Search results for: advanced therapy medicinal products (ATMPs)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8912

Search results for: advanced therapy medicinal products (ATMPs)

2012 Modeling of Particle Reduction and Volatile Compounds Profile during Chocolate Conching by Electronic Nose and Genetic Programming (GP) Based System

Authors: Juzhong Tan, William Kerr

Abstract:

Conching is one critical procedure in chocolate processing, where special flavors are developed, and smooth mouse feel the texture of the chocolate is developed due to particle size reduction of cocoa mass and other additives. Therefore, determination of the particle size and volatile compounds profile of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products. Currently, precise particle size measurement is usually done by laser scattering which is expensive and inaccessible to small/medium size chocolate manufacturers. Also, some other alternatives, such as micrometer and microscopy, can’t provide good measurements and provide little information. Volatile compounds analysis of cocoa during conching, has similar problems due to its high cost and limited accessibility. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was inserted to a conching machine and was used to monitoring the volatile compound profile of chocolate during the conching. A model correlated volatile compounds profiles along with factors including the content of cocoa, sugar, and the temperature during the conching to particle size of chocolate particles by genetic programming was established. The model was used to predict the particle size reduction of chocolates with different cocoa mass to sugar ratio (1:2, 1:1, 1.5:1, 2:1) at 8 conching time (15min, 30min, 1h, 1.5h, 2h, 4h, 8h, and 24h). And the predictions were compared to laser scattering measurements of the same chocolate samples. 91.3% of the predictions were within the range of later scatting measurement ± 5% deviation. 99.3% were within the range of later scatting measurement ± 10% deviation.

Keywords: cocoa bean, conching, electronic nose, genetic programming

Procedia PDF Downloads 253
2011 Isolation and Identification of Probiotic Lactic Acid Bacteria with Cholesterol Lowering Potential and Their Use in Fermented Milk Product

Authors: Preeyarach Whisetkhan, Malai Taweechotipatr, Ulisa Pachekrepapol

Abstract:

Elevated level of blood cholesterol or hypercholesterolemia may lead to atherosclerosis and poses a major risk for cardiovascular diseases. Probiotics play a crucial role in human health, and probiotic bacteria that possesses bile salt hydrolase (BSH) activity can be used to lower cholesterol level of the host. The aim of this study was to investigate whether lactic acid bacteria (LAB) isolated from traditional Thai fermented foods were able to exhibit bile salt hydrolase activity and their use in fermented milk. A total of 28 isolates were tested for BSH activity by plate method on MRS agar supplemented with 0.5% sodium salt of taurodeoxycholic acid and incubated at 37°C for 48 h under anaerobic condition. The results showed that FN1-1 and FN23-3 isolates possessed strong BSH activity. FN1-1 and FN23-3 isolates were then identified for phenotype, biochemical characteristics, and genotype (16S rRNA sequencing). FN1-1 isolate showed 99.92% similarity to Lactobacillus pentosus DSM 20314(T), while FN23-3 isolate showed 99.94% similarity to Enterococcus faecium CGMCC1.2136 (T). Lactobacillus pentosus FN1-1 and Enterococcus faecium FN23-3 were tolerant of pH 3-4 and 0.3 and 0.8% bile. Bacterial count and pH of milk fermented with Lactobacillus pentosus FN1-1 at 37°C and 43°C were investigated. The results revealed that Lactobacillus pentosus FN1-1 was able to grow in milk, which led to decrease in pH level. Fermentation at 37°C resulted in faster growth rate than at 43 °C. Lactobacillus pentosus FN1-1 was a candidate probiotic to be used in fermented milk products to reduce the risk of high-cholesterol diseases.

Keywords: probiotics, lactic acid bacteria, bile salt hydrolase, cholesterol

Procedia PDF Downloads 148
2010 Revolutionizing Legal Drafting: Leveraging Artificial Intelligence for Efficient Legal Work

Authors: Shreya Poddar

Abstract:

Legal drafting and revising are recognized as highly demanding tasks for legal professionals. This paper introduces an approach to automate and refine these processes through the use of advanced Artificial Intelligence (AI). The method employs Large Language Models (LLMs), with a specific focus on 'Chain of Thoughts' (CoT) and knowledge injection via prompt engineering. This approach differs from conventional methods that depend on comprehensive training or fine-tuning of models with extensive legal knowledge bases, which are often expensive and time-consuming. The proposed method incorporates knowledge injection directly into prompts, thereby enabling the AI to generate more accurate and contextually appropriate legal texts. This approach substantially decreases the necessity for thorough model training while preserving high accuracy and relevance in drafting. Additionally, the concept of guardrails is introduced. These are predefined parameters or rules established within the AI system to ensure that the generated content adheres to legal standards and ethical guidelines. The practical implications of this method for legal work are considerable. It has the potential to markedly lessen the time lawyers allocate to document drafting and revision, freeing them to concentrate on more intricate and strategic facets of legal work. Furthermore, this method makes high-quality legal drafting more accessible, possibly reducing costs and expanding the availability of legal services. This paper will elucidate the methodology, providing specific examples and case studies to demonstrate the effectiveness of 'Chain of Thoughts' and knowledge injection in legal drafting. The potential challenges and limitations of this approach will also be discussed, along with future prospects and enhancements that could further advance legal work. The impact of this research on the legal industry is substantial. The adoption of AI-driven methods by legal professionals can lead to enhanced efficiency, precision, and consistency in legal drafting, thereby altering the landscape of legal work. This research adds to the expanding field of AI in law, introducing a method that could significantly alter the nature of legal drafting and practice.

Keywords: AI-driven legal drafting, legal automation, futureoflegalwork, largelanguagemodels

Procedia PDF Downloads 61
2009 Indigo Dye Wastewater Treatment by Fenton Oxidation

Authors: Anurak Khrueakham, Tassanee Chanphuthin

Abstract:

Indigo is a well-known natural blue dye that is used hither to even though synthetic ones are commercially available. The removal of indigo from effluents is difficult due to its resistance towards biodegradation which causes an aquatic environment effect. Fenton process is a reaction between hydrogen peroxide H2O2 and Fe2+ to generate •OH (highly reactive oxidant (E◦= 2.8 V)). Additionally, •OH is non-selective oxidant which is capable of destroying wide range of organic pollutants in water and wastewater. The aims of this research were to investigate the effect of H2O2, Fe2+ and pH on indigo wastewater oxidation by Fenton process. A liter reactor was operated in all experiments. The batch reactor was prepared by filling 1 liter of indigo wastewater. The pH was adjusted to the desired value; then, FeSO4 at predetermined amount was added. Finally, H2O2 was immediately added to start the Fenton’s reaction. The Fenton oxidation of indigo wastewater was operated for 60 minutes. Residual H2O2 was analyzed using titanium oxalate method. The Fe2+ concentration was determined by phenanthroline method. COD was determined using closed-reflux titrimetric method to indicate the removal efficiency. The results showed that at pH 2 increasing the initial ferrous concentration from 0.1 mM to 1 mM enhanced the indigo removal from 36% to 59%. Fenton reaction was rapidly due to the high generation rate of •OH. The degradation of indigo increased with increasing pH up to pH 3. This can be explained that the scavenging effect of the •OH by H+ in the condition of low pH is severe to form an oxonium ion, resulting in decrease the production of •OH and lower the decolorization efficiency of indigo. Increasing the initial H2O2 concentration from 5 mM to 20 mM could enhance the decolorization. The COD removal was increased from 35% to 65% with increasing H2O2 concentration from 5 mM to 20 mM. The generations of •OH were promoted by the increase of initial H2O2 concentration. However, the higher concentration of H2O2 resulted in the reduction of COD removal efficiency. The initial ferrous concentrations were studied in the range of 0.05-15.0 mM. The results found that the COD removals increased with increasing ferrous concentrations. The COD removals were increased from 32% to 65% when increase the ferrous concentration from 0.5 mM to 10.0 mM. However, the COD removal did not significantly change at higher 10.0 mM. This is because •OH yielding was lower level of oxidation, therefore, the COD removals were not improved. According to the studies, the Fenton’s reagents were important factors for COD removal by Fenton process. The optimum condition for COD removal of indigo dye wastewater was 10.0 mM of ferrous, 20 mM of H2O2 and at pH 3.

Keywords: indigo dye, fenton oxidation, wastewater treatment, advanced oxidation processes

Procedia PDF Downloads 394
2008 Evaluation of Antagonistic and Aggregation Property of Probiotic Lactic Acid Bacteria Isolated from Bovine Milk

Authors: Alazar Nebyou, Sujata Pandit

Abstract:

Lactic acid bacteria (LAB) are essential ingredients in probiotic foods, intestinal microflora, and dairy products that are capable of coping up with harsh gastrointestinal tract conditions and are available in a variety of environments. The objective of this study is to evaluate the probiotic property of LAB isolated from bovine milk. Milk samples were collected from local dairy farms. Samples were obtained using sterile test tubes and transported to a laboratory in the icebox for further biochemical characterization. Preliminary physiological and biochemical identification of LAB isolates was conducted by growing on MRS agar after ten-fold serial dilution. Seven of the best isolates were selected for the evaluation of the probiotic property. The LAB isolates were checked for resistance to antibiotics and their antimicrobial activity by disc diffusion assay and agar well diffusion assay respectively. Bile salt hydrolase activity of isolates was studied by growing isolates in a BSH medium with bile salt. Cell surface property of isolates was assayed by studying their autoaggregation and coaggregation percentage with S. aerues. All isolates were found BSH positive. In addition, BCM2 and BGM1 were susceptible to all antibiotic disks except BBM1 which was resistant to all antibiotic disks. BCM1 and BGM1 had the highest autoaggregation and coaggregation potential respectively. Since all LAB isolates showed gastrointestinal tolerance and good cell surface property they could be considered as good potential probiotic candidates for treatment and probiotic starter culture preparation.

Keywords: probiotic, aggregation, lactic acid bacteria, antimicrobial activity

Procedia PDF Downloads 210
2007 Second Language Perception of Japanese /Cju/ and /Cjo/ Sequences by Mandarin-Speaking Learners of Japanese

Authors: Yili Liu, Honghao Ren, Mariko Kondo

Abstract:

In the field of second language (L2) speech learning, it is well-known that that learner’s first language (L1) phonetic and phonological characteristics will be transferred into their L2 production and perception, which lead to foreign accent. For L1 Mandarin learners of Japanese, the confusion of /u/ and /o/ in /CjV/ sequences has been observed in their utterance frequently. L1 transfer is considered to be the cause of this issue, however, other factors which influence the identification of /Cju/ and /Cjo/ sequences still under investigation. This study investigates the perception of Japanese /Cju/ and /Cjo/ units by L1 Mandarin learners of Japanese. It further examined whether learners’ proficiency, syllable position, phonetic features of preceding consonants and background noise affect learners’ performance in perception. Fifty-two Mandarin-speaking learners of Japanese and nine native Japanese speakers were recruited to participate in an identification task. Learners were divided into beginner, intermediate and advanced level according to their Japanese proficiency. The average correct rate was used to evaluate learners’ perceptual performance. Furthermore, the comparison of the correct rate between learners’ groups and the control group was conducted as well to examine learners’ nativelikeness. Results showed that background noise tends to pose an adverse effect on distinguishing /u/ and /o/ in /CjV/ sequences. Secondly, Japanese proficiency has no influence on learners’ perceptual performance in the quiet and in background noise. Then all learners did not reach a native-like level without the distraction of noise. Beginner level learners performed less native-like, although higher level learners appeared to have achieved nativelikeness in the multi-talker babble noise. Finally, syllable position tends to affect distinguishing /Cju/ and /Cjo/ only under the noisy condition. Phonetic features of preceding consonants did not impact learners’ perception in any listening conditions. Findings in this study can give an insight into a further understanding of Japanese vowel acquisition by L1 Mandarin learners of Japanese. In addition, this study indicates that L1 transfer is not the only explanation for the confusion of /u/ and /o/ in /CjV/ sequences, factors such as listening condition and syllable position are also needed to take into consideration in future research. It also suggests the importance of perceiving speech in a noisy environment, which is close to the actual conversation required more attention to pedagogy.

Keywords: background noise, Chinese learners of Japanese, /Cju/ and /Cjo/ sequences, second language perception

Procedia PDF Downloads 158
2006 Integrated Design in Additive Manufacturing Based on Design for Manufacturing

Authors: E. Asadollahi-Yazdi, J. Gardan, P. Lafon

Abstract:

Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product’s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability.

Keywords: additive manufacturing, 3D printing, design for manufacturing, integrated design, interoperability

Procedia PDF Downloads 314
2005 The Determinants of Customer’s Purchase Intention of Islamic Credit Card: Evidence from Pakistan

Authors: Nasir Mehmood, Muhammad Yar Khan, Anam Javeed

Abstract:

This study aims to scrutinize the dynamics which tend to impact customer’s purchasing intention of Islamic credit card and nexus of product’s knowledge and religiosity with the attitude of potential Islamic credit card’s customer. The theory of reasoned action strengthened the idea that intentions due to its proven predictive power are most likely to instigate intended consumer behavior. Particularly, the study examines the relationships of perceived financial cost (PFC), subjective norms (SN), and attitude (ATT) with the intention to purchase Islamic credit cards. Using a convenience sampling approach, data have been collected from 450 customers of banks located in Rawalpindi and Islamabad. A five-point Likert scale self-administered questionnaire was used to collect the data. The data were analyzed using the Statistical Package of Social Sciences (SPSS) through the procedures of principal component and multiple regression analysis. The results suggested that customer’s religiosity and product knowledge are strong indicators of attitude towards buying Islamic credit cards. Likewise, subjective norms, attitude, and perceived financial cost have a significant positive impact on customers’ purchase intent of Islamic bank’s credit cards. This study models a useful path for future researchers to further investigate the underlined phenomenon along with a variety of psychodynamic factors which are still in its infancy, at least in the Pakistani banking sector. The study also provides an insight to the practitioners and Islamic bank managers for directing their efforts toward educating customers regarding the use of Islamic credit cards and other financial products.

Keywords: attitude, Islamic credit card, religiosity, subjective norms

Procedia PDF Downloads 143
2004 Gold Nanoparticle Conjugated with Andrographolide Ameliorates Viper Venom-Induced Inflammatory Response and Organ Toxicity in Animal Model

Authors: Sourav Ghosh, Antony Gomes

Abstract:

Since 1894 anti-snake venom serum (ASVS) is the only available treatment against snake envenomation, although there are many side effects and limitations. The need for a supportive treatment was felt for a long time to overcome the side effects and limitations of ASVS. Andrographolide conjugated with gold nanoparticle (A-GNP) has been found to antagonize viper venom-induced local damages. The present study was aimed to study the protective efficacy of A-GNP against Viper venom-induced inflammatory response and organ toxicity in animal model. Ethical clearance was obtained from animal experiments. Physico-chemical characterization of A-GNP was done by DLS (diameter and zeta potential), FE-SEM and XRD. Swiss albino male mice were divided into 4 groups: Gr.1-Sham control, Gr.2- Russell’s Viper venom (RVV) control, Gr.3- andrographolide treated and Gr.4- A-GNP treated. The 1/5th minimum lethal dose of RVV (500µg/kg, s.c.) was induced in animals of group 2, 3 & 4 animals, followed by treatment with andrographolide (100mg/kg, i.p.) and A-GNP (100mg/kg, i.v.) in group 3 & 4 animals, respectively. Blood was collected after 18 h, serum was prepared, and inflammatory markers (IL 1β, 6, 17a, 10, TNF α) and biochemical markers (AST, ACP, LDH, urea, creatinine) were assessed. Values were expressed as mean±SEM (n=4), one way ANOVA was done, P<0.05 was considered as statistically significant. DLS size showed the hydrodynamic diameter of A-GNP to be 230-260nm with polydispersity index of 0.103 and zeta potential was -18.32mV. XRD data confirmed the presence of crystalline gold in A-GNP, and FESEM indicated the presence of nearly spherical particle with size18-24nm.Treatment with A-GNP significantly decreased viper venom-induced proinflammatory markers (IL 1β, 6, 17, TNF α) increased anti-inflammatory markers (IL 10) and decreased organ toxicity markers (AST, ACP, LDH, urea, creatinine) in animal model. Venom neutralization efficacy of A-GNP was > andrographolide, which confirmed the increased efficacy of andrographolide after gold nanoparticle conjugation. Venom neutralization by A-GNP was due to anti-oxidant/anti-inflammatory activity of andrographolide, which showed increased efficacy after gold nanoparticle tagging. Thus, A-GNP may serve as a supportive therapy in snake-bite (against inflammatory response and organ toxicity) subject to further detail studies.

Keywords: andrographolide, gold nanoparticle, inflammatory response, organ toxicity, snake venom, snake venom neutralization, viper venom

Procedia PDF Downloads 372
2003 Computational System for the Monitoring Ecosystem of the Endangered White Fish (Chirostoma estor estor) in the Patzcuaro Lake, Mexico

Authors: Cesar Augusto Hoil Rosas, José Luis Vázquez Burgos, José Juan Carbajal Hernandez

Abstract:

White fish (Chirostoma estor estor) is an endemic species that habits in the Patzcuaro Lake, located in Michoacan, Mexico; being an important source of gastronomic and cultural wealth of the area. Actually, it have undergone an immense depopulation of individuals, due to the high fishing, contamination and eutrophication of the lake water, resulting in the possible extinction of this important species. This work proposes a new computational model for monitoring and assessment of critical environmental parameters of the white fish ecosystem. According to an Analytical Hierarchy Process, a mathematical model is built assigning weights to each environmental parameter depending on their water quality importance on the ecosystem. Then, a development of an advanced system for the monitoring, analysis and control of water quality is built using the virtual environment of LabVIEW. As results, we have obtained a global score that indicates the condition level of the water quality in the Chirostoma estor ecosystem (excellent, good, regular and poor), allowing to provide an effective decision making about the environmental parameters that affect the proper culture of the white fish such as temperature, pH and dissolved oxygen. In situ evaluations show regular conditions for a success reproduction and growth rates of this species where the water quality tends to have regular levels. This system emerges as a suitable tool for the water management, where future laws for white fish fishery regulations will result in the reduction of the mortality rate in the early stages of development of the species, which represent the most critical phase. This can guarantees better population sizes than those currently obtained in the aquiculture crop. The main benefit will be seen as a contribution to maintain the cultural and gastronomic wealth of the area and for its inhabitants, since white fish is an important food and economical income of the region, but the species is endangered.

Keywords: Chirostoma estor estor, computational system, lab view, white fish

Procedia PDF Downloads 322
2002 LCA and Multi-Criteria Analysis of Fly Ash Concrete Pavements

Authors: Marcela Ondova, Adriana Estokova

Abstract:

Rapid industrialization results in increased use of natural resources bring along serious ecological and environmental imbalance due to the dumping of industrial wastes. Principles of sustainable construction have to be accepted with regard to the consumption of natural resources and the production of harmful emissions. Cement is a great importance raw material in the building industry and today is its large amount used in the construction of concrete pavements. Concerning raw materials cost and producing CO2 emission the replacing of cement in concrete mixtures with more sustainable materials is necessary. To reduce this environmental impact people all over the world are looking for a solution. Over a period of last ten years, the image of fly ash has completely been changed from a polluting waste to resource material and it can solve the major problems of cement use. Fly ash concretes are proposed as a potential approach for achieving substantial reductions in cement. It is known that it improves the workability of concrete, extends the life cycle of concrete roads, and reduces energy use and greenhouse gas as well as amount of coal combustion products that must be disposed in landfills. Life cycle assessment also proved that a concrete pavement with fly ash cement replacement is considerably more environmentally friendly compared to standard concrete roads. In addition, fly ash is cheap raw material, and the costs saving are guaranteed. The strength properties, resistance to a frost or de-icing salts, which are important characteristics in the construction of concrete pavements, have reached the required standards as well. In terms of human health it can´t be stated that a concrete cover with fly ash could be dangerous compared with a cover without fly ash. Final Multi-criteria analysis also pointed that a concrete with fly ash is a clearly proper solution.

Keywords: life cycle assessment, fly ash, waste, concrete pavements

Procedia PDF Downloads 402
2001 Purification of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) from Fish Oil Using HPLC Method and Investigation of Their Antibacterial Effects on Some Pathogenic Bacteria

Authors: Yılmaz Uçar, Fatih Ozogul, Mustafa Durmuş, Yesim Ozogul, Ali Rıza Köşker, Esmeray Kuley Boğa, Deniz Ayas

Abstract:

The aim of this study was to purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), that are essential oils from trout oil, using high-performance liquid chromatography (HPLC) method, bioconverted EPA and DHA into bioconverted EPA (bEPA), bioconverted DHA (bDHA) extracts by P. aeruginosa PR3. Moreover, in vitro antibacterial activity of bEPA and bDHA was investigated using disc diffusion methods and minimum inhibitory concentration (MIC). EPA and DHA concentration of 11.1% and 15.9% in trout oil increased in 58.64% and 40.33% after HPLC optimisation, respectively. In this study, EPA and DHA enriched products were obtained which are to be used as valuable supplements for food and pharmaceutical purposes. The bioconverted EPA and DHA exhibited antibacterial activities against two Gram-positive bacteria (Listeria monocytogenes ATCC 7677 and Staphylococcus aureus ATCC 29213) and six Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC700603, Enterococcus faecalis ATCC 29212, Aeromonas hydrophila NCIMB 1135, and Salmonella Paratyphi A NCTC 13). Inhibition zones and MIC value of bEPA and bDHA against bacterial strains ranged from 7 to 12 mm and from 350 to 2350 μg/mL, respectively. Our results suggested that the crude extracts of bioconversion of EPA and DHA by P. aeruginosa PR3 can be considered as promising antimicrobials in improving food safety by controlling foodborne pathogens.

Keywords: High-Performance Liquid Chromatography (HPLC), docosahexaenoic acid, DHA, eicosapentaenoic acid, EPA, minimum inhibitory concentration, MIC, Pseudomonas aeruginosa PR3

Procedia PDF Downloads 496
2000 Development of Multifunctional Yarns and Fabrics for Interactive Textiles

Authors: Muhammad Bilal Qadir, Danish Umer, Amir Shahzad

Abstract:

The use of conductive materials in smart and interactive textiles is gaining significant importance for creating value addition, innovation, and functional product development. These products find their potential applications in health monitoring, military, protection, communication, sensing, monitoring, actuation, fashion, and lifestyles. The materials which are most commonly employed in such type of interactive textile include intrinsically conducting polymers, conductive inks, and metallic coating on textile fabrics and inherently conducting metallic fibre yarns. In this study, silver coated polyester filament yarn is explored for the development of multifunctional interactive gloves. The composite yarn was developed by covering the silver coated polyester filament around the polyester spun yarn using hollow spindle technique. The electrical and tensile properties of the yarn were studied. This novel yarn was used to manufacture a smart glove to explore the antibacterial, functional, and interactive properties of the yarn. The change in electrical resistance due to finger movement at different bending positions and antimicrobial properties were studied. This glove was also found useful as an interactive tool to operate the commonly used touch screen devices due to its conductive nature. The yarn can also be used to develop the sensing elements like stretch, strain, and piezoresistive sensors. Such sensor can be effectively used in medical and sports textile for performance monitoring, vital signs monitoring and development of antibacterial textile for healthcare and hygiene.

Keywords: conductive yarn, interactive textiles, piezoresistive sensors, smart gloves

Procedia PDF Downloads 240
1999 Advancing Aviation: A Multidisciplinary Approach to Innovation, Management, and Technology Integration in the 21st Century

Authors: Fatih Frank Alparslan

Abstract:

The aviation industry is at a crucial turning point due to modern technologies, environmental concerns, and changing ways of transporting people and goods globally. The paper examines these challenges and opportunities comprehensively. It emphasizes the role of innovative management and advanced technology in shaping the future of air travel. This study begins with an overview of the current state of the aviation industry, identifying key areas where innovation and technology could be highly beneficial. It explores the latest advancements in airplane design, propulsion, and materials. These technological advancements are shown to enhance aircraft performance and environmental sustainability. The paper also discusses the use of artificial intelligence and machine learning in improving air traffic control, enhancing safety, and making flight operations more efficient. The management of these technologies is critically important. Therefore, the research delves into necessary changes in organization, culture, and operations to support innovation. It proposes a management approach that aligns with these modern technologies, underlining the importance of forward-thinking leaders who collaborate across disciplines and embrace innovative ideas. The paper addresses challenges in adopting these innovations, such as regulatory barriers, the need for industry-wide standards, and the impact of technological changes on jobs and society. It recommends that governments, aviation businesses, and educational institutions collaborate to address these challenges effectively, paving the way for a more innovative and eco-friendly aviation industry. In conclusion, the paper argues that the future of aviation relies on integrating new management practices with innovative technologies. It urges a collective effort to push beyond current capabilities, envisioning an aviation industry that is safer, more efficient, and environmentally responsible. By adopting a broad approach, this research contributes to the ongoing discussion about resolving the complex issues facing today's aviation sector, offering insights and guidance to prepare for future advancements.

Keywords: aviation innovation, technology integration, environmental sustainability, management strategies, multidisciplinary approach

Procedia PDF Downloads 47
1998 Adsorption of Heavy Metals Using Chemically-Modified Tea Leaves

Authors: Phillip Ahn, Bryan Kim

Abstract:

Copper is perhaps the most prevalent heavy metal used in the manufacturing industries, from food additives to metal-mechanic factories. Common methodologies to remove copper are expensive and produce undesired by-products. A good decontaminating candidate should be environment-friendly, inexpensive, and capable of eliminating low concentrations of the metal. This work suggests chemically modified spent tea leaves of chamomile, peppermint and green tea in their thiolated, sulfonated and carboxylated forms as candidates for the removal of copper from solutions. Batch experiments were conducted to maximize the adsorption of copper (II) ions. Effects such as acidity, salinity, adsorbent dose, metal concentration, and presence of surfactant were explored. Experimental data show that maximum adsorption is reached at neutral pH. The results indicate that Cu(II) can be removed up to 53%, 22% and 19% with the thiolated, carboxylated and sulfonated adsorbents, respectively. Maximum adsorption of copper on TPM (53%) is achieved with 150 mg and decreases with the presence of salts and surfactants. Conversely, sulfonated and carboxylated adsorbents show better adsorption in the presence of surfactants. Time-dependent experiments show that adsorption is reached in less than 25 min for TCM and 5 min for SCM. Instrumental analyses determined the presence of active functional groups, thermal resistance, and scanning electron microscopy, indicating that both adsorbents are promising materials for the selective recovery and treatment of metal ions from wastewaters. Finally, columns were prepared with these adsorbents to explore their application in scaled-up processes, with very positive results. A long-term goal involves the recycling of the exhausted adsorbent and/or their use in the preparation of biofuels due to changes in materials’ structures.

Keywords: heavy metal removal, adsorption, wastewaters, water remediation

Procedia PDF Downloads 290
1997 A Literature Review of Precision Agriculture: Applications of Diagnostic Diseases in Corn, Potato, and Rice Based on Artificial Intelligence

Authors: Carolina Zambrana, Grover Zurita

Abstract:

The food loss production that occurs in deficient agricultural production is one of the major problems worldwide. This puts the population's food security and the efficiency of farming investments at risk. It is to be expected that this food security will be achieved with the own and efficient production of each country. It will have an impact on the well-being of its population and, thus, also on food sovereignty. The production losses in quantity and quality occur due to the lack of efficient detection of diseases at an early stage. It is very difficult to solve the agriculture efficiency using traditional methods since it takes a long time to be carried out due to detection imprecision of the main diseases, especially when the production areas are extensive. Therefore, the main objective of this research study is to perform a systematic literature review, of the latest five years, of Precision Agriculture (PA) to be able to understand the state of the art of the set of new technologies, procedures, and optimization processes with Artificial Intelligence (AI). This study will focus on Corns, Potatoes, and Rice diagnostic diseases. The extensive literature review will be performed on Elsevier, Scopus, and IEEE databases. In addition, this research will focus on advanced digital imaging processing and the development of software and hardware for PA. The convolution neural network will be handling special attention due to its outstanding diagnostic results. Moreover, the studied data will be incorporated with artificial intelligence algorithms for the automatic diagnosis of crop quality. Finally, precision agriculture with technology applied to the agricultural sector allows the land to be exploited efficiently. This system requires sensors, drones, data acquisition cards, and global positioning systems. This research seeks to merge different areas of science, control engineering, electronics, digital image processing, and artificial intelligence for the development, in the near future, of a low-cost image measurement system that allows the optimization of crops with AI.

Keywords: precision agriculture, convolutional neural network, deep learning, artificial intelligence

Procedia PDF Downloads 77
1996 Decision-Tree-Based Foot Disorders Classification Using Demographic Variable

Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi

Abstract:

Background:-Due to the essential role of the foot in movement, foot disorders (FDs) have significant impacts on activity and quality of life. Many studies confirmed the association between FDs and demographic characteristics. On the other hand, recent advances in data collection and statistical analysis led to an increase in the volume of databases. Analysis of patient’s data through the decision tree can be used to explore the relationship between demographic characteristics and FDs. Significance of the study: This study aimed to investigate the relationship between demographic characteristics with common FDs. The second purpose is to better inform foot intervention, we classify FDs based on demographic variables. Methodologies: We analyzed 2323 subjects with pes-planus (PP), pes-cavus (PC), hallux-valgus (HV) and plantar-fasciitis (PF) who were referred to a foot therapy clinic between 2015 and 2021. Subjects had to fulfill the following inclusion criteria: (1) weight between 14 to 150 kilogram, (2) height between 30 to 220, (3) age between 3 to 100 years old, and (4) BMI between 12 to 35. Medical archives of 2323 subjects were recorded retrospectively and all the subjects examined by an experienced physician. Age and BMI were classified into five and four groups, respectively. 80% of the data were randomly selected as training data and 20% tested. We build a decision tree model to classify FDs using demographic characteristics. Findings: Results demonstrated 981 subjects from 2323 (41.9%) of people who were referred to the clinic with FDs were diagnosed as PP, 657 (28.2%) PC, 628 (27%) HV and 213 (9%) identified with PF. The results revealed that the prevalence of PP decreased in people over 18 years of age and in children over 7 years. In adults, the prevalence depends first on BMI and then on gender. About 10% of adults and 81% of children with low BMI have PP. There is no relationship between gender and PP. PC is more dependent on age and gender. In children under 7 years, the prevalence was twice in girls (10%) than boys (5%) and in adults over 18 years slightly higher in men (62% vs 57%). HV increased with age in women and decreased in men. Aging and obesity have increased the prevalence of PF. We conclude that the accuracy of our approach is sufficient for most research applications in FDs. Conclusion:-The increased prevalence of PP in children is probably due to the formation of the arch of the foot at this age. Increasing BMI by applying high pressure on the foot can increase the prevalence of this disorder in the foot. In PC, the Increasing prevalence of PC from women to men with age may be due to genetics and innate susceptibility of men to this disorder. HV is more common in adult women, which may be due to environmental reasons such as shoes, and the prevalence of PF in obese adult women may also be due to higher foot pressure and housekeeping activities.

Keywords: decision tree, demographic characteristics, foot disorders, machine learning

Procedia PDF Downloads 261
1995 A Rare Case of Synchronous Colon Adenocarcinoma

Authors: Mohamed Shafi Bin Mahboob Ali

Abstract:

Introduction: Synchronous tumor is defined as the presence of more than one primary malignant lesion in the same patient at the indexed diagnosis. It is a rare occurrence, especially in the spectrum of colorectal cancer, which accounts for less than 4%. The underlying pathology of a synchronous tumor is thought to be due to a genomic factor, which is microsatellite instability (MIS) with the involvement of BRAF, KRAS, and the GSRM1 gene. There are no specific sites of occurrence for the synchronous colorectal tumor, but many studies have shown that a synchronous tumor has about 43% predominance in the ascending colon with rarity in the sigmoid colon. Case Report: We reported a case of a young lady in the middle of her 30's with no family history of colorectal cancer that was diagnosed with a synchronous adenocarcinoma at the descending colon and rectosigmoid region. The lady's presentation was quite perplexing as she presented to the district hospital initially with simple, uncomplicated hemorrhoids and constipation. She was then referred to our center for further management as she developed a 'football' sized right gluteal swelling with a complete intestinal obstruction and bilateral lower-limb paralysis. We performed a CT scan and biopsy of the lesion, which found that the tumor engulfed the sacrococcygeal region with more than one primary lesion in the colon as well as secondaries in the liver. The patient was operated on after a multidisciplinary meeting was held. Pelvic exenteration with tumor debulking and anterior resection were performed. Postoperatively, she was referred to the oncology team for chemotherapy. She had a tremendous recovery in eight months' time with a partial regain of her lower limb power. The patient is still under our follow-up with an improved quality of life post-intervention. Discussion: Synchronous colon cancer is rare, with an incidence of 2.4% to 12.4%. It has male predominance and is pathologically more advanced compared to a single colon lesion. Down staging the disease by means of chemoradiotherapy has shown to be effective in managing this tumor. It is seen commonly on the right colon, but in our case, we found it on the left colon and the rectosigmoid. Conclusion: Managing a synchronous colon tumor could be challenging to surgeons, especially in deciding the extent of resection and postoperative functional outcomes of the bowel; thus, individual treatment strategies are needed to tackle this pathology.

Keywords: synchronous, colon, tumor, adenocarcinoma

Procedia PDF Downloads 106
1994 Intensification of Process Kinetics for Conversion of Organic Volatiles into Syngas Using Non-Thermal Plasma

Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Manomita Mollick, Gartzen Lopez, Martin Olazar

Abstract:

The entire world is skeptical towards a silver line technology of converting plastic waste into valuable synthetic gas. At this junction, besides an adequately studied conventional catalytic process for steam reforming, a non-thermal plasma is being introduced. Organic volatiles are produced in the first step, pyrolysing the plastic materials. Resultant lightweight olefins and carbon monoxide are the major components that undergo a steam reforming process to achieve syngas. A non-thermal plasma consists of ionized gases and free electrons with an electronic temperature as high as 10³ K. Organic volatiles are, in general, endorganics inactive and thus demand huge bond-breaking energy. Conventional catalyst is incapable of providing the required activation energy, leading to poor thermodynamic equilibrium, whereas a non-thermal plasma can actively collide with reactants to produce a rich mix of reactive species, including vibrationally or electronically excited molecules, radicals, atoms, and ions. In addition, non-thermal plasma provides nonequilibrium conditions leading to electric discharge only in certain degrees of freedom without affecting the intrinsic chemical conditions of the participating reactants and products. In this work, we report thermodynamic and kinetic aspects of the conversion of organic volatiles into syngas using a non-thermal plasma. Detailed characteristics of plasma and its effect on the overall yield of the process will be presented.

Keywords: non thermal plasma, plasma catalysis, steam reforming, syngas, plastic waste, green energy

Procedia PDF Downloads 65
1993 X-Ray Diffraction, Microstructure, and Mössbauer Studies of Nanostructured Materials Obtained by High-Energy Ball Milling

Authors: N. Boudinar, A. Djekoun, A. Otmani, B. Bouzabata, J. M. Greneche

Abstract:

High-energy ball milling is a solid-state powder processing technique that allows synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from elemental powders. The advantage of this process technology is that the powder can be produced in large quantities and the processing parameters can be easily controlled, thus it is a suitable method for commercial applications. It can also be used to produce amorphous and nanocrystalline materials in commercially relevant amounts and is also amenable to the production of a variety of alloy compositions. Mechanical alloying (high-energy ball milling) provides an inter-dispersion of elements through a repeated cold welding and fracture of free powder particles; the grain size decreases to nano metric scale and the element mix together. Progressively, the concentration gradients disappear and eventually the elements are mixed at the atomic scale. The end products depend on many parameters such as the milling conditions and the thermodynamic properties of the milled system. Here, the mechanical alloying technique has been used to prepare nano crystalline Fe_50 and Fe_64 wt.% Ni alloys from powder mixtures. Scanning electron microscopy (SEM) with energy-dispersive, X-ray analyses and Mössbauer spectroscopy were used to study the mixing at nanometric scale. The Mössbauer Spectroscopy confirmed the ferromagnetic ordering and was use to calculate the distribution of hyperfin field. The Mössbauer spectrum for both alloys shows the existence of a ferromagnetic phase attributed to γ-Fe-Ni solid solution.

Keywords: nanocrystalline, mechanical alloying, X-ray diffraction, Mössbauer spectroscopy, phase transformations

Procedia PDF Downloads 436
1992 The Effect of Oil Pollution on Marine Microbial Populations in Israeli Coastal Waters

Authors: Yael Shai, Dror L. Angel, Dror Zurel, Peleg Astrahan, Maxim Rubin-Blum, Eyal Rahav

Abstract:

The high demand for oil and its by-products is symptomatic of the 21st century and occasionally leads to oil spills and pollution of coastal waters. Marine oil pollution may originate from a variety of sources -urban runoff, tanker cleaning, drilling activities, and oil spills. These events may release large amounts of highly toxic polycyclic aromatic hydrocarbons (PAHs) and other pollutants to coastal water, thereby threatening local marine life. Here, we investigated the effects of crude oil on the temporal dynamics of phytoplankton and heterotrophic bacteria in Israeli coastal waters. To this end, we added crude oil (500 µm thick layer, with and without additional nutrients; NO₃ and PO₄) to mesocosms (1m³ bags) containing oligotrophic surface coastal water collected near Haifa during summer and winter. Changes in phytoplankton biomass, activity and diversity were monitored daily for 5-6 days. Our results demonstrate that crude oil addition resulted in a pronounced decrease in phytoplankton biomass and production rates, while heterotrophic bacterial production increased significantly. Importantly, a few days post addition we found that the oil-degrading bacteria, Oleibacter sp. and Oleispira sp. appeared in the mesocosms and that the addition of nutrients (along with the crude oil) further increased this trend. This suggests that oil-degrading bacteria may be NO₃ and PO₄ limited in Israeli coastal waters. The results of this study should enable us to establish improved science-based environmental policy with respect to handling crude oil pollution in this region.

Keywords: heterotrophic bacteria, nutrients, mesocosm, oil pollution, oligotrophic, phytoplankton

Procedia PDF Downloads 157
1991 Prediction of Antibacterial Peptides against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions

Authors: Suwapitch Chalongkulasak, Teerasak E-Kobon, Pramote Chumnanpuen

Abstract:

Acne vulgaris is a common skin disease mainly caused by the Gram–positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates inflammation process in human sebaceous glands. Giant African snail (Achatina fulica) is alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of this snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using several bioinformatic tools for determination of antimicrobial (iAMPpred), anti–biofilm (dPABBs), cytotoxic (Toxinpred), cell membrane penetrating (CPPpred) and anti–quorum sensing (QSPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti–P. acnes (APA) peptide candidates were performed by PEP–FOLD3 program and the five aforementioned tools. All candidates had random coiled structure and were named as APA1–ori, APA2–ori, APA3–ori, APA1–mod, APA2–mod and APA3–mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on some isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications.

Keywords: Propionibacterium acnes, Achatina fulica, peptidomes, antibacterial peptides, snail mucus

Procedia PDF Downloads 131
1990 The Role of Twitter Bots in Political Discussion on 2019 European Elections

Authors: Thomai Voulgari, Vasilis Vasilopoulos, Antonis Skamnakis

Abstract:

The aim of this study is to investigate the effect of the European election campaigns (May 23-26, 2019) on Twitter achieving with artificial intelligence tools such as troll factories and automated inauthentic accounts. Our research focuses on the last European Parliamentary elections that took place between 23 and 26 May 2019 specifically in Italy, Greece, Germany and France. It is difficult to estimate how many Twitter users are actually bots (Echeverría, 2017). Detection for fake accounts is becoming even more complicated as AI bots are made more advanced. A political bot can be programmed to post comments on a Twitter account for a political candidate, target journalists with manipulated content or engage with politicians and artificially increase their impact and popularity. We analyze variables related to 1) the scope of activity of automated bots accounts and 2) degree of coherence and 3) degree of interaction taking into account different factors, such as the type of content of Twitter messages and their intentions, as well as the spreading to the general public. For this purpose, we collected large volumes of Twitter accounts of party leaders and MEP candidates between 10th of May and 26th of July based on content analysis of tweets based on hashtags while using an innovative network analysis tool known as MediaWatch.io (https://mediawatch.io/). According to our findings, one of the highest percentage (64.6%) of automated “bot” accounts during 2019 European election campaigns was in Greece. In general terms, political bots aim to proliferation of misinformation on social media. Targeting voters is a way that it can be achieved contribute to social media manipulation. We found that political parties and individual politicians create and promote purposeful content on Twitter using algorithmic tools. Based on this analysis, online political advertising play an important role to the process of spreading misinformation during elections campaigns. Overall, inauthentic accounts and social media algorithms are being used to manipulate political behavior and public opinion.

Keywords: artificial intelligence tools, human-bot interactions, political manipulation, social networking, troll factories

Procedia PDF Downloads 137
1989 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.

Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment

Procedia PDF Downloads 75
1988 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks

Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft

Abstract:

Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.

Keywords: autonomous agricultural machines, deep learning, safety, visual perception

Procedia PDF Downloads 394
1987 In vitro Establishment and Characterization of Oral Squamous Cell Carcinoma Derived Cancer Stem-Like Cells

Authors: Varsha Salian, Shama Rao, N. Narendra, B. Mohana Kumar

Abstract:

Evolving evidence proposes the existence of a highly tumorigenic subpopulation of undifferentiated, self-renewing cancer stem cells, responsible for exhibiting resistance to conventional anti-cancer therapy, recurrence, metastasis and heterogeneous tumor formation. Importantly, the mechanisms exploited by cancer stem cells to resist chemotherapy are very less understood. Oral squamous cell carcinoma (OSCC) is one of the most regularly diagnosed cancer types in India and is associated commonly with alcohol and tobacco use. Therefore, the isolation and in vitro characterization of cancer stem-like cells from patients with OSCC is a critical step to advance the understanding of the chemoresistance processes and for designing therapeutic strategies. With this, the present study aimed to establish and characterize cancer stem-like cells in vitro from OSCC. The primary cultures of cancer stem-like cell lines were established from the tissue biopsies of patients with clinical evidence of an ulceroproliferative lesion and histopathological confirmation of OSCC. The viability of cells assessed by trypan blue exclusion assay showed more than 95% at passage 1 (P1), P2 and P3. Replication rate was performed by plating cells in 12-well plate and counting them at various time points of culture. Cells had a more marked proliferative activity and the average doubling time was less than 20 hrs. After being cultured for 10 to 14 days, cancer stem-like cells gradually aggregated and formed sphere-like bodies. More spheroid bodies were observed when cultured in DMEM/F-12 under low serum conditions. Interestingly, cells with higher proliferative activity had a tendency to form more sphere-like bodies. Expression of specific markers, including membrane proteins or cell enzymes, such as CD24, CD29, CD44, CD133, and aldehyde dehydrogenase 1 (ALDH1) is being explored for further characterization of cancer stem-like cells. To summarize the findings, the establishment of OSCC derived cancer stem-like cells may provide scope for better understanding the cause for recurrence and metastasis in oral epithelial malignancies. Particularly, identification and characterization studies on cancer stem-like cells in Indian population seem to be lacking thus provoking the need for such studies in a population where alcohol consumption and tobacco chewing are major risk habits.

Keywords: cancer stem-like cells, characterization, in vitro, oral squamous cell carcinoma

Procedia PDF Downloads 219
1986 Experiential Language Learning as a Tool for Effective Global Leadership

Authors: Christiane Dumont

Abstract:

This paper proposes to revisit foreign-language learning as a tool to increase motivation through advocacy and develop effective natural communication skills, which are critical leadership qualities. To this end, collaborative initiatives undertaken by advanced university students of French with local and international community partners will be reviewed. Close attention will be paid to the acquisition of intercultural skills, the reflective process, as well as the challenges and outcomes. Two international development projects conducted in Haiti will be highlighted, i.e., collaboration with a network of providers in the Haitian cultural heritage preservation and tourism sector (2014-15) and development of investigation and teacher training tools for a primary/secondary school in the Port-au-Prince area (current). The choice of community-service learning as a framework to teach French-as-a-second-language stemmed from the need to raise awareness against stereotypes and prejudice, which hinder the development of effective intercultural skills. This type of experiential education also proved very effective in identifying and preventing miscommunication caused by the lack of face-to-face interaction in our increasingly technology-mediated world. Learners experienced first-hand, the challenges and advantages of face-to-face communication, which, in turn, enhanced their motivation for developing effective intercultural skills. Vygotsky's and Kolb's theories, current research on service learning (Dwight, Eyler), action/project-based pedagogy (Beckett), and reflective learning (TSC Farrell), will provide useful background to analyze the benefits and challenges of community-service learning. The ultimate goal of this paper is to find out what makes experiential learning truly unique and transformative for both the learners and the community they wish to serve. It will demonstrate how enhanced motivation, community engagement, and clear, concise, and respectful communication impact and empower learners. The underlying hope is to help students in high-profile, and leading-edge industries become effective global leaders.

Keywords: experiential learning, intercultural communication, reflective learning, effective leadership, learner motivation

Procedia PDF Downloads 103
1985 Obtainment of Systems with Efavirenz and Lamellar Double Hydroxide as an Alternative for Solubility Improvement of the Drug

Authors: Danilo A. F. Fontes, Magaly A. M.Lyra, Maria L. C. Moura, Leslie R. M. Ferraz, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim, Giovanna C. R. M. Schver, Ping I. Lee, Severino Alves-Júnior, José L. Soares-Sobrinho, Pedro J. Rolim-Neto

Abstract:

Efavirenz (EFV) is a first-choice drug in antiretroviral therapy with high efficacy in the treatment of infection by Human Immunodeficiency Virus, which causes Acquired Immune Deficiency Syndrome (AIDS). EFV has low solubility in water resulting in a decrease in the dissolution rate and, consequently, in its bioavailability. Among the technological alternatives to increase solubility, the Lamellar Double Hydroxides (LDH) have been applied in the development of systems with poorly water-soluble drugs. The use of analytical techniques such as X-Ray Diffraction (XRD), Infrared Spectroscopy (IR) and Differential Scanning Calorimetry (DSC) allowed the elucidation of drug interaction with the lamellar compounds. The objective of this work was to characterize and develop the binary systems with EFV and LDH in order to increase the solubility of the drug. The LDH-CaAl was synthesized by the method of co-precipitation from salt solutions of calcium nitrate and aluminum nitrate in basic medium. The systems EFV-LDH and their physical mixtures (PM) were obtained at different concentrations (5-60% of EFV) using the solvent technique described by Takahashi & Yamaguchi (1991). The characterization of the systems and the PM’s was performed by XRD techniques, IR, DSC and dissolution test under non-sink conditions. The results showed improvements in the solubility of EFV when associated with LDH, due to a possible change in its crystal structure and formation of an amorphous material. From the DSC results, one could see that the endothermic peak at 173°C, temperature that correspond to the melting process of EFZ in the crystal form, was present in the PM results. For the EFZ-LDH systems (with 5, 10 and 30% of drug loading), this peak was not observed. XRD profiles of the PM showed well-defined peaks for EFV. Analyzing the XRD patterns of the systems, it was found that the XRD profiles of all the systems showed complete attenuation of the characteristic peaks of the crystalline form of EFZ. The IR technique showed that, in the results of the PM, there was the appearance of one band and overlap of other bands, while the IR results of the systems with 5, 10 and 30% drug loading showed the disappearance of bands and a few others with reduced intensity. The dissolution test under non-sink conditions showed that systems with 5, 10 and 30% drug loading promoted a great increase in the solubility of EFV, but the system with 10% of drug loading was the only one that could keep substantial amount of drug in solution at different pHs.

Keywords: Efavirenz, Lamellar Double Hydroxides, Pharmaceutical Techonology, Solubility

Procedia PDF Downloads 581
1984 A Versatile Standing Cum Sitting Device for Rehabilitation and Standing Aid for Paraplegic Patients

Authors: Sasibhushan Yengala, Nelson Muthu, Subramani Kanagaraj

Abstract:

The abstract reports on the design related to a modular and affordable standing cum sitting device to meet the requirements of paraplegic patients of the different physiques. Paraplegic patients need the assistance of an external arrangement to the lower limbs and trunk to help patients adopt the correct posture while standing abreast gravity. This support can be from a tilt table or a standing frame which the patient can use to stay in a vertical posture. Standing frames are devices fitting to support a person in a weight-bearing posture. Commonly, these devices support and lift the end-user in shifting from a sitting position to a standing position. The merits of standing for a paraplegic patient with a spinal injury are numerous. Even when there is limited control on muscles that ordinarily support the user using the standing frame in a vertical position, the standing stance improves the blood pressure, increases bone density, improves resilience and scope of motion, and improves the user's feelings of well-being by letting the patient stand. One limitation with standing frames is that these devices are typically function definitely; cannot be used for different purposes. Therefore, users are often compelled to purchase more than one of these devices, each being purposefully built for definite activities. Another concern frequent in standing frames is manoeuvrability; it is crucial to provide a convenient adjustment scope for all users. Thus, there is a need to provide a standing frame with multiple uses that can be economical for a larger population. There is also a need to equip added readjustment means in a standing frame to lessen the shear and to accommodate a broad range of users. The proposed Versatile Standing cum Sitting Device (VSD) is designed to change from standing to a comfortable sitting position using a series of mechanisms. First, a locking mechanism is provided to lock the VSD in a standing stance. Second, a dampening mechanism is provided to make sure that the VSD shifts from a standing to a sitting position gradually when the lock mechanism gets disengaged. An adjustment option is offered for the height of the headrest via the use of lock knobs. This device can be used in clinics for rehabilitation purposes irrespective of patient's anthropometric data due to its modular adjustments. It can facilitate the patient's daily life routine while in therapy and giving the patient the comfort to sit when tired. The device also provides the availability of rehabilitation to a common person.

Keywords: paraplegic, rehabilitation, spinal cord injury, standing frame

Procedia PDF Downloads 199
1983 Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool

Authors: M. S. Said, J. A. Ghani, C. H. Che Hassan, N. N. Wan, M. A. Selamat, R. Othman

Abstract:

Metal Matrix Composite (MMCs) have attracted considerable attention as a result of their ability to provide high strength, high modulus, high toughness, high impact properties, improved wear resistance and good corrosion resistance than unreinforced alloy. Aluminium Silicon (Al/Si) alloys Metal Matrix composite (MMC) has been widely used in various industrial sectors such as transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is MMC reinforced with aluminium nitride (AlN) particle and becomes a new generation material for automotive and aerospace applications. The AlN material is one of the advanced materials with light weight, high strength, high hardness and stiffness qualities which have good future prospects. However, the high degree of ceramic particles reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density, is the main problem that leads to the machining difficulties. This paper examines tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 coated carbide cutting tool. The volume of the AlN reinforced particle was 10%. The milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were the cutting speed of (230 m/min, feed rate 0.4mm tooth, DOC 0.5mm, 300 m/min, feed rate 0.8mm/tooth, DOC 0.5mm and 370 m/min, feed rate 0.8, DOC 0.4m). The Sometech SV-35 video microscope system was used for tool wear measurements respectively. The results have revealed that the tool life increases with the cutting speed (370 m/min, feed rate 0.8 mm/tooth and depth of cut 0.4mm) constituted the optimum condition for longer tool life which is 123.2 min. While at medium cutting speed, it is found that the cutting speed of 300m/min, feed rate 0.8 mm/tooth and depth of cut 0.5mm only 119.86 min for tool wear mean while the low cutting speed give 119.66 min. The high cutting speed gives the best parameter for cutting AlSi/AlN MMCs materials. The result will help manufacture to machining the AlSi/AlN MMCs materials.

Keywords: AlSi/AlN Metal Matrix Composite milling process, tool wear, TiB2 coated carbide tool, manufacturing engineering

Procedia PDF Downloads 424