Search results for: students with learning disabilities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10810

Search results for: students with learning disabilities

3940 Machine Learning Methods for Flood Hazard Mapping

Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto

Abstract:

This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia PDF Downloads 185
3939 Achieving Sustainable Lifestyles Based on the Spiritual Teaching and Values of Buddhism from Lumbini, Nepal

Authors: Purna Prasad Acharya, Madhav Karki, Sunta B. Tamang, Uttam Basnet, Chhatra Katwal

Abstract:

The paper outlines the idea behind achieving sustainable lifestyles based on the spiritual values and teachings of Lord Buddha. This objective is to be achieved by spreading the tenets and teachings of Buddhism throughout the Asia Pacific region and the world from the sacred birth place of Buddha - Lumbini, Nepal. There is an urgent need to advance the relevance of Buddhist philosophy in tackling the triple planetary crisis of climate change, nature’s decline, and pollution. Today, the world is facing an existential crisis due to the above crises, exasperated by hunger, poverty and armed conflict. To address multi-dimensional impacts, the global communities have to adopt simple life styles that respect nature and universal human values. These were the basic teachings of Gautam Buddha. Lumbini, Nepal has the moral obligation to widely disseminate Buddha’s teaching to the world and receive constant feedback and learning to develop human and ecosystem resilience by molding the lifestyles of current and future generations through adaptive learning and simplicity across the geography and nationality based on spirituality and environmental stewardship. By promoting Buddhism, Nepal has developed a pro-nature tourism industry that focuses on both its spiritual and bio-cultural heritage. Nepal is a country rich in ancient wisdom, where sages have sought knowledge, practiced meditation, and followed spiritual paths for thousands of years. It can spread the teachings of Buddha in a way people can search for and adopt ways to live, creating harmony with nature. Using tools of natural sciences and social sciences, the team will package knowledge and share the idea of community well-being within the framework of environmental sustainability, social harmony and universal respect for nature and people in a more holistic manner. This notion takes into account key elements of sustainable development such as food-energy-water-biodiversity interconnections, environmental conservation, ecological integrity, ecosystem health, community resiliency, adaptation capacity, and indigenous culture, knowledge and values. This inclusive concept has garnered a strong network of supporters locally, regionally, and internationally. The key objectives behind this concept are: a) to leverage expertise and passion of a network of global collaborators to advance research, education, and policy outreach in the areas of human sustainability based on lifestyle change using the power of spirituality and Buddha’s teaching, resilient lifestyles, and adaptive living; b) help develop creative short courses for multi-disciplinary teaching in educational institutions worldwide in collaboration with Lumbini Buddha University and other relevant partners in Nepal; c) help build local and regional intellectual and cultural teaching and learning capacity by improving professional collaborations to promote nature based and Buddhist value-based lifestyles by connecting Lumbini to Nepal’s rich nature; d) promote research avenues to provide policy relevant knowledge that is creative, innovative, as well as practical and locally viable; and e) connect local research and outreach work with academic and cultural partners in South Korea so as to open up Lumbini based Buddhist heritage and Nepal’s Karnali River basin’s unique natural landscape to Korean scholars and students to promote sustainable lifestyles leading to human living in harmony with nature.

Keywords: triple planetary crisis, spirituality, sustainable lifestyles, living in harmony with nature, resilience

Procedia PDF Downloads 41
3938 Instructional Consequences of the Transiency of Spoken Words

Authors: Slava Kalyuga, Sujanya Sombatteera

Abstract:

In multimedia learning, written text is often transformed into spoken (narrated) text. This transient information may overwhelm limited processing capacity of working memory and inhibit learning instead of improving it. The paper reviews recent empirical studies in modality and verbal redundancy effects within a cognitive load framework and outlines conditions under which negative effects of transiency may occur. According to the modality effect, textual information accompanying pictures should be presented in an auditory rather than visual form in order to engage two available channels of working memory – auditory and visual - instead of only one of them. However, some studies failed to replicate the modality effect and found differences opposite to those expected. Also, according to the multimedia redundancy effect, the same information should not be presented simultaneously in different modalities to avoid unnecessary cognitive load imposed by the integration of redundant sources of information. However, a few studies failed to replicate the multimedia redundancy effect too. Transiency of information is used to explain these controversial results.

Keywords: cognitive load, transient information, modality effect, verbal redundancy effect

Procedia PDF Downloads 382
3937 Risk Management in Industrial Supervision Projects

Authors: Érick Aragão Ribeiro, George André Pereira Thé, José Marques Soares

Abstract:

Several problems in industrial supervision software development projects may lead to the delay or cancellation of projects. These problems can be avoided or contained by using identification methods, analysis and control of risks. These procedures can give an overview of the possible problems that can happen in the projects and what are the immediate solutions. Therefore, we propose a risk management method applied to the teaching and development of industrial supervision software. The method is developed through a literature review and previous projects can be divided into phases of management and have basic features that are validated with experimental research carried out by mechatronics engineering students and professionals. The management is conducted through the stages of identification, analysis, planning, monitoring, control and communication of risks. Programmers use a method of prioritizing risks considering the gravity and the possibility of occurrence of the risk. The outputs of the method indicate which risks occurred or are about to happen. The first results indicate which risks occur at different stages of the project and what risks have a high probability of occurring. The results show the efficiency of the proposed method compared to other methods, showing the improvement of software quality and leading developers in their decisions. This new way of developing supervision software helps students identify design problems, evaluate software developed and propose effective solutions. We conclude that the risk management optimizes the development of the industrial process control software and provides higher quality to the product.

Keywords: supervision software, risk management, industrial supervision, project management

Procedia PDF Downloads 361
3936 Intimate Partner Violence and the Risk of Children’s Growth and Development

Authors: Fatemeh Abdollahi, Munn-Sann Lye, Jamshid Yazdani Charati, Mehran Zarghami

Abstract:

Background: The negative consequences of intimate partner violence (IPV) on children have not been studied extensively. This study aimed to determine the prevalence of different types of IPV and its association with children’s growth and developmental problems. Methods: In a descriptive-analytical study, 596 mothers of one-year-old children referred to the primary health centers in Gonbad-e- Kavoos city were recruited (2018). The data were collected using the World Health Organization Domestic Violence, Ages and Stages Questionnaire-12 and the socio-economic, obstetrics, demographic and anthropometric characteristics related questionnaire. BMI Z-Score was categorized into three grades; thin (Z<-2), normal (-2≤Z<1), and overweight-obese (Z≥1). The data were analyzed using descriptive analysis, chi-square test, and regression. Results: The prevalence of physical, psychological, and sexual IPV was 7.4%, 29.5%, and 2.4%, respectively. Most of the children were of normal weight at one-year-old (91.7%). Similarly, the prevalence of overweight and obese was 13.3% and 8%, respectively. 2% of children had developmental problems at age one. There was a significant relationship between the father’s education and occupation and IPV and children’s delay in growth, respectively. There was no significant difference between BMI Z-Score and developmental disabilities in the children in women exposed and not exposed to all types of IPV. Conclusions: The prevalence of psychological IPV was common. IPV and children’s growth problems were influenced by the father’s socio-economic status. Preventing psychological IPV as a forerunner of other types of IPV and improving the economic situation may help in the reduction of these difficulties.

Keywords: children, development, growth, intimate partner violence

Procedia PDF Downloads 86
3935 Measures for Daylight Quality and Classroom Design: Impacts on Visual Comfort and Performance in Hot Climates

Authors: Ahmed A. Freewan

Abstract:

The current research explored the quality of daylight and classroom visual environments and their impact on human performance and visual comfort in hot climates like Jordan. The research used multiple methods, including real experiments, simulation, focus groups and questionnaires. Therefore, seven different designs and visual environments have been implemented in south-facing classrooms with high WWR in recently constructed modern schools in Jordan. These visual environments have been created by applying various innovative shading systems in the seven classrooms to enable real interaction with the users of these spaces: students and teachers. The main aims of the research were to introduce distinct measures for daylight quality and to expand the scope of daylight studies in schools by connecting directly with students and teachers through focus groups or questionnaires. The main findings of this research showed the importance of studying uniformity not only across the entire classroom but also in different zones in relation to the windows and the front wall where the whiteboard is located, and the teacher stands. Moreover, it has been found that uniformity analysis in classrooms extends beyond just the horizontal plane, encompassing the relationship with the illuminance level on the front wall as well. Study the fenestration design impact on critical function requirements in addition to studying the dynamic of daylight over time, especially glare, uniformity and veiling reflection.

Keywords: daylight, uniformity, WWR, innovative shading systems

Procedia PDF Downloads 47
3934 Demand of Media and Information for the Public Relation Media for Local Learning Resource Salaya, Nakhon Pathom

Authors: Patsara Sirikamonsin, Sathapath Kilaso

Abstract:

This research aims to study the media and information demand for public relations in Salaya, Nakhonpathom. The research objectives are: 1. to research on conflicts of communication and seeking solutions and improvements of media information in Salaya, Nakhonpathom; 2. to study about opinions and demand for media information to reach out the improvements of people communications among Salaya, Nakhonpathom; 3. to explore the factors related to relationship and behaviors on obtaining media information for public relations among Salaya, Nakhonpathom. The research is conducted by questionnaire which is interpreted by statistical analysis concluding with analysis, frequency, percentage, average and standard deviations. The research results demonstrate: 1. The conflicts of communications among Salaya, Nakhonpathom are lacking equipment and technological knowledge and public relations. 2. Most people have demand on media improvements for vastly broadcasting public relations in order to nourish the social values. This research intentionally is to create the infographic media which are easily accessible, uncomplicated and popular, in the present.

Keywords: media and information, the public relation printed media, local learning resource

Procedia PDF Downloads 164
3933 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates

Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe

Abstract:

Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.

Keywords: machine learning, MTB, WGS, drug resistant TB

Procedia PDF Downloads 56
3932 Television Is Useful in Promoting Safe Sexual Practices to Student Populations: A Mixed-Methods Questionnaire Exploring the Impact of Channel Four’s ‘It’s a Sin (2021)’

Authors: Betsy H. Edwards

Abstract:

Background: Public Health England recognises unprotected sex and consequent transmission of sexually transmitted infections (STIs) as significant problems within student populations. Government surveys show that 50% of sexually-active young adults engage in unprotected sex with new partners, with 10% never using condoms. The recent Channel Four mini-series ‘It’s a Sin’ dramatises the 1980s AIDS epidemic and has been praised for its educational value and for promoting safe sexual practices to its viewers. This mixed-methods questionnaire study aims to investigate whether the series can change attitudes towards safe sex in student populations, can promote the use of condoms in student populations, and whether television, in general, is a useful tool for promoting health education. Methods: A questionnaire, created on Microsoft Forms, was distributed to students at the University of Birmingham via Facebook groups between September 2021 and May 2022. To consent, participants had to be aged 18 or over, a student at the university, have seen the entire series of ‘It’s a Sin’, and read the study information. Data was confidentially stored within the University’s secured OneDrive in accordance with the study’s approved ethics application. Quantitative questions measured participants’ attitudes and behaviours using Likert scales. Qualitative data was analysed using thematic analysis. Quantitative Results: 78 students completed the questionnaire. 43 participants (55%) felt that the series ‘It’s a Sin’ promoted safe sex. 74 participants (96%) and 31 participants (39%) said they were ‘very likely’ or ‘likely’ to use condoms with a casual partner during penetrative sex and oral sex respectively. 27 participants (35%) felt that watching ‘It’s a Sin’ made them more likely to use condoms; of these 27 participants, all were ‘very likely’ or ‘likely’ to use condoms during penetrative sex, and 9 were ‘very likely’ or ‘likely’ to during oral sex. 49 participants (63%) and 53 participants (68%) felt that television is a good way to provide health education and to promote healthy behaviours respectively. Qualitative Results: 56 participants (72%) gave reasons why the series had been associated with an increased uptake in HIV testing. Three themes emerged: increased education and attention, decreased stigmatisation, and relatability of characters on screen. Conclusions: This study suggests that the series ‘It’s a Sin’ can influence attitudes towards and the uptake of safe sexual practices. It would be useful for further research - using larger, randomised samples - to explore impacts upon populations lesser-educated about sexual health, who potentially have more to gain from watching series such as ‘It’s a Sin’.

Keywords: GUM, It's a sin, media, sexual health, students, television, tv

Procedia PDF Downloads 100
3931 Use of Visual, Animating Narrative in an Entrepreneurial Storytelling: A Case Study of Greenesignit! Card Game, Educational and Brainstorming Tool for Development of Sustainable Products

Authors: Maja S. Todorovic

Abstract:

This paper aims to promote entrepreneurial storytelling by exploring new ideas and learning practices. An entrepreneur needs to be a ‘storyteller’, an ‘epic hero’, capable of offering an emotional connection to his audience, a character with whom audience can identify with, rejoice, suffer, celebrate, fail – simply experience everything. In other words, a successful entrepreneur is giving tangible experience through his business story and that’s what makes his story and business alive. Use of mythology, eulogy, metaphor, epic, fairytales and cartoons, permeated with humor and sudden twists is a winning recipe for a business story that captures attention. In the business case of the Greenesignit! Card game, (educational and brainstorming tool for development of sustainable products) we will demonstrate how an entrepreneur successfully used visual narrative to communicate his story and at the same time as a vehicle to transmute his message in learning tool and product development.

Keywords: animating narrative, entrepreneur, Greeneisgnit! card game, visual storytelling

Procedia PDF Downloads 396
3930 Effects of Progressive Resistive Exercise on Isometric Strength of Shoulder Extensor and Abductor Muscles in Adult Hemiplegic

Authors: S. Abbasi, M. R. Hadian, M. Abdolvahab, M. Jalili, S. H. Jalaei

Abstract:

Background: Rehabilitation treatments have significant role in reducing the disabilities of Cerebro Vascular Accident (CVA). Due to great role of upper limb in the function of individuals particularly in Activity of Daily Living and the effect of stability of shoulder girdle on hand function, the aim of this study was to study the effects of Progressive Resistive Exercise on shoulder extensor and abductor muscles isometric strengths in adult hemiplegic. Methods: 17 adult hemiplegics patients (50-70 yrs., mean 60/52, SD7/22); with RT side dominancy and 6 months after stroke, participated in this study. All procedures were approved by ethical committee of TUMS and written consents were also taken. Patients were familiarized with the procedure and shoulder extensor and abductor muscles isometric strengths were measured by dynamometer. Results: according to result to our study, shoulder extensor and abductor muscles isometric strengths showed Significant differences between mean scores of pre and post intervention (P<0/05). Progressive Resistive Exercise improved 34% shoulder extensor muscles isometric strength and 27% shoulder abductor muscle isometric strength. Conclusion: Results of our research showed that progressive resistive exercise approach is a useful method for increasing the isometric strength of shoulder extensor and abductor muscles. Therefore, it might be concluded that improvement of strength of shoulder muscles could result in stability in shoulder girdle and consequently might effect on hand function in hemiplegic patients.

Keywords: shoulder extensor muscles isometric strength, shoulder abductor muscles isometric strength, hemiplegic, physical therapy

Procedia PDF Downloads 321
3929 Detecting Elderly Abuse in US Nursing Homes Using Machine Learning and Text Analytics

Authors: Minh Huynh, Aaron Heuser, Luke Patterson, Chris Zhang, Mason Miller, Daniel Wang, Sandeep Shetty, Mike Trinh, Abigail Miller, Adaeze Enekwechi, Tenille Daniels, Lu Huynh

Abstract:

Machine learning and text analytics have been used to analyze child abuse, cyberbullying, domestic abuse and domestic violence, and hate speech. However, to the authors’ knowledge, no research to date has used these methods to study elder abuse in nursing homes or skilled nursing facilities from field inspection reports. We used machine learning and text analytics methods to analyze 356,000 inspection reports, which have been extracted from CMS Form-2567 field inspections of US nursing homes and skilled nursing facilities between 2016 and 2021. Our algorithm detected occurrences of the various types of abuse, including physical abuse, psychological abuse, verbal abuse, sexual abuse, and passive and active neglect. For example, to detect physical abuse, our algorithms search for combinations or phrases and words suggesting willful infliction of damage (hitting, pinching or burning, tethering, tying), or consciously ignoring an emergency. To detect occurrences of elder neglect, our algorithm looks for combinations or phrases and words suggesting both passive neglect (neglecting vital needs, allowing malnutrition and dehydration, allowing decubiti, deprivation of information, limitation of freedom, negligence toward safety precautions) and active neglect (intimidation and name-calling, tying the victim up to prevent falls without consent, consciously ignoring an emergency, not calling a physician in spite of indication, stopping important treatments, failure to provide essential care, deprivation of nourishment, leaving a person alone for an inappropriate amount of time, excessive demands in a situation of care). We further compare the prevalence of abuse before and after Covid-19 related restrictions on nursing home visits. We also identified the facilities with the most number of cases of abuse with no abuse facilities within a 25-mile radius as most likely candidates for additional inspections. We also built an interactive display to visualize the location of these facilities.

Keywords: machine learning, text analytics, elder abuse, elder neglect, nursing home abuse

Procedia PDF Downloads 149
3928 Italian Sign Language and Deafness in a North-Italian Border Region: Results of Research on the Linguistic Needs of Teachers and Students

Authors: Maria Tagarelli De Monte

Abstract:

In 2021, the passage of the law recognizing Italian Sign Language (LIS) as the language of the Italian deaf minority was the input for including this visual-gestural language in the curricula of interpreters and translators choosing the academic setting for their training. Yet, a gap remains concerning LIS education of teachers and communication assistants as referring figures for people who are deaf or hard of hearing in mainstream education. As well documented in the related scientific literature, deaf children often experience severe difficulties with the languages spoken in the country where they grow up, manifesting in all levels of literacy competence. In the research introduced here, the experience of deaf students (and their teachers) attending schools is explored in areas that are characterized by strong native bilingualism, such as Friuli-Venezia Giulia (FVG), facing Italian Northeast borders. This region is peculiar as the native population may be bilingual Italian and Friulian (50% of the local population), German, and/or Slovenian. The research involved all schools of all levels in Friuli to understand the relationship between the language skills expressed by teachers and those shown by deaf learners with a background in sign language. In addition to collecting specific information on the degree of preparation of teachers in deaf-related matters and LIS, the research has allowed to highlight the role, often poorly considered, covered by the communication assistants who work alongside deaf students. On several occasions, teachers and assistants were unanimous in affirming the importance of mutual collaboration and adequate consideration of the educational-rehabilitative history of the deaf child and her family. The research was based on a mixed method of structured questionnaires and semi-structured interviews with the referring teachers. As a result, a varied and complex framework emerged, showing an asymmetry in preparing personnel dedicated to the deaf learner. Considering how Italian education has long invested in creating an inclusive and accessible school system (i.e. with the "Ten Theses for Democratic Language Education"), a constructive analysis will complete the discussion in an attempt to understand how linguistic (and modal) differences can become levers of inclusion.

Keywords: FVG, LIS, linguistic needs, deafness, teacher education, bilingual bimodal children, communication assistants, inclusion model

Procedia PDF Downloads 50
3927 An Analysis of Social Media Use regarding Foodways by University Students: The Case of Sakarya University

Authors: Kübra Yüzüncüyıl, Aytekin İşman, Berkay Buluş

Abstract:

In the last quarter of the 20th century, Food Studies was emerged as an interdisciplinary program. It seeks to develop a critical perspective on sociocultural meanings of food. The notion of food has been related with certain social and cultural values throughout history. In today’s society, with the rise of new media technologies, cultural structure have been digitized. Food culture in this main, is also endowed with digital codes. In particular, social media has been integrated into foodways. This study attempts to examine the gratifications that individuals obtain from social media use on foodways. In the first part of study, the relationship between food culture and digital culture is examined. Secondly, theoretical framework and research method of the study are explained. In order to achieve the particular aim of study, Uses and Gratifications Theory is adopted as conceptual framework. Conventional gratification categories are redefined in new media terms. After that, the relation between redefined categories and foodways is uncovered. Due to its peculiar context, this study follows a quantitative research method. By conducting pre-interviews and factor analysis, a peculiar survey is developed. The sample of study is chosen among 405 undergraduate communication faculty students of Sakarya University by proportionate stratification sampling method. In the analysis of the collected data, statistical methods One-Way ANOVA, Independent Samples T-test, and Tuckey Honest Significant Difference Test, Post Hoc Test are used.

Keywords: food studies, food communication, new media, communication

Procedia PDF Downloads 199
3926 Changing Trends and Attitudes towards Online Assessment

Authors: Renáta Nagy, Alexandra Csongor, Jon Marquette, Vilmos Warta

Abstract:

The presentation aims at eliciting insight into the results of ongoing research regarding evolving trends and attitudes towards online assessment of English for Medical Purposes. The focus pinpointsonline as one of the most trending formsavailable during the global pandemic. The study was first initiated in 2019 in which its main target was to reveal the intriguing question of students’ and assessors’ attitudes towards online assessment. The research questions the attitudes towards the latest trends, possible online task types, their advantagesand disadvantages through an in-depth experimental process currently undergoing implementation. Material and methods include surveys, needs and wants analysis, and thorough investigations regarding candidates’ and assessors’ attitudes towards online tests in the field of Medicine. The examined test tasks include various online tests drafted in both English and Hungarian by student volunteers at the Medical School of the University of Pécs, Hungary. Over 400 respondents from more than 28 countries participated in the survey, which gives us an international and intercultural insight into how students with different cultural and educational background deal with the evolving online world. The results show the pandemic’s impact, which brought the slumbering online world of assessing roaring alive, fully operational andnowbearsphenomenalrelevancein today’s global education. Undeniably, the results can be used as a perspective in a vast array of contents. The survey hypothesized the generation of the 21st century expect everything readily available online, however, questions whether they are ready for this challenge are lurking in the background.

Keywords: assessment, changes, english, ESP, online assessment, online, trends

Procedia PDF Downloads 208
3925 Examining the Development of Complexity, Accuracy and Fluency in L2 Learners' Writing after L2 Instruction

Authors: Khaled Barkaoui

Abstract:

Research on second-language (L2) learning tends to focus on comparing students with different levels of proficiency at one point in time. However, to understand L2 development, we need more longitudinal research. In this study, we adopt a longitudinal approach to examine changes in three indicators of L2 ability, complexity, accuracy, and fluency (CAF), as reflected in the writing of L2 learners when writing on different tasks before and after a period L2 instruction. Each of 85 Chinese learners of English at three levels of English language proficiency responded to two writing tasks (independent and integrated) before and after nine months of English-language study in China. Each essay (N= 276) was analyzed in terms of numerous CAF indices using both computer coding and human rating: number of words written, number of errors per 100 words, ratings of error severity, global syntactic complexity (MLS), complexity by coordination (T/S), complexity by subordination (C/T), clausal complexity (MLC), phrasal complexity (NP density), syntactic variety, lexical density, lexical variation, lexical sophistication, and lexical bundles. Results were then compared statistically across tasks, L2 proficiency levels, and time. Overall, task type had significant effects on fluency and some syntactic complexity indices (complexity by coordination, structural variety, clausal complexity, phrase complexity) and lexical density, sophistication, and bundles, but not accuracy. L2 proficiency had significant effects on fluency, accuracy, and lexical variation, but not syntactic complexity. Finally, fluency, frequency of errors, but not accuracy ratings, syntactic complexity indices (clausal complexity, global complexity, complexity by subordination, phrase complexity, structural variety) and lexical complexity (lexical density, variation, and sophistication) exhibited significant changes after instruction, particularly for the independent task. We discuss the findings and their implications for assessment, instruction, and research on CAF in the context of L2 writing.

Keywords: second language writing, Fluency, accuracy, complexity, longitudinal

Procedia PDF Downloads 156
3924 Combined Treatment of Aged Rats with Donepezil and the Gingko Extract EGb 761® Enhances Learning and Memory Superiorly to Monotherapy

Authors: Linda Blümel, Bettina Bert, Jan Brosda, Heidrun Fink, Melanie Hamann

Abstract:

Age-related cognitive decline can eventually lead to dementia, the most common mental illness in elderly people and an immense challenge for patients, their families and caregivers. Cholinesterase inhibitors constitute the most commonly used antidementia prescription medication. The standardized Ginkgo biloba leaf extract EGb 761® is approved for treating age-associated cognitive impairment and has been shown to improve the quality of life in patients suffering from mild dementia. A clinical trial with 96 Alzheimer´s disease patients indicated that the combined treatment with donepezil and EGb 761® had fewer side effects than donepezil alone. In an animal model of cognitive aging, we compared the effect of combined treatment with EGb 761® or donepezil monotherapy and vehicle. We compared the effect of chronic treatment (15 days of pretreatment) with donepezil (1.5 mg/kg p. o.), EGb 761® (100 mg/kg p. o.), or the combination of the two drugs, or vehicle in 18 – 20 month old male OFA rats. Learning and memory performance were assessed by Morris water maze testing, motor behavior in an open field paradigm. In addition to chronic treatment, the substances were administered orally 30 minutes before testing. Compared to the first day and to the control group, only the combination group showed a significant reduction in latency to reach the hidden platform on the second day of testing. Moreover, from the second day of testing onwards, the donepezil, the EGb 761® and the combination group required less time to reach the hidden platform compared to the first day. The control group did not reach the same latency reduction until day three. There were no effects on motor behavior. These results suggest a superiority of the combined treatment of donepezil with EGb 761® compared to monotherapy.

Keywords: age-related cognitive decline, dementia, ginkgo biloba leaf extract EGb 761®, learning and memory, old rats

Procedia PDF Downloads 370
3923 Attitude to Cultural Diversity and Inclusive Pedagogical Practices in the Classroom: A Correlational Study

Authors: Laura M. Espinoza, Karen A. Hernández, Diana B. Ledezma

Abstract:

Currently, in Chile, migratory movements are generated, where the country receives constantly people from Latin America such as Colombia, Peru, Venezuela, Haiti, among others. This phenomenon has reached the schools of Chile, where immigrant children and adolescents are educated in a context of cultural diversity. However, education professionals face this recent phenomenon without prior preparation to carry out their pedagogical practices in the classroom. On the other hand, research on how to understand and guide the processes of cultural diversity especially within the school is even scarce and recent in Latin America and specifically in Chile. The general purpose of the study is to analyze the relationships between teaching efforts towards multiculturalism and inclusive pedagogical practices in the schools of the city of La Serena and Coquimbo, in Chile. The study refers to a quantitative approach, with a correlational design. The selection of the participants was not intentional probabilistic. It comprises 88 teachers of preschool, primary, secondary and special education, who work in two schools with similar characteristics. For the collection of information on the independent variable, the attitude scale towards Immigration and the attitude scale towards Multiculturalism in the school are applied. To obtain information on the independent variable, the guide for the evaluation of inclusive practices in the classroom is applied. Both instruments have statistical validation. A Spearman correlation analysis was made to achieve the objective of the study. Among the main findings, we will find the relationships between the positive perceptions of multiculturalism at school and inclusive practices such as the physical conditions of the classroom, planning, methodology, use of time and evaluation. These findings are relevant to the teaching and learning processes of students in Chilean classrooms and contribute to literature for the understanding of educational processes in contexts of cultural diversity.

Keywords: cultural diversity, immigration, inclusive pedagogical practices, multiculturalism

Procedia PDF Downloads 128
3922 Cross Project Software Fault Prediction at Design Phase

Authors: Pradeep Singh, Shrish Verma

Abstract:

Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.

Keywords: software metrics, fault prediction, cross project, within project.

Procedia PDF Downloads 346
3921 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding

Procedia PDF Downloads 367
3920 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 92
3919 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy

Authors: Kemal Polat

Abstract:

In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.

Keywords: machine learning, data weighting, classification, data mining

Procedia PDF Downloads 330
3918 Social Responsibility in Reducing Gap between High School and 1st Year University Maths: SMU Case, South Africa

Authors: Solly M. Seeletse, Joel L. Thabane

Abstract:

Students enrolling at the Sefako Makgatho Health Sciences University (SMU) come mostly from the previously disadvantaged communities of South Africa. Their backgrounds are deprived in resources and modern technologies of education. Most of those admitted in the basic sciences were rejected in medicine and health related study programmes in SMU. Mathematics (maths) is the main subject for admission into SMU study programmes. However, maths results are usually low. In an attempt to help to prepare the students in the neighbourhood schools of SMU, some Maths educators partnered with local schools to communicate the needs and investigate the causes of poor maths results. They embarked on an action research to determine the level of educators’ maths education. The general aim of the research was to investigate the causes of deficiencies in maths teaching and results in the local secondary schools, focusing on teachers and learners. Asking the teachers about their education and learners about maths concepts of most difficulty, these were identified. The researchers assisted in teaching the difficult concepts. The study highlighted the most difficult concepts and the teachers’ lack of training in some content. Intervention of the researchers showed to be effective only for the very poor performing schools. Those with descent pass rates of over 50% did not benefit from it. This was the sign of lack of optimality in the methods used. The research recommendations suggested that intervention methods should be improved to be effective in all schools, and extension of the endeavours to more schools.

Keywords: action research, intervention, social responsibility, support

Procedia PDF Downloads 271
3917 KSVD-SVM Approach for Spontaneous Facial Expression Recognition

Authors: Dawood Al Chanti, Alice Caplier

Abstract:

Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.

Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation

Procedia PDF Downloads 311
3916 Human Capital Divergence and Team Performance: A Study of Major League Baseball Teams

Authors: Yu-Chen Wei

Abstract:

The relationship between organizational human capital and organizational effectiveness have been a common topic of interest to organization researchers. Much of this research has concluded that higher human capital can predict greater organizational outcomes. Whereas human capital research has traditionally focused on organizations, the current study turns to the team level human capital. In addition, there are no known empirical studies assessing the effect of human capital divergence on team performance. Team human capital refers to the sum of knowledge, ability, and experience embedded in team members. Team human capital divergence is defined as the variation of human capital within a team. This study is among the first to assess the role of human capital divergence as a moderator of the effect of team human capital on team performance. From the traditional perspective, team human capital represents the collective ability to solve problems and reducing operational risk of all team members. Hence, the higher team human capital, the higher the team performance. This study further employs social learning theory to explain the relationship between team human capital and team performance. According to this theory, the individuals will look for progress by way of learning from teammates in their teams. They expect to have upper human capital, in turn, to achieve high productivity, obtain great rewards and career success eventually. Therefore, the individual can have more chances to improve his or her capability by learning from peers of the team if the team members have higher average human capital. As a consequence, all team members can develop a quick and effective learning path in their work environment, and in turn enhance their knowledge, skill, and experience, leads to higher team performance. This is the first argument of this study. Furthermore, the current study argues that human capital divergence is negative to a team development. For the individuals with lower human capital in the team, they always feel the pressure from their outstanding colleagues. Under the pressure, they cannot give full play to their own jobs and lose more and more confidence. For the smart guys in the team, they are reluctant to be colleagues with the teammates who are not as intelligent as them. Besides, they may have lower motivation to move forward because they are prominent enough compared with their teammates. Therefore, human capital divergence will moderate the relationship between team human capital and team performance. These two arguments were tested in 510 team-seasons drawn from major league baseball (1998–2014). Results demonstrate that there is a positive relationship between team human capital and team performance which is consistent with previous research. In addition, the variation of human capital within a team weakens the above relationships. That is to say, an individual working with teammates who are comparable to them can produce better performance than working with people who are either too smart or too stupid to them.

Keywords: human capital divergence, team human capital, team performance, team level research

Procedia PDF Downloads 243
3915 Multi Attribute Failure Mode Analysis of the Catering Systems: A Case Study of Sefako Makgatho Health Sciences University in South Africa

Authors: Mokoena Oratilwe Penwell, Seeletse Solly Matshonisa

Abstract:

The demand for quality products is a vital factor determining the success of a producing company, and the reality of this demand influences customer satisfaction. In Sefako Makgatho Health Sciences University (SMU), concerns over the quality of food being sold have been raised by mostly students and staff who are primary consumers of food being sold by the cafeteria. Suspicions of food poisoning and the occurrence of diarrhea-related to food from the cafeteria, amongst others, have been raised. However, minimal measures have been taken to resolve the issue of food quality. New service providers have been appointed, and still, the same trends are being observed, the quality of food seems to depreciate continuously. This paper uses multi-attribute failure mode analysis (MAFMA) for failure detection and minimization on the machines used for food production by SMU catering company before being sold to both staff, and students so as to improve production plant reliability, and performance. Analytical Hierarchy Process (AHP) will be used for the severity ranking of the weight criterions and development of the hierarchical structure for the cafeteria company. Amongst other potential issues detected, maintenance of the machines and equipment used for food preparations was of concern. Also, the staff lacked sufficient hospitality skills, supervision, and management in the cafeteria needed greater attention to mitigate some of the failures occurring in the food production plant.

Keywords: MAFMA, food quality, maintenance, supervision

Procedia PDF Downloads 139
3914 Indoor Air Quality Analysis for Renovating Building: A Case Study of Student Studio, Department of Landscape, Chiangmai, Thailand

Authors: Warangkana Juangjandee

Abstract:

The rapidly increasing number of population in the limited area creates an effect on the idea of the improvement of the area to suit the environment and the needs of people. Faculty of architecture Chiang Mai University is also expanding in both variety fields of study and quality of education. In 2020, the new department will be introduced in the faculty which is Department of Landscape Architecture. With the limitation of the area in the existing building, the faculty plan to renovate some parts of its school for anticipates the number of students who will join the program in the next two years. As a result, the old wooden workshop area is selected to be renovated as student studio space. With such condition, it is necessary to study the restriction and the distinctive environment of the site prior to the improvement in order to find ways to manage the existing space due to the fact that the primary functions that have been practiced in the site, an old wooden workshop space and the new function, studio space, are too different. 72.9% of the annual times in the room are considered to be out of the thermal comfort condition with high relative humidity. This causes non-comfort condition for occupants which could promote mould growth. This study aims to analyze thermal comfort condition in the Landscape Learning Studio Area for finding the solution to improve indoor air quality and respond to local conditions. The research methodology will be in two parts: 1) field gathering data on the case study 2) analysis and finding the solution of improving indoor air quality. The result of the survey indicated that the room needs to solve non-comfort condition problem. This can be divided into two ways which are raising ventilation and indoor temperature, e.g. improving building design and stack driven ventilation, using fan for enhancing more internal ventilation.

Keywords: relative humidity, renovation, temperature, thermal comfort

Procedia PDF Downloads 219
3913 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 80
3912 Comparative Analysis of Decentralized Financial Education Systems: Lessons From Global Implementations

Authors: Flex Anim

Abstract:

The financial system is a decentralized studies system that was put into place in Ghana as a grassroots financial studies approach. Its main goal is to give people the precise knowledge, abilities, and training required for a given trade, business, profession, or occupation. In this essay, the question of how the financial studies system's devolution to local businesses results in responsible and responsive representation as well as long-term company learning is raised. It centers on two case studies, Asekwa Municipal and Oforikrom. The next question posed by the study is how senior high school students are rebuilding their livelihoods and socioeconomic well-being by creating new curriculum and social practices related to the finance and business studies system. The paper here concentrates on Kumasi District and makes inferences for the other two examples. The paper demonstrates how the financial studies system's establishment of representative groups creates the democratic space required for the successful representation of community goals. Nonetheless, the interests of a privileged few are advanced as a result of elite capture. The state's financial and business training programs do not adhere to the financial studies system's established policy procedures and do not transfer pertinent and discretionary resources to local educators. As a result, local educators are unable to encourage representation that is accountable and responsive. The financial studies system continues to pique the interest of rural areas, but this desire is skewed toward getting access to financial or business training institutions for higher education. Since the locals are not actively involved in financial education, the financial studies system serves just to advance the interests of specific populations. This article explains how rhetoric and personal benefits can be supported by the public even in the case of "failed" interventions.

Keywords: financial studies system, financial studies' devolution, local government, senior high schools and financial education, as well as community goals and representation

Procedia PDF Downloads 78
3911 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 79