Search results for: vector density
3872 Utilising Unground Oil Palm Ash in Producing Foamed Concrete and Its Implementation as an Interlocking Mortar-Less Block
Authors: Hanizam Awang, Mohammed Zuhear Al-Mulali
Abstract:
In this study, the possibility of using unground oil palm ash (UOPA) for producing foamed concrete is investigated. The UOPA used in this study is produced by incinerating palm oil biomass at a temperature exceeding 1000ºC. A semi-structural density of 1300kg/m3 was used with filler to binder ratio of 1.5 and preliminary water to binder ratio of 0.45. Cement was replaced by UOPA at replacement levels of 0, 25, 35, 45, 55 and 65% by weight of binder. Properties such as density, compressive strength, drying shrinkage and water absorption were investigated to the age of 90 days. The mix with a 35% of UOPA content was chosen to be used as the base material of a newly designed interlocking, mortar-less block system.Keywords: foamed concrete, oil palm ash, strength, interlocking block
Procedia PDF Downloads 2643871 Expression of Human Papillomavirus Type 18 L1 Virus-Like Particles in Methylotropic Yeast, Pichia Pastoris
Authors: Hossein Rassi, Marjan Moradi Fard, Samaneh Niko
Abstract:
Human papillomavirus type 16 and 18 are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, HPV type 18 accounts for about 34 % of all HPV infections in Iran and the most promising vaccine against HPV infection is based on the L1 major capsid protein. The L1 protein of HPV18 has the capacity to self-assemble into capsomers or virus-like particles (VLPs) that are non-infectious, highly immunogenic and allowing their use in vaccine production. The methylotrophic yeast Pichia pastoris is an efficient and inexpensive expression system used to produce high levels of heterologous proteins. In this study we expressed HPV18 L1 VLPs in P. pastoris. The gene encoding the major capsid protein L1 of the high-risk HPV type 18 was isolated from Iranian patient by PCR and inserted into pTG19-T vector to obtain the recombinant expression vector pTG19-HPV18-L1. Then, the pTG19-HPV18-L1 was transformed into E. coli strain DH5α and the recombinant protein HPV18 L1 was expressed under IPTG induction in soluble form. The HPV18 L1 gene was excised from recombinant plasmid with XhoI and EcoRI enzymes and ligated into the yeast expression vector pPICZα linearized with the same enzymes, and transformed into P. pastoris. Induction and expression of HPV18 L1 protein was demonstrated by BMGY/BMMY and RT PCR. The parameters for induced cultivation for strain in P. pastoris KM71 with HPV16L1 were investigated in shaking flask cultures. After induced cultivation BMMY (pH 7.0) medium supplemented with methanol to a final concentration of 1.0% every 24 h at 37 degrees C for 96 h, the recombinant produced 78.6 mg/L of L1 protein. This work offers the possibility for the production of prophylactic vaccine for cervical carcinoma by P. pastoris for HPV-18 L1 gene. The VLP-based HPV vaccines can prevent persistent HPV18 infections and cervical cancer in Iran. The HPV-18 L1 gene was expressed successfully in E.coli, which provides necessary basis for preparing HPV-18 L1 vaccine in human. Also, HPV type 6 L1 proteins expressed in Pichia pastoris will facilitate the HPV vaccine development and structure-function study.Keywords: Pichia pastoris, L1 virus-like particles, human papillomavirus type 18, biotechnology
Procedia PDF Downloads 4073870 QTAIM View of Metal-Metal Bonding in Trinuclear Mixed-Metal Bridged Ligand Clusters Containing Ruthenium and Osmium
Authors: Nadia Ezzat Al-Kirbasee, Ahlam Hussein Hassan, Shatha Raheem Helal Alhimidi, Doaa Ezzat Al-Kirbasee, Muhsen Abood Muhsen Al-Ibadi
Abstract:
Through DFT/QTAIM calculations, we have provided new insights into the nature of the M-M, M-H, M-O, and M-C bonds of the (Cp*Ru)n(Cp*Os)3−n(μ3-O)2(μ-H)(Cp* = η5-C5Me5, n= 3,2,1,0). The topological analysis of the electron density reveals important details of the chemical bonding interactions in the clusters. Calculations confirm the absence of bond critical points (BCP) and the corresponding bond paths (BP) between Ru-Ru, Ru-Os, and Os-Os. The position of bridging hydrides and Oxo atoms coordinated to Ru-Ru, Ru-Os, and Os-Os determines the distribution of the electron densities and which strongly affects the formation of the bonds between these transition metal atoms. On the other hand, the results confirm that the four clusters contain a 6c–12e and 4c–2e bonding interaction delocalized over M3(μ-H)(μ-O)2 and M3(μ-H), respectively, as revealed by the non-negligible delocalization indexes calculations. The small values for electron density ρ(b) above zero, together with the small values, again above zero, for laplacian ∇2ρ(b) and the small negative values for total energy density H(b) are shown by the Ru-H, Os-H, Ru-O, and Os-O bonds in the four clusters are typical of open shell interactions. Also, the topological data for the bonds between Ru and Os atoms with the C atoms of the pentamethylcyclopentadienyl (Cp*) ring ligands are basically similar and show properties very consistent with open shell interactions in the QTAIM classification.Keywords: metal-metal and metal-ligand interactions, organometallic complexes, topological analysis, DFT and QTAIM analyses
Procedia PDF Downloads 933869 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD
Authors: Mehdi Montakhabrazlighi, Ercan Balikci
Abstract:
The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.Keywords: neural network, rupture strength, superalloy, thermocalc
Procedia PDF Downloads 3153868 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.Keywords: time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder
Procedia PDF Downloads 2903867 Experiments on Weakly-Supervised Learning on Imperfect Data
Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler
Abstract:
Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation
Procedia PDF Downloads 1993866 Control Power in Doubly Fed Induction Generator Wind Turbine with SVM Control Inverter
Authors: Zerzouri Nora, Benalia Nadia, Bensiali Nadia
Abstract:
This paper presents a grid-connected wind power generation scheme using Doubly Fed Induction Generator (DFIG). This can supply power at constant voltage and constant frequency with the rotor speed varying. This makes it suitable for variable speed wind energy application. The DFIG system consists of wind turbine, asynchronous wound rotor induction generator, and inverter with Space Vector Modulation (SVM) controller. In which the stator is connected directly to the grid and the rotor winding is in interface with rotor converter and grid converter. The use of back-to-back SVM converter in the rotor circuit results in low distortion current, reactive power control and operate at variable speed. Mathematical modeling of the DFIG is done in order to analyze the performance of the systems and they are simulated using MATLAB. The simulation results for the system are obtained and hence it shows that the system can operate at variable speed with low harmonic current distortion. The objective is to track and extract maximum power from the wind energy system and transfer it to the grid for useful work.Keywords: Doubly Fed Induction Generator, Wind Energy Conversion Systems, Space Vector Modulation, distortion harmonics
Procedia PDF Downloads 4843865 Determinants of Aggregate Electricity Consumption in Ghana: A Multivariate Time Series Analysis
Authors: Renata Konadu
Abstract:
In Ghana, electricity has become the main form of energy which all sectors of the economy rely on for their businesses. Therefore, as the economy grows, the demand and consumption of electricity also grow alongside due to the heavy dependence on it. However, since the supply of electricity has not increased to match the demand, there has been frequent power outages and load shedding affecting business performances. To solve this problem and advance policies to secure electricity in Ghana, it is imperative that those factors that cause consumption to increase be analysed by considering the three classes of consumers; residential, industrial and non-residential. The main argument, however, is that, export of electricity to other neighbouring countries should be included in the electricity consumption model and considered as one of the significant factors which can decrease or increase consumption. The author made use of multivariate time series data from 1980-2010 and econometric models such as Ordinary Least Squares (OLS) and Vector Error Correction Model. Findings show that GDP growth, urban population growth, electricity exports and industry value added to GDP were cointegrated. The results also showed that there is unidirectional causality from electricity export and GDP growth and Industry value added to GDP to electricity consumption in the long run. However, in the short run, there was found to be a directional causality among all the variables and electricity consumption. The results have useful implication for energy policy makers especially with regards to electricity consumption, demand, and supply.Keywords: electricity consumption, energy policy, GDP growth, vector error correction model
Procedia PDF Downloads 4373864 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even though decreases at these extreme wind speeds but are not infinite. Moreover, we also found that it is possible to stabilize the power coefficient (stabilizing the output power) above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.Keywords: probability, probability density function, stochastic, turbulence
Procedia PDF Downloads 5873863 Functional Gene Expression in Human Cells Using Linear Vectors Derived from Bacteriophage N15 Processing
Authors: Kumaran Narayanan, Pei-Sheng Liew
Abstract:
This paper adapts the bacteriophage N15 protelomerase enzyme to assemble linear chromosomes as vectors for gene expression in human cells. Phage N15 has the unique ability to replicate as a linear plasmid with telomeres in E. coli during its prophage stage of life-cycle. The virus-encoded protelomerase enzyme cuts its circular genome and caps its ends to form hairpin telomeres, resulting in a linear human-chromosome-like structure in E. coli. In mammalian cells, however, no enzyme with TelN-like activities has been found. In this work, we show for the first-time transfer of the protelomerase from phage into human and mouse cells and demonstrate recapitulation of its activity in these hosts. The function of this enzyme is assayed by demonstrating cleavage of its target DNA, followed by detecting telomere formation based on its resistance to recBCD enzyme digestion. We show protelomerase expression persists for at least 60 days, which indicates limited silencing of its expression. Next, we show that an intact human β-globin gene delivered on this linear chromosome accurately retains its expression in the human cellular environment for at least 60 hours, demonstrating its stability and potential as a vector. These results demonstrate that the N15 protelomerse is able to function in mammalian cells to cut and heal DNA to create telomeres, which provides a new tool for creating novel structures by DNA resolution in these hosts.Keywords: chromosome, beta-globin, DNA, gene expression, linear vector
Procedia PDF Downloads 1923862 Investigation about Structural and Optical Properties of Bulk and Thin Film of 1H-CaAlSi by Density Functional Method
Authors: M. Babaeipour, M. Vejdanihemmat
Abstract:
Optical properties of bulk and thin film of 1H-CaAlSi for two directions (1,0,0) and (0,0,1) were studied. The calculations are carried out by Density Functional Theory (DFT) method using full potential. GGA approximation was used to calculate exchange-correlation energy. The calculations are performed by WIEN2k package. The results showed that the absorption edge is shifted backward 0.82eV in the thin film than the bulk for both directions. The static values of the real part of dielectric function for four cases were obtained. The static values of the refractive index for four cases are calculated too. The reflectivity graphs have shown an intensive difference between the reflectivity of the thin film and the bulk in the ultraviolet region.Keywords: 1H-CaAlSi, absorption, bulk, optical, thin film
Procedia PDF Downloads 5193861 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 1283860 Characterization of Biodiesel Produced from Cow-Tallow
Authors: Nwadike Emmanuel Chinagoron, Achebe Chukwunonso, Ezeliora Chukwuemeka Daniel, Azaka Onyemazuwa Andrew
Abstract:
In this research work, the process of biodiesel production in a pilot plant was studied using cow tallow as raw material, methanol as the solvent and potassium hydroxide as catalysts. The biodiesel quality was determined by characterization. The tallow used in the production had a molecular weight of 860g. Its oil had a density value of 0.8g/ml, iodine value of 63.45, viscosity at 300C was 9.83pas, acid value was 1.96, free fatty acid (FFA) of 0.98%, saponification value of 82.75mleq/kg, specific gravity of 0.898, flash point of 1100C, cloud point of 950C and Calorific value also called Higher Heating Value (HHV) of 38.365MJ/Kg. The produced biodiesel had a density of 0.82g/ml, iodine value of 126.9, viscosity of 4.32pas at 300C, acid value of 0.561, FFA of 0.2805%, saponification value of 137.45 mleq/kg.Flash point, cloud point and centane number of the biodiesel produced are 1390C, 980C and 57.5 respectively, with fat content, protein content, ash content, moisture content, fiber content and carbohydrate content values of 10%, 2.8%, 5%, 5%, 20%, and 37.2% respectively. The biodiesel higher heating values (calorific values) when estimated from viscosity, density and flash points were 41.4MJ/Kg, 63.8MJ/Kg, and 34.6MJ/Kg respectively. The biodiesel was blended with conventional diesel. The blend B-10 had values of 1320C and 960C for flash and cloud points, with Calorific value (or HHV) of 34.6 MJ/Kg (when estimated from its Flash point) and fat content, protein content, ash content, moisture content, fiber content and carbohydrate content values of 5%, 2.1%,10%, 5%, 15%, and 62.9% respectively.Keywords: biodiesel, characterization, cow-tallow, cetane rating
Procedia PDF Downloads 5373859 Multiple Relaxation Times in the Gibbs Ensemble Monte Carlo Simulation of Phase Separation
Authors: Bina Kumari, Subir K. Sarkar, Pradipta Bandyopadhyay
Abstract:
The autocorrelation function of the density fluctuation is studied in each of the two phases in a Gibbs Ensemble Monte Carlo (GEMC) simulation of the problem of phase separation for a square well potential with various values of its range. We find that the normalized autocorrelation function is described very well as a linear combination of an exponential function with a time scale τ₂ and a stretched exponential function with a time scale τ₁ and an exponent α. Dependence of (α, τ₁, τ₂) on the parameters of the GEMC algorithm and the range of the square well potential is investigated and interpreted. We also analyse the issue of how to choose the parameters of the GEMC simulation optimally.Keywords: autocorrelation function, density fluctuation, GEMC, simulation
Procedia PDF Downloads 1893858 Boiler Ash as a Reducer of Formaldehyde Emission in Medium-Density Fiberboard
Authors: Alexsandro Bayestorff da Cunha, Dpebora Caline de Mello, Camila Alves Corrêa
Abstract:
In the production of fiberboards, an adhesive based on urea-formaldehyde resin is used, which has the advantages of low cost, homogeneity of distribution, solubility in water, high reactivity in an acid medium, and high adhesion to wood. On the other hand, as a disadvantage, there is low resistance to humidity and the release of formaldehyde. The objective of the study was to determine the viability of adding industrial boiler ash to the urea formaldehyde-based adhesive for the production of medium-density fiberboard. The raw material used was composed of Pinus spp fibers, urea-formaldehyde resin, paraffin emulsion, ammonium sulfate, and boiler ash. The experimental plan, consisting of 8 treatments, was completely randomized with a factorial arrangement, with 0%, 1%, 3%, and 5% ash added to the adhesive, with and without the application of a catalyst. In each treatment, 4 panels were produced with density of 750 kg.m⁻³, dimensions of 40 x 40 x 1,5 cm, 12% urea formaldehyde resin, 1% paraffin emulsion and hot pressing at a temperature of 180ºC, the pressure of 40 kgf/cm⁻² for a time of 10 minutes. The different compositions of the adhesive were characterized in terms of viscosity, pH, gel time and solids, and the panels by physical and mechanical properties, in addition to evaluation using the IMAL DPX300 X-ray densitometer and formaldehyde emission by the perforator method. The results showed a significant reduction of all adhesive properties with the use of the catalyst, regardless of the treatment; while the percentage increase of ashes provided an increase in the average values of viscosity, gel time, and solids and a reduction in pH for the panels with a catalyst; for panels without catalyst, the behavior was the opposite, with the exception of solids. For the physical properties, the results of the variables of density, compaction ratio, and thickness were equivalent and in accordance with the standard, while the moisture content was significantly reduced with the use of the catalyst but without the influence of the percentage of ash. The density profile for all treatments was characteristic of medium-density fiberboard, with more compacted and dense surfaces when compared to the central layer. For thickness, the swelling was not influenced by the catalyst and the use of ash, presenting average values within the normalized parameters. For mechanical properties, the influence of ashes on the adhesive was negatively observed in the modulus of rupture from 1% and in the traction test from 3%; however, only this last property, in the percentages of 3% and 5%, were below the minimum limit of the norm. The use of catalyst and ashes with percentages of 3% and 5% reduced the formaldehyde emission of the panels; however, only the panels that used adhesive with catalyst presented emissions below 8mg of formaldehyde / 100g of the panel. In this way, it can be said that boiler ash can be added to the adhesive with a catalyst without impairing the technological properties by up to 1%.Keywords: reconstituted wood panels, formaldehyde emission, technological properties of panels, perforator
Procedia PDF Downloads 723857 Reconstructed Phase Space Features for Estimating Post Traumatic Stress Disorder
Authors: Andre Wittenborn, Jarek Krajewski
Abstract:
Trauma-related sadness in speech can alter the voice in several ways. The generation of non-linear aerodynamic phenomena within the vocal tract is crucial when analyzing trauma-influenced speech production. They include non-laminar flow and formation of jets rather than well-behaved laminar flow aspects. Especially state-space reconstruction methods based on chaotic dynamics and fractal theory have been suggested to describe these aerodynamic turbulence-related phenomena of the speech production system. To extract the non-linear properties of the speech signal, we used the time delay embedding method to reconstruct from a scalar time series (reconstructed phase space, RPS). This approach results in the extraction of 7238 Features per .wav file (N= 47, 32 m, 15 f). The speech material was prompted by telling about autobiographical related sadness-inducing experiences (sampling rate 16 kHz, 8-bit resolution). After combining these features in a support vector machine based machine learning approach (leave-one-sample out validation), we achieved a correlation of r = .41 with the well-established, self-report ground truth measure (RATS) of post-traumatic stress disorder (PTSD).Keywords: non-linear dynamics features, post traumatic stress disorder, reconstructed phase space, support vector machine
Procedia PDF Downloads 1023856 Impact of Glaucoma Surgery on Corneal Endothelium
Authors: Majid Moshirfar, Kyle Margulies, Yasmyne C. Ronquillo, Phillip Hoopes
Abstract:
A total of 66 articles were reviewed to compare glaucoma and its associated surgeries' effect on central corneal endothelium cell density (CECD). The paper reports the average reported central CECD loss at 3-, 6-, 12-, 24-, 36-, 48-, and 60-month post-operation for each glaucoma surgery. ALT, MLT, SLT, CS AGV, VC BGI, Hydrus + phaco, XEN gel + phaco, PRESERFLO, Dual iStent, or Trabectome had no significant impact on postoperative CECD compared to either preoperative CECD or control group CECD. The highest CECD loss was found to be EXPRESS-phaco, AC AGV, CS BGI, CS BGI, AC BGI, and AC BGI at the 3-, 6-, 12-, 24-, 36-, 48-, and 60-month follow-ups, respectively. AC AGV, Trab + MMC, Trab, AC BGI, Trab + MMC, Cypass, and Cypass showed the smallest reduction of CECD at the 3-, 6-, 12-, 24-, 36-, 48-, and 60-month follow-ups.Keywords: glaucoma, corneal endothelium, cell density, surgery outcome
Procedia PDF Downloads 993855 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance
Authors: Yash Bingi, Yiqiao Yin
Abstract:
Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations
Procedia PDF Downloads 1443854 Characterization of Sintered Fe-Cr-Mn Powder Mixtures Containing Intermetallics
Authors: A. Yonetken, A. Erol, M. Cakmakkaya
Abstract:
Intermetallic materials are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %88Ni-%10Cr and %2Mn powders were investigated using specimens produced by tube furnace sintering at 900-1300°C temperature. A composite consisting of ternary additions, a metallic phase, Fe ,Cr and Mn have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %88Ni-%10Cr and %2Mn at 1300°C suggest that the best properties as 138,80HV and 6,269/cm3 density were obtained at 1300°C.Keywords: composite, high temperature, intermetallic, sintering
Procedia PDF Downloads 4073853 Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes
Authors: Miloš Matúš, Peter Križan, Ľubomír Šooš, Juraj Beniak
Abstract:
The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the single-axis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.Keywords: biomass, briquettes, densification, fuel quality, moisture content, density
Procedia PDF Downloads 4283852 Study on the Thermal Conductivity about Porous Materials in Wet State
Authors: Han Yan, Jieren Luo, Qiuhui Yan, Xiaoqing Li
Abstract:
The thermal conductivity of porous materials is closely related to the thermal and moisture environment and the overall energy consumption of the building. The study of thermal conductivity of porous materials has great significance for the realization of low energy consumption building and economic construction building. Based on the study of effective thermal conductivity of porous materials at home and abroad, the thermal conductivity under a variety of different density of polystyrene board (EPS), plastic extruded board (XPS) and polyurethane (PU) and phenolic resin (PF) in wet state through theoretical analysis and experimental research has been studied. Initially, the moisture absorption and desorption properties of specimens had been discussed under different density, which led a result indicates the moisture absorption of four porous materials all have three stages, fast, stable and gentle. For the moisture desorption, there are two types. One is the existence of the rapid phase of the stage, such as XPS board, PU board. The other one does not have the fast desorption, instead, it is more stabilized, such as XPS board, PF board. Furthermore, the relationship between water content and thermal conductivity of porous materials had been studied and fitted, which figured out that in the wake of the increasing water content, the thermal conductivity of porous material is continually improving. At the same time, this result also shows, in different density, when the same kind of materials decreases, the saturated moisture content increases. Finally, the moisture absorption and desorption properties of the four kinds of materials are compared comprehensively, and it turned out that the heat preservation performance of PU board is the best, followed by EPS board, XPS board, PF board.Keywords: porous materials, thermal conductivity, moisture content, transient hot-wire method
Procedia PDF Downloads 1873851 The Effects of Semi-Public Spaces with Distinctive Functions on the Urban Space Quality
Authors: Melike Orhan
Abstract:
Along with impetuous physical change, configuration and increase in the density of cities, urban public spaces have started to become a transition area rather than spaces to inhabit. The insufficiency of public spaces, one of the most significant components of a city, where communal life is maintained and the decrease in the quality of urban spaces have led to an increase in the use of semi-public spaces as urban space. Semi-public spaces are those that ensure transition between private and public spaces and can be seen, observed, reached and used by urban-dwellers. Humans are in a constant relation to their surroundings and care for integration as part of their surroundings. Semi-public spaces providing balance for the individual between private spaces (structures) and urban-public spaces make this integration easier. Spaces with a semi-public characteristic serve for a particular neighboring unit and the user (i.e. common use areas in residential spaces and dwellings, common outdoor areas situated between office buildings, and etc.) These spaces, whose density of usage is increased with distinctive functions and activities, gain different attributions according to the characteristics of the urban space they are located in (commercial, residential, touristic, and etc.) and to the functions of the structures with which they are in relation. At the same time, they begin to serve other neighboring units along with an increase in public usage. As a result, the interaction between environment-space-structure-humans changes, which directly affects the urban space quality. The aim of this study is to determine how and depending on what characteristics the public usage density of semi-public spaces change and to put forth the effects of this change on the urban environment it is located in and to designate its role in terms of 'urban space quality'. In conclusion, within the scope of this study, semi-public spaces located in urban spaces with distinctive functions will be explored through examples, and the effects of these spaces with altered public usage and density on urban space and quality of life will be put forward. Accordingly, applicable criteria will be determined by means of semi-public spaces oriented at increasing and sustaining the quality of urban space.Keywords: semi-public spaces, urban public spaces, urban space quality, public usage
Procedia PDF Downloads 2393850 A Generalization of Option Pricing with Discrete Dividends to Markets with Daily Price Limits
Authors: Jiahau Guo, Yihe Zhang
Abstract:
This paper proposes solutions for pricing options on stocks paying discrete dividends in markets with daily price limits. We first extend the intraday density function of Guo and Chang (2020) to a multi-day one and use the framework of Haug et al. (2003) to value European options on stocks paying discrete dividends. Next, we adopt the fast Fourier transform (FFT) to derive accurate and efficient formulae for American options and further employ the three-point Richardson extrapolation to accelerate the computation. Finally, the accuracy of our proposed methods is verified by simulations.Keywords: daily price limit, discrete dividend, early exercise, fast Fourier transform, multi-day density function, Richardson extrapolation
Procedia PDF Downloads 1643849 X-Ray and DFT Electrostatics Parameters Determination of a Coumarin Derivative Compound C17H13NO3
Authors: Y. Megrous, A. Chouaih, F. Hamzaoui
Abstract:
The crystal structure of 4-Methyl-7-(salicylideneamino)coumarin C17H13NO3has been determined using X-ray diffraction to establish the configuration and stereochemistry of the molecule. This crystal is characterized by its nolinear activity. The molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment in-crystal have been determined in order to understand the nature of inter-and intramolecular charge transfer. The study present the thermal motion and the structural analysis obtained from the least-square refinement on F2,this study has also allowed us to determine the electrostatic potential and therefore locate the electropositive part and the electronegative part in molecular scale of the title compound.Keywords: electron charge density, net atomic charge, molecular dipole moment, X-ray diffraction
Procedia PDF Downloads 4563848 Influence of the Granular Mixture Properties on the Rheological Properties of Concrete: Yield Stress Determination Using Modified Chateau et al. Model
Authors: Rachid Zentar, Mokrane Bala, Pascal Boustingorry
Abstract:
The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.Keywords: crushed aggregates, intrinsic viscosity, packing density, rolled aggregates, slump, yield stress of concrete
Procedia PDF Downloads 1273847 The Effect of Soil Reinforcement on Pullout Behaviour of Flat Under-Reamer Anchor Pile Placed in Sand
Authors: V. K. Arora, Amit Rastogi
Abstract:
To understand the anchor pile behaviour and to predict the capacity of piles under uplift loading are important concerns in foundation analysis. Experimental model tests have been conducted on single anchor pile embedded in cohesionless soil and subjected to pure uplift loading. A gravel-filled geogrid layer was located around the enlarged pile base. The experimental tests were conducted on straight-shafted vertical steel piles with an outer diameter of 20 mm in a steel soil tank. The tested piles have embedment depth-to-diameter ratios (L/D) of 2, 3, and 4. The sand bed is prepared at three different values of density of 1.67, 1.59, and 1.50gm/cc. Single piles embedded in sandy soil were tested and the results are presented and analysed in this paper. The influences of pile embedment ratio, reinforcement, relative density of soil on the uplift capacity of piles were investigated. The study revealed that the behaviour of single piles under uplift loading depends mainly on both the pile embedment depth-to-diameter ratio and the soil density. It is believed that the experimental results presented in this study would be beneficial to the professional understanding of the soil–pile-uplift interaction problem.Keywords: flat under-reamer anchor pile, geogrid, pullout reinforcement, soil reinforcement
Procedia PDF Downloads 4693846 Fiber Release from Fabrics with Various Weave Parameters and Finishing Treatments during Washing and Their Marine Biodegradation
Authors: Seoyoun Kim, Chunghee Park
Abstract:
Microplastics have recently become an issue due to their potentially harmful effects on the marine environment and the human body. The purpose of this study is to investigate the correlation of fiber emissions during the home laundering with the fabric parameters such as yarn density, warp/weft density, and weave structure. Also, the effect of finishing treatments such as reactive dyeing, water-repellent finish, peach skin finish on fiber emissions was evaluated. Furthermore, we studied the biodegradability of fibers in the marine environment compared to those in soil burial and the impact of finishing treatment on the biodegradability. Biodegradability was evaluated by measuring BOD values and tensile strength reduction. The results showed that more fibers were released in the thicker yarn, lower weave density. Also, a weave structure which has less compactness, released more fibers. Peach skin finish with microfibers exposed on the surface caused more fiber release, whereas water-repellent finish reduced the fiber emission. In addition, the biodegradability of the fabrics submerged in the marine environment were lower compared with those buried in the soil. Also, the water-repellent fabric was less biodegradable than the untreated one. Further research is suggested considering the fabrics with various chemical components or geometry and their fouling behavior in the marine environment.Keywords: biodegradation, fibers, microplastic, pollution
Procedia PDF Downloads 1373845 Tracking and Classifying Client Interactions with Personal Coaches
Authors: Kartik Thakore, Anna-Roza Tamas, Adam Cole
Abstract:
The world health organization (WHO) reports that by 2030 more than 23.7 million deaths annually will be caused by Cardiovascular Diseases (CVDs); with a 2008 economic impact of $3.76 T. Metabolic syndrome is a disorder of multiple metabolic risk factors strongly indicated in the development of cardiovascular diseases. Guided lifestyle intervention driven by live coaching has been shown to have a positive impact on metabolic risk factors. Individuals’ path to improved (decreased) metabolic risk factors are driven by personal motivation and personalized messages delivered by coaches and augmented by technology. Using interactions captured between 400 individuals and 3 coaches over a program period of 500 days, a preliminary model was designed. A novel real time event tracking system was created to track and classify clients based on their genetic profile, baseline questionnaires and usage of a mobile application with live coaching sessions. Classification of clients and coaches was done using a support vector machines application build on Apache Spark, Stanford Natural Language Processing Library (SNLPL) and decision-modeling.Keywords: guided lifestyle intervention, metabolic risk factors, personal coaching, support vector machines application, Apache Spark, natural language processing
Procedia PDF Downloads 4333844 In-Situ Quasistatic Compression and Microstructural Characterization of Aluminium Foams of Different Cell Topology
Authors: M. A. Islam, P. J. Hazell, J. P. Escobedo, M. Saadatfar
Abstract:
Quasistatic compression and micro structural characterization of closed cell aluminium foams of different pore size and cell distributions has been carried out. Metallic foams have good potential for lightweight structures for impact and blast mitigation and therefore it is important to find out the optimized foam structure (i.e. cell size, shape, relative density, and distribution) to maximize energy absorption. In this paper, we present results for two different aluminium metal foams of density 0.5 g/cc and 0.7 g/cc respectively that have been tested in quasi-static compression. The influence of cell geometry and cell topology on quasistatic compression behavior has been investigated using computed tomography (micro-CT) analysis. The compression behavior and micro structural characterization will be presented.Keywords: metal foams, micro-CT, cell topology, quasistatic compression
Procedia PDF Downloads 4553843 Design and Performance Evaluation of Synchronous Reluctance Machine (SynRM)
Authors: Hadi Aghazadeh, Mohammadreza Naeimi, Seyed Ebrahim Afjei, Alireza Siadatan
Abstract:
Torque ripple, maximum torque and high efficiency are important issues in synchronous reluctance machine (SynRM). This paper presents a view on design of a high efficiency, low torque ripple and high torque density SynRM. To achieve this goal SynRM parameters is calculated (such as insulation ratios in the d-and q-axes and the rotor slot pitch), while the torque ripple can be minimized by determining the best rotor slot pitch in the d-axis. The presented analytical-finite element method (FEM) approach gives the optimum distribution of air gap and iron portion for the maximizing torque density with minimum torque ripple.Keywords: torque ripple, efficiency, insulation ratio, FEM, synchronous reluctance machine (SynRM), induction motor (IM)
Procedia PDF Downloads 227