Search results for: L2 speech production reading span test picture description
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18731

Search results for: L2 speech production reading span test picture description

18041 Idiopathic Gingival Fibromatosis

Authors: Bandana Koirala, Shivalal Sharma

Abstract:

Introduction: Gingival enlargements are quite common and may be either inflammatory, non-inflammatory or a combination of both. Idiopathic gingival enlargement is a rare condition with a proliferative fibrous lesion of the gingival tissue that causes esthetic and functional problems. It is of undetermined etiology. Case Description: This case report addresses the diagnosis and treatment of a case of idiopathic gingival enlargement in a 9-year-old male patient. The patient presented with a generalized diffuse gingival enlargement involving the entire maxillary and the mandibular arch with extension on occlusal, buccal, lingual, and palatal surfaces with just parts of occlusal surfaces of few upper and lower molars visible resulting in open mouth, difficulty in mastication and speech. Biopsy report confirmed the diagnosis of fibromatosis gingivae. Gingivectomy was carried out in all four quadrants by using external bevel incision. Conclusion: Though total esthetics could not be restored due to unusual bony enlargement, the general appearance improved satisfactorily. Treatment after complete excision however, improved the masticatory competence to a great extent.

Keywords: idiopathic gingival fibromatosis, gingival enlargement, gingivectomy, medical and health sciences

Procedia PDF Downloads 329
18040 Investigating the Efficacy of Developing Critical Thinking through Literature Reading

Authors: Julie Chuah Suan Choo

Abstract:

Due to the continuous change in workforce and the demands of the global workplace, many employers had lamented that the majority of university graduates were not prepared in the key areas of employment such as critical thinking, writing, self-direction and global knowledge which are most needed for the purposes of promotion. Further, critical thinking skills are deemed as integral parts of transformational pedagogy which aims at having a more informed society. To add to this, literature teaching has recently been advocated for enhancing students’ critical thinking and reasoning. Thus this study explored the effects of incorporating a few strategies in teaching literature, namely a Shakespeare play, into a course design to enhance these skills. An experiment involving a pretest and posttest using the California Critical Thinking Skills Test (CCTST) were administered on 80 first-year students enrolled in the Bachelor of Arts programme who were randomly assigned into the control group and experimental group. For the next 12 weeks, the experimental group was given intervention which included guided in-class discussion with Socratic questioning skills, learning log to detect their weaknesses in logical reasoning; presentations and quizzes. The results of CCTST which included paired T-test using SPSS version 22 indicated significant differences between the two groups. Findings have significant implications on the course design as well as pedagogical practice in using literature to enhance students’ critical thinking skills.

Keywords: literature teaching, critical thinking, California critical thinking skills test (CCTST), course design

Procedia PDF Downloads 462
18039 A Study on Design for Parallel Test Based on Embedded System

Authors: Zheng Sun, Weiwei Cui, Xiaodong Ma, Hongxin Jin, Dongpao Hong, Jinsong Yang, Jingyi Sun

Abstract:

With the improvement of the performance and complexity of modern equipment, automatic test system (ATS) becomes widely used for condition monitoring and fault diagnosis. However, the conventional ATS mainly works in a serial mode, and lacks the ability of testing several equipments at the same time. That leads to low test efficiency and ATS redundancy. Especially for a large majority of equipment under test, the conventional ATS cannot meet the requirement of efficient testing. To reduce the support resource and increase test efficiency, we propose a method of design for the parallel test based on the embedded system in this paper. Firstly, we put forward the general framework of the parallel test system, and the system contains a central management system (CMS) and several distributed test subsystems (DTS). Then we give a detailed design of the system. For the hardware of the system, we use embedded architecture to design DTS. For the software of the system, we use test program set to improve the test adaption. By deploying the parallel test system, the time to test five devices is now equal to the time to test one device in the past. Compared with the conventional test system, the proposed test system reduces the size and improves testing efficiency. This is of great significance for equipment to be put into operation swiftly. Finally, we take an industrial control system as an example to verify the effectiveness of the proposed method. The result shows that the method is reasonable, and the efficiency is improved up to 500%.

Keywords: parallel test, embedded system, automatic test system, automatic test system (ATS), central management system, central management system (CMS), distributed test subsystems, distributed test subsystems (DTS)

Procedia PDF Downloads 305
18038 150 KVA Multifunction Laboratory Test Unit Based on Power-Frequency Converter

Authors: Bartosz Kedra, Robert Malkowski

Abstract:

This paper provides description and presentation of laboratory test unit built basing on 150 kVA power frequency converter and Simulink RealTime platform. Assumptions, based on criteria which load and generator types may be simulated using discussed device, are presented, as well as control algorithm structure. As laboratory setup contains transformer with thyristor controlled tap changer, a wider scope of setup capabilities is presented. Information about used communication interface, data maintenance, and storage solution as well as used Simulink real-time features is presented. List and description of all measurements are provided. Potential of laboratory setup modifications is evaluated. For purposes of Rapid Control Prototyping, a dedicated environment was used Simulink RealTime. Therefore, load model Functional Unit Controller is based on a PC computer with I/O cards and Simulink RealTime software. Simulink RealTime was used to create real-time applications directly from Simulink models. In the next step, applications were loaded on a target computer connected to physical devices that provided opportunity to perform Hardware in the Loop (HIL) tests, as well as the mentioned Rapid Control Prototyping process. With Simulink RealTime, Simulink models were extended with I/O cards driver blocks that made automatic generation of real-time applications and performing interactive or automated runs on a dedicated target computer equipped with a real-time kernel, multicore CPU, and I/O cards possible. Results of performed laboratory tests are presented. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule.

Keywords: MATLAB, power converter, Simulink Real-Time, thyristor-controlled tap changer

Procedia PDF Downloads 323
18037 Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault

Authors: Yingxin Hui

Abstract:

Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage.

Keywords: bridge engineering, seismic response feature, across faults, rupture directivity effect, fling step

Procedia PDF Downloads 433
18036 Non-Contact Characterization of Standard Liquids Using Waveguide at 12.4 to18 Ghz Frequency Span

Authors: Kasra Khorsand-Kazemi, Bianca Vizcaino, Mandeep Chhajer Jain, Maryam Moradpour

Abstract:

This work presents an approach to characterize a non- contact microwave sensor using waveguides for different standard liquids such as ethanol, methanol and 2-propanol (Isopropyl Alcohol). Wideband waveguides operating between 12.4GHz to 18 GHz form the core of the sensing structure. Waveguides are sensitive to changes in conductivity of the sample under test (SUT), making them an ideal tool to characterize different polar liquids. As conductivity of the sample under test increase, the loss tangent of the material increase, thereby decreasing the S21 (dB) response of the waveguide. Among all the standard liquids measured, methanol exhibits the highest conductivity and 2-Propanol exhibits the lowest. The cutoff frequency measured for ethanol, 2-propanol, and methanol are 10.28 GHz, 10.32 GHz, and 10.38 GHz respectively. The measured results can be correlated with the loss tangent results of the standard liquid measured using the dielectric probe. This conclusively enables us to characterize different liquids using waveguides expanding the potential future applications in domains ranging from water quality management to bio-medical, chemistry and agriculture.

Keywords: Waveguides, , Microwave sensors, , Standard liquids characterization, Non-contact sensing

Procedia PDF Downloads 140
18035 Exploring Reading into Writing: A Corpus-Based Analysis of Postgraduate Students’ Literature Review Essays

Authors: Tanzeela Anbreen, Ammara Maqsood

Abstract:

Reading into writing is one of university students' most required academic skills. The current study explored postgraduate university students’ writing quality using a corpus-based approach. Twelve postgraduate students’ literature review essays were chosen for the corpus-based analysis. These essays were chosen because students had to incorporate multiple reading sources in these essays, which was a new writing exercise for them. The students were provided feedback at least two times which comprised of the written comments by the tutor highlighting the areas of improvement and also by using the ‘track changes’ function. This exercise was repeated two times, and students submitted two drafts. This investigation included only the finally submitted work of the students. A corpus-based approach was adopted to analyse the essays because it promotes autonomous discovery and personalised learning. The aim of this analysis was to understand the existing level of students’ writing before the start of their postgraduate thesis. Text Inspector was used to analyse the quality of essays. With the help of the Text Inspector tool, the vocabulary used in the essays was compared to the English Vocabulary Profile (EVP), which describes what learners know and can do at each Common European Framework of Reference (CEFR) level. Writing quality was also measured for the Flesch reading ease score, which is a standard to describe the ease of understanding the writing content. The results reflected that students found writing essays using multiple sources challenging. In most essays, the vocabulary level achieved was between B1-B2 of the CEFL level. The study recommends that students need extensive training in developing academic writing skills, particularly in writing the literature review type assignment, which requires multiple sources citations.

Keywords: literature review essays, postgraduate students, corpus-based analysis, vocabulary proficiency

Procedia PDF Downloads 73
18034 Early Evaluation of Long-Span Suspension Bridges Using Smartphone Accelerometers

Authors: Ekin Ozer, Maria Q. Feng, Rupa Purasinghe

Abstract:

Structural deterioration of bridge systems possesses an ongoing threat to the transportation networks. Besides, landmark bridges’ integrity and safety are more than sole functionality, since they provide a strong presence for the society and nations. Therefore, an innovative and sustainable method to inspect landmark bridges is essential to ensure their resiliency in the long run. In this paper, a recently introduced concept, smartphone-based modal frequency estimation is addressed, and this paper targets to authenticate the fidelity of smartphone-based vibration measurements gathered from three landmark suspension bridges. Firstly, smartphones located at the bridge mid-span are adopted as portable and standalone vibration measurement devices. Then, their embedded accelerometers are utilized to gather vibration response under operational loads, and eventually frequency domain characteristics are deduced. The preliminary analysis results are compared with the reference publications and high-quality monitoring data to validate the usability of smartphones on long-span landmark suspension bridges. If the technical challenges such as high period of vibration, low amplitude excitation, embedded smartphone sensor features, sampling, and citizen engagement are tackled, smartphones can provide a novel and cost-free crowdsourcing tool for maintenance of these landmark structures. This study presents the early phase findings from three signature structures located in the United States.

Keywords: smart and mobile sensing, structural health monitoring, suspension bridges, vibration analysis

Procedia PDF Downloads 292
18033 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning

Procedia PDF Downloads 297
18032 GPRS Based Automatic Metering System

Authors: Constant Akama, Frank Kulor, Frederick Agyemang

Abstract:

All over the world, due to increasing population, electric power distribution companies are looking for more efficient ways of reading electricity meters. In Ghana, the prepaid metering system was introduced in 2007 to replace the manual system of reading which was fraught with inefficiencies. However, the prepaid system in Ghana is not capable of integration with online systems such as e-commerce platforms and remote monitoring systems. In this paper, we present a design framework for an automatic metering system that can be integrated with e-commerce platforms and remote monitoring systems. The meter was designed using ADE 7755 which reads the energy consumption and the reading is processed by a microcontroller connected to Sim900 General Packet Radio Service module containing a GSM chip provisioned with an Access Point Name. The system also has a billing server and a management server located at the premises of the utility company which communicate with the meter over a Virtual Private Network and GPRS. With this system, customers can buy credit online and the credit will be transferred securely to the meter. Also, when a fault is reported, the utility company can log into the meter remotely through the management server to troubleshoot the problem.

Keywords: access point name, general packet radio service, GSM, virtual private network

Procedia PDF Downloads 299
18031 Preliminary Study on the Removal of Solid Uranium Compound in Nuclear Fuel Production System

Authors: Bai Zhiwei, Zhang Shuxia

Abstract:

By sealing constraint, the system of nuclear fuel production penetrates a trace of air in during its service. The vapor in the air can react with material in the system and generate solid uranium compounds. These solid uranium compounds continue to accumulate and attached to the production equipment and pipeline of system, which not only affects the operation reliability of production equipment and give off radiation hazard as well after system retired. Therefore, it is necessary to select a reasonable method to remove it. Through the analysis of physicochemical properties of solid uranium compounds, halogenated fluoride compounds are selected as a cleaning agent, which can remove solid uranium compounds effectively. This paper studied the related chemical reaction under the condition of static test and results show that the selection of high fluoride halogen compounds can be removed solid uranium compounds completely. The study on the influence of reaction pressure with the reaction rate discovered a phenomenon that the higher the pressure, the faster the reaction rate.

Keywords: fluoride halogen compound, remove, radiation, solid uranium compound

Procedia PDF Downloads 302
18030 Covid-19, Diagnosis with Computed Tomography and Artificial Intelligence, in a Few Simple Words

Authors: Angelis P. Barlampas

Abstract:

Target: The (SARS-CoV-2) is still a threat. AI software could be useful, categorizing the disease into different severities and indicate the extent of the lesions. Materials and methods: AI is a new revolutionary technique, which uses powered computerized systems, to do what a human being does more rapidly, more easily, as accurate and diagnostically safe as the original medical report and, in certain circumstances, even better, saving time and helping the health system to overcome problems, such as work overload and human fatigue. Results: It will be given an effort to describe to the inexperienced reader (see figures), as simple as possible, how an artificial intelligence system diagnoses computed tomography pictures. First, the computerized machine learns the physiologic motives of lung parenchyma by being feeded with normal structured images of the lung tissue. Having being used to recognizing normal structures, it can then easily indentify the pathologic ones, as their images do not fit to known normal picture motives. It is the same way as when someone spends his free time in reading magazines with quizzes, such as <> and <>. General conclusion: The AI mimics the physiological processes of the human mind, but it does that more efficiently and rapidly and provides results in a few seconds, whereas an experienced radiologist needs many days to do that, or even worse, he is unable to accomplish such a huge task.

Keywords: covid-19, artificial intelligence, automated imaging, CT, chest imaging

Procedia PDF Downloads 51
18029 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics

Authors: Mikheil Kalmakhelidze

Abstract:

Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.

Keywords: description logic, fuzzy logic, neural networks, record linkage

Procedia PDF Downloads 272
18028 Smart Lean Manufacturing in the Context of Industry 4.0: A Case Study

Authors: M. Ramadan, B. Salah

Abstract:

This paper introduces a framework to digitalize lean manufacturing tools to enhance smart lean-based manufacturing environments or Lean 4.0 manufacturing systems. The paper discusses the integration between lean tools and the powerful features of recent real-time data capturing systems with the help of Information and Communication Technologies (ICT) to develop an intelligent real-time monitoring and controlling system of production operations concerning lean targets. This integration is represented in the Lean 4.0 system called Dynamic Value Stream Mapping (DVSM). Moreover, the paper introduces the practice of Radio Frequency Identification (RFID) and ICT to smartly support lean tools and practices during daily production runs to keep the lean system alive and effective. This work introduces a practical description of how the lean method tools 5S, standardized work, and poka-yoke can be digitalized and smartly monitored and controlled through DVSM. A framework of the three tools has been discussed and put into practice in a German switchgear manufacturer.

Keywords: lean manufacturing, Industry 4.0, radio frequency identification, value stream mapping

Procedia PDF Downloads 229
18027 National Assessment for Schools in Saudi Arabia: Score Reliability and Plausible Values

Authors: Dimiter M. Dimitrov, Abdullah Sadaawi

Abstract:

The National Assessment for Schools (NAFS) in Saudi Arabia consists of standardized tests in Mathematics, Reading, and Science for school grade levels 3, 6, and 9. One main goal is to classify students into four categories of NAFS performance (minimal, basic, proficient, and advanced) by schools and the entire national sample. The NAFS scoring and equating is performed on a bounded scale (D-scale: ranging from 0 to 1) in the framework of the recently developed “D-scoring method of measurement.” The specificity of the NAFS measurement framework and data complexity presented both challenges and opportunities to (a) the estimation of score reliability for schools, (b) setting cut-scores for the classification of students into categories of performance, and (c) generating plausible values for distributions of student performance on the D-scale. The estimation of score reliability at the school level was performed in the framework of generalizability theory (GT), with students “nested” within schools and test items “nested” within test forms. The GT design was executed via a multilevel modeling syntax code in R. Cut-scores (on the D-scale) for the classification of students into performance categories was derived via a recently developed method of standard setting, referred to as “Response Vector for Mastery” (RVM) method. For each school, the classification of students into categories of NAFS performance was based on distributions of plausible values for the students’ scores on NAFS tests by grade level (3, 6, and 9) and subject (Mathematics, Reading, and Science). Plausible values (on the D-scale) for each individual student were generated via random selection from a statistical logit-normal distribution with parameters derived from the student’s D-score and its conditional standard error, SE(D). All procedures related to D-scoring, equating, generating plausible values, and classification of students into performance levels were executed via a computer program in R developed for the purpose of NAFS data analysis.

Keywords: large-scale assessment, reliability, generalizability theory, plausible values

Procedia PDF Downloads 18
18026 Part of Speech Tagging Using Statistical Approach for Nepali Text

Authors: Archit Yajnik

Abstract:

Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed.

Keywords: hidden markov model, natural language processing, POS tagging, viterbi algorithm

Procedia PDF Downloads 329
18025 Calibration Methods of Direct and Indirect Reading Pressure Sensor and Uncertainty Determination

Authors: Sinem O. Aktan, Musa Y. Akkurt

Abstract:

Experimental pressure calibration methods can be classified into three areas: (1) measurements in liquid or gas systems, (2) measurements in static-solid media systems, and (3) measurements in dynamic shock systems. Fluid (liquid and gas) systems high accuracies can be obtainable and commonly used for the calibration method of a pressure sensor. Pressure calibrations can be performed for metrological traceability in two ways, which are on-site (field) and in the laboratory. Laboratory and on-site calibration procedures and the requirements of the DKD-R-6-1 and Euramet cg-17 guidelines will also be addressed. In this study, calibration methods of direct and indirect reading pressure sensor and measurement uncertainty contributions will be explained.

Keywords: pressure metrology, pressure calibration, dead-weight tester, pressure uncertainty

Procedia PDF Downloads 150
18024 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 63
18023 Estimation of Reservoir Capacity and Sediment Deposition Using Remote Sensing Data

Authors: Odai Ibrahim Mohammed Al Balasmeh, Tapas Karmaker, Richa Babbar

Abstract:

In this study, the reservoir capacity and sediment deposition were estimated using remote sensing data. The satellite images were synchronized with water level and storage capacity to find out the change in sediment deposition due to soil erosion and transport by streamflow. The water bodies spread area was estimated using vegetation indices, e.g., normalize differences vegetation index (NDVI) and normalize differences water index (NDWI). The 3D reservoir bathymetry was modeled by integrated water level, storage capacity, and area. From the models of different time span, the change in reservoir storage capacity was estimated. Another reservoir with known water level, storage capacity, area, and sediment deposition was used to validate the estimation technique. The t-test was used to assess the results between observed and estimated reservoir capacity and sediment deposition.

Keywords: satellite data, normalize differences vegetation index, NDVI, normalize differences water index, NDWI, reservoir capacity, sedimentation, t-test hypothesis

Procedia PDF Downloads 167
18022 Factors Affecting Test Automation Stability and Their Solutions

Authors: Nagmani Lnu

Abstract:

Test automation is a vital requirement of any organization to release products faster to their customers. In most cases, an organization has an approach to developing automation but struggles to maintain it. It results in an increased number of Flaky Tests, reducing return on investments and stakeholders’ confidence. Challenges grow in multiple folds when automation is for UI behaviors. This paper describes the approaches taken to identify the root cause of automation instability in an extensive payments application and the best practices to address that using processes, tools, and technologies, resulting in a 75% reduction of effort.

Keywords: automation stability, test stability, Flaky Test, test quality, test automation quality

Procedia PDF Downloads 84
18021 The Role of Structure Input in Pi in the Acquisition of English Relative Clauses by L1 Saudi Arabic Speakers

Authors: Faraj Alhamami

Abstract:

The effects of classroom input through structured input activities have been addressing two main lines of inquiry: (1) measuring the effects of structured input activities as a possible causative factor of PI and (2) comparing structured input practice versus other types of instruction or no-training controls. This line of research, the main purpose of this classroom-based research, was to establish which type of activities is the most effective in processing instruction, whether it is the explicit information component and referential activities only or the explicit information component and affective activities only or a combination of the two. The instruments were: a) grammatical judgment task, b) Picture-cued task, and c) a translation task as pre-tests, post-tests and delayed post-tests seven weeks after the intervention. While testing is ongoing, preliminary results shows that the examination of participants' pre-test performance showed that all five groups - the processing instruction including both activities (RA), Traditional group (TI), Referential group (R), Affective group (A), and Control group - performed at a comparable chance or baseline level across the three outcome measures. However, at the post-test stage, the RA, TI, R, and A groups demonstrated significant improvement compared to the Control group in all tasks. Furthermore, significant difference was observed among PI groups (RA, R, and A) at post-test and delayed post-test on some of the tasks when compared to traditional group. Therefore, the findings suggest that the use of the sole application and/or the combination of the structured input activities has succeeded in helping Saudi learners of English make initial form-meaning connections and acquire RRCs in the short and the long term.

Keywords: input processing, processing instruction, MOGUL, structure input activities

Procedia PDF Downloads 79
18020 Difference between Riding a Bicycle on a Sidewalk or in the Street by Usual Traveling Means

Authors: Ai Fujii, Kan Shimazaki

Abstract:

Bicycle users must ride on the street according the law in Japan, but in practice, many bicycle users ride on the sidewalk. Drivers generally feel that bicycles riding in the street are in the way. In contrast, pedestrians generally feel that bicycles riding on the sidewalk are in the way. That seems to make sense. What, then, is the difference between riding a bicycle on the sidewalk or in the street by usual traveling means. We made 3D computer graphics models of pedestrians, a car, and a bicycle at an intersection. The bicycle was positioned to choose between advancing to the sidewalk or the street after a few seconds. We then made a 2D stimulus picture by changing the point of view of the 3DCG model pictures. Attitudes were surveyed using this 2D stimulus picture, and we compared attitudes between three groups, people traveling by car, on foot, or by bicycle. Here we report the survey result.

Keywords: bicycle, sidewalk, pedestrians, driver, intersection, safety

Procedia PDF Downloads 180
18019 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations

Authors: Zhao Gao, Eran Edirisinghe

Abstract:

The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.

Keywords: RNN, GAN, NLP, facial composition, criminal investigation

Procedia PDF Downloads 161
18018 The Application of Sensory Integration Techniques in Science Teaching Students with Autism

Authors: Joanna Estkowska

Abstract:

The Sensory Integration Method is aimed primarily at children with learning disabilities. It can also be used as a complementary method in treatment of children with cerebral palsy, autistic, mentally handicapped, blind and deaf. Autism is holistic development disorder that manifests itself in the specific functioning of a child. The most characteristic are: disorders in communication, difficulties in social relations, rigid patterns of behavior and impairment in sensory processing. In addition to these disorders may occur abnormal intellectual development, attention deficit disorders, perceptual disorders and others. This study was focused on the application sensory integration techniques in science education of autistic students. The lack of proper sensory integration causes problems with complicated processes such as motor coordination, movement planning, visual or auditory perception, speech, writing, reading or counting. Good functioning and cooperation of proprioceptive, tactile and vestibular sense affect the child’s mastery of skills that require coordination of both sides of the body and synchronization of the cerebral hemispheres. These include, for example, all sports activities, precise manual skills such writing, as well as, reading and counting skills. All this takes place in stages. Achieving skills from the first stage determines the development of fitness from the next level. Any deficit in the scope of the first three stages can affect the development of new skills. This ultimately reflects on the achievements at school and in further professional and personal life. After careful analysis symptoms from the emotional and social spheres appear to be secondary to deficits of sensory integration. During our research, the students gained knowledge and skills in the classroom of experience by learning biology, chemistry and physics with application sensory integration techniques. Sensory integration therapy aims to teach the child an adequate response to stimuli coming to him from both the outside world and the body. Thanks to properly selected exercises, a child can improve perception and interpretation skills, motor skills, coordination of movements, attention and concentration or self-awareness, as well as social and emotional functioning.

Keywords: autism spectrum disorder, science education, sensory integration, special educational needs

Procedia PDF Downloads 184
18017 The Effect of Using LDOCE on Iranian EFL Learners’ Pronunciation Accuracy

Authors: Mohammad Hadi Mahmoodi, Elahe Saedpanah

Abstract:

Since pronunciation is among those factors that can have strong effects on EFL learners’ successful communication, instructional programs with accurate pronunciation purposes seem to be a necessity in any L2 teaching context. The widespread use of smart mobile phones brings with itself various educational applications, which can assist foreign language learners in learning and speaking another language other than their L1. In line with this supportive innovation, the present study investigated the role of LDOCE (Longman Dictionary of Contemporary English), a mobile application, on improving Iranian EFL learners’ pronunciation accuracy. To this aim, 40 EFL learners studying English at the intermediate level participated in the current study. This was an experimental research with two groups of 20 students in an experimental and a control group. The data were collected through the administration of a pronunciation pretest before the instruction and a post-test after the treatment. In addition, the assessment was based on the pupils’ recorded voices while reading the selected words. The results of the independent samples t-test indicated that using LDOCE significantly affected Iranian EFL learners' pronunciation accuracy with those in the experimental group outperforming their control group counterparts.

Keywords: LDOCE, EFL learners, pronunciation accuracy, CALL, MALL

Procedia PDF Downloads 548
18016 Energy Consumption Forecast Procedure for an Industrial Facility

Authors: Tatyana Aleksandrovna Barbasova, Lev Sergeevich Kazarinov, Olga Valerevna Kolesnikova, Aleksandra Aleksandrovna Filimonova

Abstract:

We regard forecasting of energy consumption by private production areas of a large industrial facility as well as by the facility itself. As for production areas the forecast is made based on empirical dependencies of the specific energy consumption and the production output. As for the facility itself implementation of the task to minimize the energy consumption forecasting error is based on adjustment of the facility’s actual energy consumption values evaluated with the metering device and the total design energy consumption of separate production areas of the facility. The suggested procedure of optimal energy consumption was tested based on the actual data of core product output and energy consumption by a group of workshops and power plants of the large iron and steel facility. Test results show that implementation of this procedure gives the mean accuracy of energy consumption forecasting for winter 2014 of 0.11% for the group of workshops and 0.137% for the power plants.

Keywords: energy consumption, energy consumption forecasting error, energy efficiency, forecasting accuracy, forecasting

Procedia PDF Downloads 446
18015 The Influence of Emotion on Numerical Estimation: A Drone Operators’ Context

Authors: Ludovic Fabre, Paola Melani, Patrick Lemaire

Abstract:

The goal of this study was to test whether and how emotions influence drone operators in estimation skills. The empirical study was run in the context of numerical estimation. Participants saw a two-digit number together with a collection of cars. They had to indicate whether the stimuli collection was larger or smaller than the number. The two-digit numbers ranged from 12 to 27, and collections included 3-36 cars. The presentation of the collections was dynamic (each car moved 30 deg. per second on the right). Half the collections were smaller collections (including fewer than 20 cars), and the other collections were larger collections (i.e., more than 20 cars). Splits between the number of cars in a collection and the two-digit number were either small (± 1 or 2 units; e.g., the collection included 17 cars and the two-digit number was 19) or larger (± 8 or 9 units; e.g., 17 cars and '9'). Half the collections included more items (and half fewer items) than the number indicated by the two-digit number. Before and after each trial, participants saw an image inducing negative emotions (e.g., mutilations) or neutral emotions (e.g., candle) selected from International Affective Picture System (IAPS). At the end of each trial, participants had to say if the second picture was the same as or different from the first. Results showed different effects of emotions on RTs and percent errors. Participants’ performance was modulated by emotions. They were slower on negative trials compared to the neutral trials, especially on the most difficult items. They errored more on small-split than on large-split problems. Moreover, participants highly overestimated the number of cars when in a negative emotional state. These findings suggest that emotions influence numerical estimation, that effects of emotion in estimation interact with stimuli characteristics. They have important implications for understanding the role of emotions on estimation skills, and more generally, on how emotions influence cognition.

Keywords: drone operators, emotion, numerical estimation, arithmetic

Procedia PDF Downloads 116
18014 Comprehensive Assessment of Energy Efficiency within the Production Process

Authors: S. Kreitlein, N. Eder, J. Franke

Abstract:

The importance of energy efficiency within the production process increases steadily. Unfortunately, so far no tools for a comprehensive assessment of energy efficiency within the production process exist. Therefore the Institute for Factory Automation and Production Systems of the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency: EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state of the art as well as the developed approaches.

Keywords: energy efficiency, energy efficiency value, energetic process efficiency, production

Procedia PDF Downloads 733
18013 A Stylistic Analysis of the Short Story ‘The Escape’ by Qaisra Shahraz

Authors: Huma Javed

Abstract:

Stylistics is a broad term that is concerned with both literature and linguistics, due to which the significance of the stylistics increases. This research aims to analyze Qaisra Shahraz's short story ‘The Escape’ from the stylistic analysis viewpoint. The focus of this study is on three aspects grammar category, lexical category, and figure of speech of the short story. The research designs for this article are both explorative and descriptive. The analysis of the data shows that the writer has used more nouns in the story as compared to other lexical items, which suggests that story has a descriptive style rather than narrative.

Keywords: The Escape, stylistics, grammatical category, lexical category, figure of speech

Procedia PDF Downloads 237
18012 Generalized Mathematical Description and Simulation of Grid-Tied Thyristor Converters

Authors: V. S. Klimash, Ye Min Thu

Abstract:

Thyristor rectifiers, inverters grid-tied, and AC voltage regulators are widely used in industry, and on electrified transport, they have a lot in common both in the power circuit and in the control system. They have a common mathematical structure and switching processes. At the same time, the rectifier, but the inverter units and thyristor regulators of alternating voltage are considered separately both theoretically and practically. They are written about in different books as completely different devices. The aim of this work is to combine them into one class based on the unity of the equations describing electromagnetic processes, and then, to show this unity on the mathematical model and experimental setup. Based on research from mathematics to the product, a conclusion is made about the methodology for the rapid conduct of research and experimental design work, preparation for production and serial production of converters with a unified bundle. In recent years, there has been a transition from thyristor circuits and transistor in modular design. Showing the example of thyristor rectifiers and AC voltage regulators, we can conclude that there is a unity of mathematical structures and grid-tied thyristor converters.

Keywords: direct current, alternating current, rectifier, AC voltage regulator, generalized mathematical model

Procedia PDF Downloads 250