Search results for: materials testing
2450 Synthetic Access to Complex Metal Carbonates and Hydroxycarbonates via Sol-Gel Chemistry
Authors: Schirin Hanf, Carlos Lizandara-Pueyo, Timmo P. Emmert, Ivana Jevtovikj, Roger Gläser, Stephan A. Schunk
Abstract:
Metal alkoxides are very versatile precursors for a broad array of complex functional materials. However, metal alkoxides, especially transition metal alkoxides, tend to form oligomeric structures due to the very strong M–O–M binding motif. This fact hinders their facile application in sol-gel-processes and complicates access to complex carbonate or oxidic compounds after hydrolysis of the precursors. Therefore, the development of a synthetic alternative with the aim to grant access to carbonates and hydroxycarbonates from simple metal alkoxide precursors via hydrolysis is key to this project. Our approach involves the reaction of metal alkoxides with unsaturated isoelectronic molecules, such as carbon dioxide. Subsequently, a stoichiometric insertion of the CO₂ into the alkoxide M–O bond takes place and leads to the formation of soluble metal alkyl carbonates. This strategy is a very elegant approach to solubilize metal alkoxide precursors to make them accessible for sol-gel chemistry. After hydrolysis of the metal alkyl carbonates, crystalline metal carbonates, and hydroxycarbonates can be obtained, which were then utilized for the synthesis of Cu/Zn based bulk catalysts for methanol synthesis. Using these catalysts, a comparable catalytic activity to commercially available MeOH catalysts could be reached. Based on these results, a complement for traditional precipitation techniques, which are usually utilized for the synthesis of bulk methanol catalysts, have been found based on an alternative solubilization strategy.Keywords: metal alkoxides, metal carbonates, metal hydroxycarbonates, CO₂ insertion, solubilization
Procedia PDF Downloads 1852449 Silica Sulfuric Acid as an Efficient Catalyst One-Pot Three-Component Aza-Friedel-Crafts Reactions of 2-(thiophen-2-yl)-1H-Indole, Aldehydes, and N-Substituted Anilines
Authors: Nagwa Mourad Abdelazeem, Marwa El-hussieny
Abstract:
Multicomponent reactions (MCRs), one-pot reactions form products from more than two different starting compounds. (MCRs) are ideal reaction systems leading to high structural diversity and molecular complexity through a single transformation. (MCRs) have a lot of advantage such as higher yield, less waste generation, use of readily available starting materials and high atom. (MCRs) provide a rapid process for efficient synthesis of key structures in discovery of drug on the other hand silica sulfuric acid (SSA) has been used as an efficient heterogeneous catalyst for many organic transformations. (SSA) is low cost, ease of preparation, catalyst recycling, and ease of handling, so in this article we used 2-(thiophen-2-yl)-1H-indole, N-substituted anilines and aldehyde in the presence of silica sulfuric acid (SSA) as a catalyst in water as solvent at room temperature to prepare 3,3'-(phenylmethylene)bis(2-(thiophen-2-yl)-1H-indole) and N-methyl-4-(phenyl(2-(thiophen-2-yl)-1H-indol-3-yl)methyl)aniline derivatives Via one-pot reaction. Compound 2-(thiophen-2-yl)-1H-indole belongs to the ubiquitous class of indoles which enjoy broad synthetic, biological and industrial applications ]. Cancer is considered the first or second most common reason of death all through the world. So the synthesized compounds will be tested as anticancer. We expected the synthesized compounds will give good results comparison to the reference drug.Keywords: aldehydes, aza-friedel-crafts reaction, indole, multicomponent reaction
Procedia PDF Downloads 942448 Influence of Dental Midline Deviation with Respect to Facial Flow Line on Smile Esthetics – A Cross-sectional Study
Authors: Kanza Tahir, Mubassar Fida, Rashna Hoshang Sukhia
Abstract:
Background/Objective: A contemporary concept states that dental midline deviation towards the direction of facial flow line (FFL) can mask the compromised smile esthetics. This study aimed to identify a range of midline deviations that can be perceived towards or away from the FFL influencing smile esthetics. Materials and methods: A cross-sectional study was conducted using a frontal smile photograph of an adult female. The photograph was altered on Adobe Photoshop software into six different photographs by deviating the dental midlines towards and away from the FFL. A constant deviation of the chin towards the left side was incorporated in all the photographs. Forty-three laypersons (LP)and dental professionals (DPs) evaluated those photographs onVisual Analog Scale (VAS). An Independent t-test was used to compare the perception of dental midline deviation between LP and DPs. Simple linear regression was run to identify the factors associated with the VAS scoring. Results: A statistically significant difference was observed for picture two with 4 mm towards FFL in the perception of midline deviation between LP and DPs. LP could not perceive the midline deviations up to 4 mm, while DPs were able to perceive deviations above 2 mm. Age was positively associated with the VAS score, while the female gender had a negative association. Limitations: Only one component of mini-esthetics was studied. This study did not include an ideal picture for comparison. Only one female subject was studied of normal facial type. Conclusions: 2-4 mm of midline deviation towards the facial flow line can be tolerated by laypersons and dental professionals.Keywords: midline, facial flow line, smile esthetics, female
Procedia PDF Downloads 892447 Comparison between Infusion Pumps: Fentanyl/Ketamine and Fentanyl/Paracetamol in Pain Control Following Tight and Leg Surgeries
Authors: Maryam Panahi
Abstract:
Background: Adjuvants such as ketamine, promethazine, and paracetamol could bring up patient's satisfaction and control the harmful effects of opioids besides lessening their needed doses, as seen by the fentanyl/paracetamol and fentanyl/ketamine combination before. The current study is headed to compare paracetamol and ketamine, in addition to fentanyl, applied by infusion pumps in order to pain relief following major surgery. Materials and Methods: Through a double-blinded, randomized clinical trial, patients between18 and 65 with elective surgery for tight or leg fractures with ASA Class 1 and 2 referred to a university hospital in Arak, a town in the central region of Iran, were recruited and used infusion pump for their postoperative pain control. The participants were divided into cases and controls regarding using ketamine/fentanyl (KF) or paracetamol/fentanyl (PF) infusion pumps. Results: The mean pain score was a total of 3.87, with the highest value in KF (5.06) and the lowest in PF (4.50) immediately after finishing the surgery and getting conscious when started using an infusion pump. There was no statistical difference between the groups in this regard. Concerning the side effects of the applied medications, blood pressure and heart rate had no differences comparing the groups. Conclusion: This study showed that paracetamol used in infusion pumps could be brilliant in pain control after major surgeries like those done in lower extremities and joint replacement while lessening opioid use. Although paracetamol was more effective than ketamine in the current trial, more qualified studies at bigger sizes and in other fields of surgery besides orthopedic ones would be useful to support the effects if applicableKeywords: infusion pump, Ketamine, Paracetamol, pain
Procedia PDF Downloads 542446 Contributing Factors to Building Failures and Defects in the Nigerian Construction Industry
Authors: Ndibarafinia Tobin
Abstract:
Building defect and failure are common phenomena in the Nigerian construction industry. The activities of the inexperienced labor force in the Nigerian construction industry have tarnished the image of practicing construction professionals in recent past. Defects and collapse can cause unnecessary expenditure, delays, loss of lives, property and left many people injured. They are also generating controversies among parties involved. Also, if this situation is left unanswered and untreated, it will lead to more serious problems in the future upcoming construction projects in Nigeria. Quite a number of factors are responsible for collapse of high-rise, reinforced concrete buildings in Nigeria. Government, professional bodies and stakeholders are asking countless questions as to who should be responsible and how solutions could be proffered. Therefore this study is aimed to identify the contributing factors to high-rise buildings defects and failures in Nigeria, which frequently occur in construction project in order to minimize time and cost and also the roles of professionals and other participants play in the industry in terms of the use of building materials, placement and curing of concrete, modification in the use of a building, collapse of building induced by fire and other causes. The data is collected from questionnaire from various players in construction industry in Nigeria. This study is succeeds in identifying the causes of building failure and also suggesting possible measures to be taken by government and other regulatory bodies in the building industry to avert this and also improve the effectiveness of managing appraisal process of failures and defects in the future.Keywords: building defects, building failures, Nigerian construction industry, professionals
Procedia PDF Downloads 2952445 Affectivity of Smoked Edible Sachet in Preventing Oxidation of Natural Condiment Stored in Ambient Temperature
Authors: Feny Mentang, Roike Iwan Montolalu, Henny Adeleida Dien, Kristhina P. Rahael, Tomy Moga, Ayub Meko, Siegfried Berhimpon
Abstract:
Smoked fish is one of the famous fish products in North Sulawesi, Indonesia. Research in producing smoked fish using smoke liquid, and the use of that product as main taste for a new “natural condiment” have been done, including a series of researches to find materials for sachet. Research aims are to determine the effectiveness of smoked edible sachets, in preventing oxidation of natural condiment, stored in ambient temperature. Two kinds of natural condiment flavors were used, i.e. smoked Skipjack flavor, and Sea Food flavor. Three variables of edible sachets were used for the natural condiments, i.e. non-sachet, edible sachet without smoke liquid, and edible sachet with smoke liquid. The natural condiments were then stored in ambient temperature, for 0, 10, 20, and 30 days. To determine the effectiveness of edible sachets in preventing oxidation, analysis of TBA, water content, and pH were conducted. The results shown that natural condiment with smoked seafood taste had TBA values higher than that of smoked Skipjack. Edible sachet gave a highly significant effect (P > 0.01) on TBA. Natural condiment in smoked edible sachet has a lower TBA than natural condiment non-sachet, and with sachet without smoke liquid. The longer storing time, the higher TBA, especially for non-sachet and with sachet without smoke liquid. There were no significant effect (P > 0.05) of edible sachet on water content and pH.Keywords: edible sachet, smoke liquid, natural condiment, oxidation
Procedia PDF Downloads 5112444 Modification of Date Palm Leaflets Fibers Used as Thermoplastic Reinforcement
Authors: K. Almi, S.Lakel, A. Benchabane, A. Kriker
Abstract:
The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. This paper is an investigation of effect of different treatment process on the mechanical proprieties and on the thermal stability of date palm leaflets fibers with a view to improve the date palm fiber proprieties used as reinforcement of thermoplastic materials which main processes require extrusion, hot press. To compare the effect of alkali and acid treatment on the date palm leaflets fiber properties, different treatment were used such as Sodium hydroxide NaOH solution, aluminium chloride AlCl3 and acid treatment with HCL solution. All treatments were performed at 70°C for 4h and 48 h. The mechanical performance (tensile strength and elongation) is affected by immersion time in alkaline and acid solutions. The reduction of the tensile strength and elongation of fibers at 48h was higher in acid treatment than in alkali treatment at high concentration. No significant differences were observed in mechanical and thermal proprieties of raw fibers and fibers submerged in AlCl3 at low concentration 1% for 48h. Fibers treated by NaOH at 6% for 4h showed significant increase in the mechanical proprieties and thermal stability of date palm leaflets fibers. Hence, soda treatment is necessary to improve the fibers proprieties and consequently optimize the composite performance.Keywords: date palm fibers, surface treatments, thermoplastic composites, thermal analysis
Procedia PDF Downloads 3402443 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time
Authors: Xinwen Zhu, Xingguang Li, Sun Yi
Abstract:
Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.Keywords: LiDAR, depth camera, real-time, detection and measurement
Procedia PDF Downloads 2222442 Composite Laminate and Thin-Walled Beam Correlations for Aircraft Wing Box Design
Authors: S. J. M. Mohd Saleh, S. Guo
Abstract:
Composite materials have become an important option for the primary structure of aircraft due to their design flexibility and ability to improve the overall performance. At present, the option for composite usage in aircraft component is largely based on experience, knowledge, benchmarking and partly market driven. An inevitable iterative design during the design stage and validation process will increase the development time and cost. This paper aims at presenting the correlation between laminate and composite thin-wall beam structure, which contains the theoretical and numerical investigations on stiffness estimation of composite aerostructures with applications to aircraft wings. Classical laminate theory and thin-walled beam theory were applied to define the correlation between 1-dimensional composite laminate and 2-dimensional composite beam structure, respectively. Then FE model was created to represent the 3-dimensional structure. A detailed study on stiffness matrix of composite laminates has been carried out to understand the effects of stacking sequence on the coupling between extension, shear, bending and torsional deformation of wing box structures for 1-dimensional, 2-dimensional and 3-dimensional structures. Relationships amongst composite laminates and composite wing box structures of the same material have been developed in this study. These correlations will be guidelines for the design engineers to predict the stiffness of the wing box structure during the material selection process and laminate design stage.Keywords: aircraft design, aircraft structures, classical lamination theory, composite structures, laminate theory, structural design, thin-walled beam theory, wing box design
Procedia PDF Downloads 2322441 Bacterial Exposure and Microbial Activity in Dental Clinics during Cleaning Procedures
Authors: Atin Adhikari, Sushma Kurella, Pratik Banerjee, Nabanita Mukherjee, Yamini M. Chandana Gollapudi, Bushra Shah
Abstract:
Different sharp instruments, drilling machines, and high speed rotary instruments are routinely used in dental clinics during dental cleaning. Therefore, these cleaning procedures release a lot of oral microorganisms including bacteria in clinic air and may cause significant occupational bioaerosol exposure risks for dentists, dental hygienists, patients, and dental clinic employees. Two major goals of this study were to quantify volumetric airborne concentrations of bacteria and to assess overall microbial activity in this type of occupational environment. The study was conducted in several dental clinics of southern Georgia and 15 dental cleaning procedures were targeted for sampling of airborne bacteria and testing of overall microbial activity in settled dusts over clinic floors. For air sampling, a Biostage viable cascade impactor was utilized, which comprises an inlet cone, precision-drilled 400-hole impactor stage, and a base that holds an agar plate (Tryptic soy agar). A high-flow Quick-Take-30 pump connected to this impactor pulls microorganisms in air at 28.3 L/min flow rate through the holes (jets) where they are collected on the agar surface for approx. five minutes. After sampling, agar plates containing the samples were placed in an ice chest with blue ice and plates were incubated at 30±2°C for 24 to 72 h. Colonies were counted and converted to airborne concentrations (CFU/m3) followed by positive hole corrections. Most abundant bacterial colonies (selected by visual screening) were identified by PCR amplicon sequencing of 16S rRNA genes. For understanding overall microbial activity in clinic floors and estimating a general cleanliness of the clinic surfaces during or after dental cleaning procedures, ATP levels were determined in swabbed dust samples collected from 10 cm2 floor surfaces. Concentration of ATP may indicate both the cell viability and the metabolic status of settled microorganisms in this situation. An ATP measuring kit was used, which utilized standard luciferin-luciferase fluorescence reaction and a luminometer, which quantified ATP levels as relative light units (RLU). Three air and dust samples were collected during each cleaning procedure (at the beginning, during cleaning, and immediately after the procedure was completed (n = 45). Concentrations at the beginning, during, and after dental cleaning procedures were 671±525, 917±1203, and 899±823 CFU/m3, respectively for airborne bacteria and 91±101, 243±129, and 139±77 RLU/sample, respectively for ATP levels. The concentrations of bacteria were significantly higher than typical indoor residential environments. Although an increasing trend for airborne bacteria was observed during cleaning, the data collected at three different time points were not significantly different (ANOVA: p = 0.38) probably due to high standard deviations of data. The ATP levels, however, demonstrated a significant difference (ANOVA: p <0.05) in this scenario indicating significant change in microbial activity on floor surfaces during dental cleaning. The most common bacterial genera identified were: Neisseria sp., Streptococcus sp., Chryseobacterium sp., Paenisporosarcina sp., and Vibrio sp. in terms of frequencies of occurrences, respectively. The study concluded that bacterial exposure in dental clinics could be a notable occupational biohazard, and appropriate respiratory protections for the employees are urgently needed.Keywords: bioaerosols, hospital hygiene, indoor air quality, occupational biohazards
Procedia PDF Downloads 3102440 Synthesis and Tribological Properties of the Al-Cr-N/MoS₂ Self-Lubricating Coatings by Hybrid Magnetron Sputtering
Authors: Tie-Gang Wang, De-Qiang Meng, Yan-Mei Liu
Abstract:
Ternary AlCrN coatings were widely used to prolong cutting tool life because of their high hardness and excellent abrasion resistance. However, the friction between the workpiece and cutter surface was increased remarkably during machining difficult-to-cut materials (such as superalloy, titanium, etc.). As a result, a lot of cutting heat was generated and cutting tool life was shortened. In this work, an appropriate amount of solid lubricant MoS₂ was added into the AlCrN coating to reduce the friction between the tool and the workpiece. A series of Al-Cr-N/MoS₂ self-lubricating coatings with different MoS₂ contents were prepared by high power impulse magnetron sputtering (HiPIMS) and pulsed direct current magnetron sputtering (Pulsed DC) compound system. The MoS₂ content in the coatings was changed by adjusting the sputtering power of the MoS₂ target. The composition, structure and mechanical properties of the Al-Cr-N/MoS2 coatings were systematically evaluated by energy dispersive spectrometer, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometer, nano-indenter tester, scratch tester, and ball-on-disk tribometer. The results indicated the lubricant content played an important role in the coating properties. As the sputtering power of the MoS₂ target was 0.1 kW, the coating possessed the highest hardness 14.1GPa, the highest critical load 44.8 N, and the lowest wear rate 4.4×10−3μm2/N.Keywords: self-lubricating coating, Al-Cr-N/MoS₂ coating, wear rate, friction coefficient
Procedia PDF Downloads 1312439 Efficient Delivery of Biomaterials into Living Organism by Using Noble Metal Nanowire Injector
Authors: Kkochorong Park, Keun Cheon Kim, Hyoban Lee, Eun Ju Lee, Bongsoo Kim
Abstract:
Introduction of biomaterials such as DNA, RNA, proteins is important for many research areas. There are many methods to introduce biomaterials into living organisms like tissue and cells. To introduce biomaterials, several indirect methods including virus‐mediated delivery, chemical reagent (i.e., lipofectamine), electrophoresis have been used. Such methods are passive delivery using an endocytosis process of cell, reducing an efficiency of delivery. Unlike the indirect delivery method, it has been reported that a direct delivery of exogenous biomolecules into nucleus have been more efficient to expression or integration of biomolecules. Nano-sized material is beneficial for detect signal from cell or deliver stimuli/materials into the cell at cellular and molecular levels, due to its similar physical scale. Especially, because 1 dimensional (1D) nanomaterials such as nanotube, nanorod and nanowire with high‐aspect ratio have nanoscale geometry and excellent mechanical, electrical, and chemical properties, they could play an important role in molecular and cellular biology. In this study, by using single crystalline 1D noble metal nanowire, we fabricated nano-sized 1D injector which can successfully interface with living cells and directly deliver biomolecules into several types of cell line (i.e., stem cell, mammalian embryo) without inducing detrimental damages on living cell. This nano-bio technology could be a promising and robust tool for introducing exogenous biomaterials into living organism.Keywords: DNA, gene delivery, nanoinjector, nanowire
Procedia PDF Downloads 2732438 Early Initiation of Breastfeeding and Its Determinants among Non-Caesarean Deliveries at Primary and Secondary Health Facilities: A Case Observational Study
Authors: Farhana Karim, Abdullah N. S. Khan, Mohiuddin A. K. Chowdhury, Nabila Zaka, Alexander Manu, Shams El Arifeen, Sk Masum Billah
Abstract:
Breastfeeding, an integral part of newborn care, can reduce 55-87% of all-cause neonatal mortality and morbidity. Early initiation of breastfeeding within 1 hour of birth can avert 22% of newborn mortality. Only 45% of world’s newborns and 42% of newborns in South-Asia are put to the breast within one hour of birth. In Bangladesh, only a half of the mothers practice early initiation of breastfeeding which is less likely to be practiced if the baby is born in a health facility. This study aims to generate strong evidence for early initiation of breastfeeding practices in the government health facilities and to explore the associated factors influencing the practice. The study was conducted in selected health facilities in three neighbouring districts of Northern Bangladesh. Total 249 normal vaginal delivery cases were observed for 24 hours since the time of birth. The outcome variable was initiation of breastfeeding within 1 hour while the explanatory variables included type of health facility, privacy, presence of support person, stage of labour at admission, need for augmentation of labour, complications during delivery, need for episiotomy, spontaneous cry of the newborn, skin-to-skin contact with mother, post-natal contact with the service provider, receiving a post-natal examination and counselling on breastfeeding during postnatal contact. The simple descriptive statistics were employed to see the distribution of samples according to socio-demographic characteristics. Kruskal-Wallis test was carried out for testing the equality of medians among two or more categories of each variable and P-value is reported. A series of simple logistic regressions were conducted with all the potential explanatory variables to identify the determining factors for breastfeeding within 1 hour in a health facility. Finally, multiple logistic regression was conducted including the variables found significant at bi-variate analyses. Almost 90% participants initiated breastfeeding at the health facility and median time to initiate breastfeeding was 38 minutes. However, delivering in a sub-district hospital significantly delayed the breastfeeding initiation in comparison to delivering in a district hospital. Maintenance of adequate privacy and presence of separate staff for taking care of newborn significantly reduced the time in early breastfeeding initiation. Initiation time was found longer if the mother had an augmented labour, obstetric complications, and the newborn needed resuscitation. However, the initiation time was significantly early if the baby was put skin-to-skin on mother’s abdomen and received a postnatal examination by a provider. After controlling for the potential confounders, the odds of initiating breastfeeding within one hour of birth is higher if mother gives birth in a district hospital (AOR 3.0: 95% CI 1.5, 6.2), privacy is well-maintained (AOR 2.3: 95% CI 1.1, 4.5), babies cry spontaneously (AOR 7.7: 95% CI 3.3, 17.8), babies are put to skin-to-skin contact with mother (AOR 4.6: 95% CI 1.9, 11.2) and if the baby is examined by a provider in the facility (AOR 4.4: 95% CI 1.4, 14.2). The evidence generated by this study will hopefully direct the policymakers to identify and prioritize the scopes for creating and supporting early initiation of breastfeeding in the health facilities.Keywords: Bangladesh, early initiation of breastfeeding, health facility, normal vaginal delivery, skin to skin contact
Procedia PDF Downloads 1512437 Monodisperse Hallow Sandwich MOF for the Catalytic Oxidation of Benzene at Room Temperature
Authors: Srinivasapriyan Vijayan
Abstract:
Phenol is one of the most vital chemical in industry. Nowadays, phenol production is based upon the three-step cumene process, which involves a hazardous cumene hydroperoxide intermediate and produces nearly equimolar amounts of acetone as a coproduct. An attractive route in phenol production is the direct one-step selective hydroxylation of benzene using eco-friendly oxidants such as O2, N2O, and H2O2. In particular, the direct hydroxylation of benzene to form phenol with O2 has recently attracted extensive research attention because this process is green clean and eco-friendly. However, most of the catalytic systems involving O2 have a low rate of hydroxylation because the direct introduction of hydroxyl functionality into benzene is challenging. Almost all the developed catalytic systems require an elevated temperature and suffer from low conversion because of the notoriously low reactivity of aromatic C–H bonds. Moreover, increased reactivity of phenol relative to benzene makes the selective oxidation of benzene to phenol very difficult, especially under heating conditions. Hollow spheres, a very fascinating class of materials with good permeation and low density, highly monodisperse MOF hollow sandwich spheres have been rationally synthesized using monodisperse polystyrene (PS) nanoparticles as templates through a versatile step-by-step self-assembly strategy. So, our findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis. Because it is easy post-reaction separation, its cheap, green and recyclable.Keywords: benzene hydroxylation, Fe-based metal organic frameworks, molecular oxygen, phenol
Procedia PDF Downloads 2132436 Functional Plasma-Spray Ceramic Coatings for Corrosion Protection of RAFM Steels in Fusion Energy Systems
Authors: Chen Jiang, Eric Jordan, Maurice Gell, Balakrishnan Nair
Abstract:
Nuclear fusion, one of the most promising options for reliably generating large amounts of carbon-free energy in the future, has seen a plethora of ground-breaking technological advances in recent years. An efficient and durable “breeding blanket”, needed to ensure a reactor’s self-sufficiency by maintaining the optimal coolant temperature as well as by minimizing radiation dosage behind the blanket, still remains a technological challenge for the various reactor designs for commercial fusion power plants. A relatively new dual-coolant lead-lithium (DCLL) breeder design has exhibited great potential for high-temperature (>700oC), high-thermal-efficiency (>40%) fusion reactor operation. However, the structural material, namely reduced activation ferritic-martensitic (RAFM) steel, is not chemically stable in contact with molten Pb-17%Li coolant. Thus, to utilize this new promising reactor design, the demand for effective corrosion-resistant coatings on RAFM steels represents a pressing need. Solution Spray Technologies LLC (SST) is developing a double-layer ceramic coating design to address the corrosion protection of RAFM steels, using a novel solution and solution/suspension plasma spray technology through a US Department of Energy-funded project. Plasma spray is a coating deposition method widely used in many energy applications. Novel derivatives of the conventional powder plasma spray process, known as the solution-precursor and solution/suspension-hybrid plasma spray process, are powerful methods to fabricate thin, dense ceramic coatings with complex compositions necessary for the corrosion protection in DCLL breeders. These processes can be used to produce ultra-fine molten splats and to allow fine adjustment of coating chemistry. Thin, dense ceramic coatings with chosen chemistry for superior chemical stability in molten Pb-Li, low activation properties, and good radiation tolerance, is ideal for corrosion-protection of RAFM steels. A key challenge is to accommodate its CTE mismatch with the RAFM substrate through the selection and incorporation of appropriate bond layers, thus allowing for enhanced coating durability and robustness. Systematic process optimization is being used to define the optimal plasma spray conditions for both the topcoat and bond-layer, and X-ray diffraction and SEM-EDS are applied to successfully validate the chemistry and phase composition of the coatings. The plasma-sprayed double-layer corrosion resistant coatings were also deposited onto simulated RAFM steel substrates, which are being tested separately under thermal cycling, high-temperature moist air oxidation as well as molten Pb-Li capsule corrosion conditions. Results from this testing on coated samples, and comparisons with bare RAFM reference samples will be presented and conclusions will be presented assessing the viability of the new ceramic coatings to be viable corrosion prevention systems for DCLL breeders in commercial nuclear fusion reactors.Keywords: breeding blanket, corrosion protection, coating, plasma spray
Procedia PDF Downloads 3062435 Production of Biotechnological Chondroitin from Recombinant E, Coli K4 Strains on Renewable Substrates
Authors: Donatella Cimini, Sergio D’ambrosio, Saba Sadiq, Chiara Schiraldi
Abstract:
Chondroitin sulfate (CS), as well as modified CS, and unsulfated chondroitin, are largely applied in research today. CS is a linear glycosaminoglycan normally present in cartilage-rich tissues and bones in the form of proteoglycans decorated with sulfate groups in different positions. CS is used as an effective non-pharmacological alternative for the treatment of osteoarthritis, and other potential applications in the biomedical field are being investigated. Some bacteria, such as E. coli K4, produce a polysaccharide that is a precursor of CS (unsulfated chondroitin). This work focused on the construction of integrative E. coli K4 recombinant strains overexpressing genes (kfoA, kfoF, pgm and galU in different combinations) involved in the biosynthesis of the nucleotide sugars necessary for polysaccharide synthesis. Strain growth and polymer production were evaluated using renewable waste materials as substrates in shake flasks and small-scale batch fermentation processes. Results demonstrated the potential to replace pure sugars with cheaper medium components to establish environmentally sustainable and cost-effective production routes for potential industrial development. In fact, although excellent fermentation results have been described so far by employing strains that naturally produce chondroitin-like polysaccharides on semi-defined media, there is still the need to reduce manufacturing costs by providing a cost-effective biotechnological alternative to currently used animal-based extraction procedures.Keywords: E. coli K4, chondroitin, microbial cell factories, glycosaminoglycans, renewable resources
Procedia PDF Downloads 802434 The Influence of the Types of Smoke Powder and Storage Duration on Sensory Quality of Balinese Beef and Buffalo Meatballs
Authors: E. Abustam, M. I. Said, M. Yusuf, H. M. Ali
Abstract:
This study aims to examine the sensory quality of meatballs made from Balinese beef and buffalo meat after the addition of smoke powder prior to storage at the temperatures of 2-5°C for 7 days. This study used meat from Longissimus dorsi muscle of male Balinese cattle aged 3 years and of male buffalo aged 5 years as the main raw materials, and smoke powder as a binder and preservative in making meatballs. The study was based on completely randomized design (CRD) of factorial pattern of 2 x 3 x 2 where factors 1, 2 and 3 included the types of meat (cattle and buffalo), types of smoke powder (oven dried, freeze dried and spray dried) with a level of 2% of the weight of the meat (b/b), and storage duration (0 and 7 days) with three replications respectively. The parameters measured were the meatball sensory quality (scores of tenderness, firmness, chewing residue, and intensity of flavor). The results of this study show that each type of meat has produced different sensory characteristics. The meatballs made from buffalo meat have higher tenderness and elasticity scores than the Balinese beef. Meanwhile, the buffalo meatballs have a lower residue mastication score than the Balinese beef. Each type of smoke powders has produced a relatively similar sensory quality of meatballs. It can be concluded that the smoke powder of 2% of the weight of the meat (w/w) could maintain the sensory quality of the meatballs for 7 days of storage.Keywords: Balinese beef meatballs, buffalo meatballs, sensory quality, smoke powder
Procedia PDF Downloads 3352433 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy
Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan
Abstract:
Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.Keywords: biomechanical energy management, knee exosuit, gait rehabilitation, wearable robotics
Procedia PDF Downloads 1602432 Comparison the Effect of Different Pretreatments on Ethanol Production from Lemon Peel (Citrus × latifolia)
Authors: Zohreh Didar Yaser, Zanganeh Asadabadi
Abstract:
The aim of this work is to open up the structure of lemon peel (Citrus × latifolia) with mild pretreatments. The effects of autoclave, microwave and ultrasonic with or without acid addition were investigated on the amount of glucose, soluble and insoluble lignin, furfural, yeast viability and bioethanol. The finding showed that autoclave- acid impregnated sample, has the highest glucose release from lignocellulose materials (14.61 and 14.95 g/l for solvent exposed and untreated sample, respectively) whereas at control sample glucose content was at its minimal level. Pretreatments cause decrease on soluble and insoluble lignin and the highest decrease cause by autoclave following with microwave and ultrasonic pretreatments (p≤5%). Moderate increase on furfural was seen at pretreated samples than control ones. Also, the most yeast viability and bioethanol content was belong to autoclave samples especially acid- impregnated ones (40.33%). Comparison between solvent treated and untreated samples indicated that significant difference was between two tested groups (p≤1%) in terms of lignin, furfural, cell viability and ethanol content but glucose didn’t show significant difference. It imply that solvent extraction don’t influences on glucose release from lignocellulose material of lemon peel but cause enhancement of yeast viability and bioethanol production.Keywords: Bioethanol, Lemon peel, Pretreatments, Solvent Extraction
Procedia PDF Downloads 4742431 Concentration of Waste Waters by Enzyme-Assisted Low-Temperature Evaporation
Authors: Ahokas Mikko, Taskila Sanna, Varrio Kalle, Tanskanen Juha
Abstract:
The present research aimed at the development of an energy efficient process for the concentration of starchy waste waters. The selected principle is mechanical vapor recompression evaporation (MVR) which leads to concentrated solid material and evaporated water phase. Evaporation removes water until a certain viscosity limit is reached. Materials with high viscosity cannot be concentrated using standard evaporators due to limitations of pumps and other constraints, such as wetting. Control of viscosity is thus essential for efficient evaporation. This applies especially to fluids in which due starch or other compounds the viscosity tends to increase via removal of water. In the present research, the effect of enzymes on evaporation of highly viscous starch industry waste waters was investigated. Wastewater samples were received from starch industry at pH of 4.8. Response surface methodology (RSM) was applied for the investigation of factor effects on the behaviour of concentrate during evaporation. The RSM was prepared using quadratic face-centered central composite design (CCF). The evaporation performance was evaluated by monitoring the viscosity of fluid during processing. Based on viscosity curves, the addition of glucoamylase reduced the viscosity during evaporation. This assumption was confirmed by CCF, suggesting that the use of starch decomposing glucoamylase allowed evaporation of the starchy wastewater to a relatively high total solid concentration without a detrimental increase in the viscosity. The results suggest that use of enzymes for reduction of viscosity during the evaporation allows more effective concentration of the wastewater and thereby recovery of potable water.Keywords: viscous, wastewater, treatment, evaporation, concentration
Procedia PDF Downloads 2422430 Microfungi on Sandy Beaches: Potential Threats for People Enjoying Lakeside Recreation
Authors: Tomasz Balabanski, Anna Biedunkiewicz
Abstract:
Research on basic bacteriological and physicochemical parameters conducted by state institutions (Provincial Sanitary and Epidemiological Station and District Sanitary and Epidemiological Station) are limited to bathing waters under constant sanitary and epidemiological supervision. Unfortunately, no routine or monitoring tests are carried out for the presence of microfungi. This also applies to beach sand used for recreational purposes. The purpose of the planned own research was to determine the diversity of the mycobiota present on supervised and unsupervised sandy beaches, on the shores of lakes, of municipal baths used for recreation. The research material consisted of microfungi isolated from April to October 2019 from sandy beaches of supervised and unsupervised lakes located within the administrative boundaries of the city of Olsztyn (North-Eastern Poland, Europe). Four lakes, out of the fifteen available (Tyrsko, Kortowskie, Skanda, and Ukiel), whose bathing waters are subjected to routine bacteriological tests, were selected for testing. To compare the diversity of the mycobiota composition on the surface and below the sand mixing layer, samples were taken from two depths (10 cm and 50 cm), using a soil auger. Micro-fungi from sand samples were obtained by surface inoculation on an RBC medium from the 1st dilution (1:10). After incubation at 25°C for 96-144 h, the average number of CFU/dm³ was counted. Morphologically differing yeast colonies were passaged into Sabouraud agar slants with gentamicin and incubated again. For detailed laboratory analyses, culture methods (macro- and micro-cultures) and identification methods recommended in diagnostic mycological laboratories were used. The conducted research allowed obtaining 140 yeast isolates. The total average population ranged from 1.37 × 10⁻² CFU/dm³ before the bathing season (April 2019), 1.64 × 10⁻³ CFU/dm³ in the season (May-September 2019), and 1.60 × 10⁻² CFU/dm³ after the end of the season (October 2019). More microfungi were obtained from the surface layer of sand (100 isolates) than from the deeper layer (40 isolates). Reported microfungi may circulate seasonally between individual elements of the lake ecosystem. From the sand/soil from the catchment area beaches, they can get into bathing waters, stopping periodically on the coastal phyllosphere. The sand of the beaches and the phyllosphere are a kind of filter for the water reservoir. The presence of microfungi with various pathogenicity potential in these places is of major epidemiological importance. Therefore, full monitoring of not only recreational waters but also sandy beaches should be treated as an element of constant control by appropriate supervisory institutions, allowing recreational areas for public use so that the use of these places does not involve the risk of infection. Acknowledgment: 'Development Program of the University of Warmia and Mazury in Olsztyn', POWR.03.05.00-00-Z310/17, co-financed by the European Union under the European Social Fund from the Operational Program Knowledge Education Development. Tomasz Bałabański is a recipient of a scholarship from the Programme Interdisciplinary Doctoral Studies in Biology and Biotechnology (POWR.03.05.00-00-Z310/17), which is funded by the 'European Social Fund'.Keywords: beach, microfungi, sand, yeasts
Procedia PDF Downloads 1022429 Partial Replacement of GGBS in Concrete for Prevention of Natural Resources
Authors: M. Murmu, Govardhan, J. Satya Eswari
Abstract:
Concrete is the most common and widely used building material. Concrete is basically made of aggregates, both fine and coarse, glued by a cement paste which is made of cement and water. Each one of these constituents of concrete has a negative environmental impact and gives rise to different sustainability issues. The current concrete construction practice is unsustainable because, not only it consumes enormous quantities of stones, sand, and drinking water, but also one billion tons a year of cement, which is not an environment friendly material. Preventing the reduction of natural resources and enhancing the usage of waste materials has become a challenge to the scientist and engineers. A number of studies have been conducted concerning the protection of natural resources, prevention of environmental pollution and contribution to the economy by using this waste material. This paper outlines the influence of Ground Granulated Blast furnace Slag (GGBS) as partial replacement of fine aggregate on mechanical properties of concrete. The strength of concrete is determined having OPC binder, replaced the fine aggregate with15%, 30%, 45% respectively. For this purpose, characteristics concrete mix of M25 with partial replacement of cement with GGBS is used and the strength of concrete cubes and cylinder have determined. The strength of concrete specimens has been compared with the reference specimen. Also X-ray diffraction (XRD) and scanning electron microscope (SEM) tests have been performed to examine the hydration products and the microstructure of the tested specimens. A correlation has been established between the developmental strength concrete with and without GGBS through analysis of hydration products and the microstructure.Keywords: GGBS, sand, concrete, workability
Procedia PDF Downloads 5012428 A Novel Cold Asphalt Concrete Mixture for Heavily Trafficked Binder Course
Authors: Anmar Dulaimi, Hassan Al Nageim, Felicite Ruddock, Linda Seton
Abstract:
Cold bituminous asphalt mixture (CBEM) provide a sustainable, cost effective and energy efficiency alternative to traditional hot mixtures. However, these mixtures have a comparatively low initial strength and as it is considered as evolutionary materials, mainly in the early life where the initial cohesion is low and builds up slowly. On the other hand, asphalt concrete is, by far, the most common mixtures in use as binder course and base in road pavement in the UK having a continuous grade offer a good aggregate interlock results in this material having very good load-spreading properties as well as a high resistance to permanent deformation. This study aims at developing a novel fast curing cold asphalt concrete binder course mixtures by using Ordinary Portland Cement (OPC) as a replacement to conventional mineral filler (0%-100%) while new by-product material (LJMU-A2) was used as a supplementary cementitious material. With this purpose, cold asphalt concrete binder course mixtures with cationic emulsions were studied by means of stiffness modulus whereas water sensitivity was approved by assessing the stiffness modulus ratio before and after sample conditioning. The results indicate that a substantial enhancement in the stiffness modulus and a considerable improvement of water sensitivity resistance by adding of LJMU-A2 to the cold asphalt mixtures as a supplementary cementitious material. Moreover, the addition of LJMU-A2 to those mixtures leads to stiffness modulus after 2- day curing comparable to those obtained with Portland cement after 7-day curing.Keywords: cold mix asphalt, binder course, cement, stiffness modulus, water sensitivity
Procedia PDF Downloads 3092427 A Kinetic Study of Radical Polymerization of Acrylic Monomers in the Presence of the Liquid Crystal and the Electro-Optical Properties of These Mixtures
Authors: A. Bouriche, D. Merah, L.Alachaher-Bedjaoui, U. Maschke
Abstract:
Intensive research continues in the field of liquid crystals (LCs) for their potential use in modern display applications. Nematic LCs has been most commonly used due to the large birefringence and their sensitivity to even weak perturbation forces induced by electric, magnetic and optical fields. Polymer dispersed liquid crystals (PDLCs), composed of micron-sized nematic LC droplets dispersed in a polymer matrix is an important class of materials for applications in different domains of technology involving large area display devices, optical switches, phase modulators, variable attenuators, polarisers, flexible displays and smart windows. In this study the composites are prepared from mixtures of monofunctional acrylic monomers, (Butylacrylate (ABu), 2-Ethylhexylacrylate (2-EHA), 2-Hydroxyethyl methacrylate (HEMA) and hydroxybutylmethacrylate (HBMA)) and two liquid crystals: (4-cyano-4'-n-pentyl-biphenyl) (5CB) and E7 which is an eutectic mixtures of four cyanoparaphenylenes. These mixtures are prepared adding the Darocur 1173 as photoinitiateor, the 1.6-hexanediol diacrylate (HDDA) as cross-linker agent, and finally they are exposed to UV irradiation. The kinetic polymerization of monomer/LC mixture were investigated with the Fourier Transform Infra Red spectroscopy (FTIR). The electro-optical properties of the PDLC films were determined by measuring the voltage dependence on the transmitted light.Keywords: acrylic monomers, films PDLC, liquid crystal, polymerisation
Procedia PDF Downloads 3252426 Investigation of Mechanical Properties of Aluminum Tailor Welded Blanks
Authors: Dario Basile, Manuela De Maddis, Raffaella Sesana, Pasquale Russo Spena, Roberto Maiorano
Abstract:
Nowadays, the reduction of CO₂ emissions and the decrease in energy consumption are the main aims of several industries, especially in the automotive sector. To comply with the increasingly restrictive regulations, the automotive industry is constantly looking for innovative techniques to produce lighter, more efficient, and less polluting vehicles. One of the latest technologies, and still developing, is based on the fabrication of the body-in-white and car parts through the stamping of Aluminum Tailor Welded Blanks. Tailor Welded Blanks (TWBs) are generally the combination of two/three metal sheets with different thicknesses and/or mechanical strengths, which are commonly butt-welded together by laser sources. The use of aluminum TWBs has several advantages such as low density and corrosion resistance adequate. However, their use is still limited by the lower formability with respect to the parent materials and the more intrinsic difficulty of laser welding of aluminum sheets (i.e., internal porosity) that, although its use in automated industries is constantly growing, remains a process to be further developed and improved. This study has investigated the effect of the main laser welding process parameters (laser power, welding speed, and focal distance) on the mechanical properties of aluminum TWBs made of 6xxx series. The research results show that a narrow weldability window can be found to ensure welded joints with high strength and limited or no porosity.Keywords: aluminum sheets, automotive industry, laser welding, mechanical properties, tailor welded blanks
Procedia PDF Downloads 1072425 Recycled Aggregates from Construction and Demolition Waste in the Production of Concrete Blocks
Authors: Juan A. Ferriz-Papi, Simon Thomas
Abstract:
The construction industry generates large amounts of waste, usually mixed, which can be composed of different origin materials, most of them catalogued as non-hazardous. The European Union targets for this waste for 2020 have been already achieved by the UK, but it is mainly developed in downcycling processes (backfilling) whereas upcycling (such as recycle in new concrete batches) still keeps at a low percentage. The aim of this paper is to explore further in the use of recycled aggregates from construction and demolition waste (CDW) in concrete mixes so as to improve upcycling. A review of most recent research and legislation applied in the UK is developed regarding the production of concrete blocks. As a case study, initial tests were developed with a CDW recycled aggregate sample from a CDW plant in Swansea. Composition by visual inspection and sieving tests of two samples were developed and compared to original aggregates. More than 70% was formed by soil waste from excavation, and the rest was a mix of waste from mortar, concrete, and ceramics with small traces of plaster, glass and organic matter. Two concrete mixes were made with 80% replacement of recycled aggregates and different water/cement ratio. Tests were carried out for slump, absorption, density and compression strength. The results were compared to a reference sample and showed a substantial reduction of quality in both mixes. Despite that, the discussion brings to identify different aspects to solve, such as heterogeneity or composition, and analyze them for the successful use of these recycled aggregates in the production of concrete blocks. The conclusions obtained can help increase upcycling processes ratio with mixed CDW as recycled aggregates in concrete mixes.Keywords: aggregates, concrete, concrete block, construction and demolition waste, recycling
Procedia PDF Downloads 2972424 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans
Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti
Abstract:
There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.Keywords: cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material
Procedia PDF Downloads 1282423 Mobile Schooling for the Most Vulnerable Children on the Street: An Innovation
Authors: Md. Shakhawat Ullah Chowdhury
Abstract:
Mobile school is an innovative methodology in non-formal education to increase access to education for children during conflict through theatre for education for appropriate basic education to children during conflict. The continuous exposure to harsh environments and the nature of the lifestyles of children in conflict make them vulnerable. However, the mobile school initiative takes into consideration the mobile lifestyle of children in conflict. Schools are provided considering the pocket area of the street children with portable chalkboards, tin of books and materials as communities move. Teaching is multi-grade to ensure all children in the community benefit. The established mobile schools, while focused on basic literacy and numeracy skills according to traditions of the communities. The school teachers are selected by the community and trained by a theatre activist. These teachers continue to live and move with the community and provide continuous education for children in conflict. The model proposed a holistic team work to deliver education focused services to the street children’s pocket area where the team is mobile. The team consists of three members –an educator (theatre worker), a psychological counsellor and paramedics. The mobile team is responsible to educate street children and also play dramas which specially produce on the basis of national curriculum and awareness issues for street children. Children enjoy play and learn about life skills and basic literacy and numeracy skills which may be a pillar of humanitarian aid during conflict.Keywords: vulnerable, children in conflict, mobile schooling, child-friendly
Procedia PDF Downloads 4312422 Aural Skills Pedagogy for Students with Absolute Pitch
Authors: Rika Uchida
Abstract:
In teaching sophomore level aural skills, I have dealt with students with absolute pitch do poorly in my courses, particularly in harmonic dictation. They can identify triads; however, identifying quality of seventh chords or chromatic chords poses serious challenges. Most often, they need to spell all the pitches before identifying the chord qualities and Roman Numerals. Growing up in a country where acquiring absolute pitch is considered essential, I started my early music training with fixed do system at age three and learned all my music with solfege. When I was assigned as a TA in aural skills courses at graduate school in US, I had to learn relative pitch quickly. My survival method was listening to music with absolute pitch first, then quickly "translate" to relative pitch. In teaching my courses, I have been using chord progressions (5-8 chords total), in which students are asked to sing chord arpeggiation with movable do solfege. I use same progressions for harmonic dictation; I hoped that students learn to incorporate singing and listening skills by overlapping same materials. This method has proven to be successful for most students; in particular, it has helped students with absolute pitch to hear chord quality and function. Although original progressions are written in C as a tonic, they can identify chords in harmonic dictation in other keys as well. In short, I believe singing chord progression with movable do arpeggiation helps students with absolute pitch to improve hearing function and quality of chords in harmonic dictation.Keywords: aural skills pedagogy, music theory, absolute pitch, harmonic dictation
Procedia PDF Downloads 1442421 Batch Adsorption Studies for the Removal of Textile Dyes from Aqueous Solution on Three Different Pine Bark
Authors: B. Cheknane, F. Zermane
Abstract:
The main objective of the present study is the valorization of natural raw materials of plant origin for the treatment of textile industry wastewater. Selected bark was: maritime (MP), pinyon (PP) and Aleppo pine (AP) bark. The efficiency of these barks were tested for the removal of three dye; rhodamine B (RhB), Green Malachite (GM) and X Methyl Orange (MO). At the first time we focus to study the different parameters which can influence the adsorption processes such as: nature of the adsorbents, nature of the pollutants (dyes) and the effect of pH. Obtained results reveals that the speed adsorption is strongly influencing by the pH medium and the comparative study show that adsorption is favorable in the acidic medium with amount adsorbed of (Q=40mg/g) for rhodamine B and (Q=46mg/g) for orange methyl. Results of adsorption kinetics reveals that the molecules of GM are adsorbed better (Q=48mg/g) than the molecules of RhB (Q=46mg/g) and methyl orange (Q=18mg/g), with equilibrium time of 6 hours. The results of adsorption isotherms show clearly that the maritime pine bark is the most effective adsorbents with adsorbed amount of (QRhB=200mg/g) and (QMO=88mg/g) followed by pinyon pine (PP) with (QRhB=184mg/g) and (QMO=56mg/g) and finally Aleppo pine (AP) bark with (QRhB=131mg/g) and (QMO= 46mg/g). The different obtained isotherms were modeled using the Langmuir and Freundlich models and according to the adjustment coefficient values R2, the obtained isotherms are well represented by Freundlich model.Keywords: maritime pine bark (MP), pinyon pine bark (PP), Aleppo pine (AP) bark, adsorption, dyes
Procedia PDF Downloads 318