Badrane Hasnaa, Bouzahir Brahim

Abstract:

This article examines the impact of fintech technologies on crowdfunding, particularly their potential to enhance financial inclusion and promote responsible finance. It explores how the adoption of blockchain, artificial intelligence, and other fintech innovations is transforming crowdfunding by making it more accessible, transparent, and ethical. By analyzing case studies and recent data, the article illustrates how these technologies help overcome traditional barriers to financing while promoting sustainable financial practices. The findings suggest that integrating fintech into crowdfunding can not only broaden access to funding for marginalized populations but also encourage more responsible management of financial resources, contributing to a fairer and more resilient economy.

Keywords: crowdfunding, fintech, inclusion financière, finance responsible, blockchain, resilience financière

Procedia PDF Downloads 24
3069 ​​An Overview and Analysis of ChatGPT 3.5/4.0​

Authors: Sarah Mohammed, Huda Allagany, Ayah Barakat, Muna Elyas

Abstract:

This paper delves into the history and development of ChatGPT, tracing its evolution from its inception by OpenAI to its current state, and emphasizing its design improvements and strategic partnerships. It also explores the performance and applicability of ChatGPT versions 3.5 and 4 in various contexts, examining its capabilities and limitations in producing accurate and relevant responses. Utilizing a quantitative approach, user satisfaction, speed of response, learning capabilities, and overall utility in academic performance were assessed through surveys and analysis tools. Findings indicate that while ChatGPT generally delivers high accuracy and speed in responses, the need for clarification and more specific user instructions persists. The study highlights the tool's increasing integration across different sectors, showcasing its potential in educational and professional settings.

Keywords: artificial intelligence, chat GPT, analysis, education

Procedia PDF Downloads 52
3068 Autonomous Quantum Competitive Learning

Authors: Mohammed A. Zidan, Alaa Sagheer, Nasser Metwally

Abstract:

Real-time learning is an important goal that most of artificial intelligence researches try to achieve it. There are a lot of problems and applications which require low cost learning such as learn a robot to be able to classify and recognize patterns in real time and real-time recall. In this contribution, we suggest a model of quantum competitive learning based on a series of quantum gates and additional operator. The proposed model enables to recognize any incomplete patterns, where we can increase the probability of recognizing the pattern at the expense of the undesired ones. Moreover, these undesired ones could be utilized as new patterns for the system. The proposed model is much better compared with classical approaches and more powerful than the current quantum competitive learning approaches.

Keywords: competitive learning, quantum gates, quantum gates, winner-take-all

Procedia PDF Downloads 473
3067 Validation of the Trait Emotional Intelligence Questionnaire: Adolescent Short Form (TEIQue-ASF) among Adolescents in Vietnam

Authors: Anh Nguyen, Jane Fisher, Thach Tran, Anh T. T. Tran

Abstract:

Trait Emotional Intelligence is the knowledge, beliefs, and attitudes an individual has about their own and other people’s emotions. It is believed that trait emotional intelligence is a component of personality. Petrides’ Trait Emotional Intelligence Questionnaire (TEIQue) is well regarded and well-established, with validation data about its functioning among adults from many countries. However, there is little data yet about its use among Asian populations, including adolescents. The aims were to translate and culturally verify the Trait Emotional Intelligence Adolescent Short Form (TEIQue-ASF) and investigate content validity, construct validity, and reliability among adolescents attending high schools in Vietnam. Content of the TEIQue-ASF was translated (English to Vietnamese) and back-translated (Vietnamese to English) in consultation with bilingual and bicultural health researchers and pilot tested among 51 potential respondents. Phraseology and wording were then adjusted and the final version is named the VN-TEIQue-ASF. The VN-TEIQue-ASF’s properties were investigated in a cross-sectional elf-report survey among high school students in Central Vietnam. In total 1,546 / 1,573 (98.3%) eligible students from nine high schools in rural, urban, and coastline areas completed the survey. Explanatory Factor Analysis yielded a four-factor solution, including some with facets that loaded differently compared to the original version: Well-being, Emotion in Relationships, Emotion Self-management, and Emotion Sensitivity. The Cronbach’s alpha of the global score for the VN-TEIQue-ASF was .77. The VN-TEIQue-ASF is comprehensible and has good content and construct validity and reliability among adolescents in Vietnam. The factor structure is only partly replicated the original version. The VN-TEIQue-ASF is recommended for use in school or community surveys and professional study in education, psychology, and public health to investigate the trait emotional intelligence of adolescents in Vietnam.

Keywords: adolescents, construct validity, content validity, factor analysis, questionnaire validity, trait emotional intelligence, Vietnam

Procedia PDF Downloads 269
3066 GenAI Agents in Product Management: A Case Study from the Manufacturing Sector

Authors: Aron Witkowski, Andrzej Wodecki

Abstract:

Purpose: This study aims to explore the feasibility and effectiveness of utilizing Generative Artificial Intelligence (GenAI) agents as product managers within the manufacturing sector. It seeks to evaluate whether current GenAI capabilities can fulfill the complex requirements of product management and deliver comparable outcomes to human counterparts. Study Design/Methodology/Approach: This research involved the creation of a support application for product managers, utilizing high-quality sources on product management and generative AI technologies. The application was designed to assist in various aspects of product management tasks. To evaluate its effectiveness, a study was conducted involving 10 experienced product managers from the manufacturing sector. These professionals were tasked with using the application and providing feedback on the tool's responses to common questions and challenges they encounter in their daily work. The study employed a mixed-methods approach, combining quantitative assessments of the tool's performance with qualitative interviews to gather detailed insights into the user experience and perceived value of the application. Findings: The findings reveal that GenAI-based product management agents exhibit significant potential in handling routine tasks, data analysis, and predictive modeling. However, there are notable limitations in areas requiring nuanced decision-making, creativity, and complex stakeholder interactions. The case study demonstrates that while GenAI can augment human capabilities, it is not yet fully equipped to independently manage the holistic responsibilities of a product manager in the manufacturing sector. Originality/Value: This research provides an analysis of GenAI's role in product management within the manufacturing industry, contributing to the limited body of literature on the application of GenAI agents in this domain. It offers practical insights into the current capabilities and limitations of GenAI, helping organizations make informed decisions about integrating AI into their product management strategies. Implications for Academic and Practical Fields: For academia, the study suggests new avenues for research in AI-human collaboration and the development of advanced AI systems capable of higher-level managerial functions. Practically, it provides industry professionals with a nuanced understanding of how GenAI can be leveraged to enhance product management, guiding investments in AI technologies and training programs to bridge identified gaps.

Keywords: generative artificial intelligence, GenAI, NPD, new product development, product management, manufacturing

Procedia PDF Downloads 52