Search results for: transboundary water management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16693

Search results for: transboundary water management

16033 Towards a Vulnerability Model Assessment of The Alexandra Jukskei Catchment in South Africa

Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera

Abstract:

This article sets out to detail an investigation of groundwater management in the Juksei Catchment of South Africa through spatial mapping of key hydrological relationships, interactions, and parameters in catchments. The Department of Water Affairs (DWA) noted gaps in the implementation of the South African National Water Act 1998: article 16, including the lack of appropriate models for dealing with water quantity parameters. For this reason, this research conducted a drastic GIS-based groundwater assessment to improve groundwater monitoring system in the Juksei River basin catchment of South Africa. The methodology employed was a mixed-methods approach/design that involved the use of DRASTIC analysis, questionnaire, literature review and observations to gather information on how to help people who use the Juskei River. GIS (geographical information system) mapping was carried out using a three-parameter DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) vulnerability methodology. In addition, the developed vulnerability map was subjected to sensitivity analysis as a validation method. This approach included single-parameter sensitivity, sensitivity to map deletion, and correlation analysis of DRASTIC parameters. The findings were that approximately 5.7% (45km2) of the area in the northern part of the Juksei watershed is highly vulnerable. Approximately 53.6% (428.8 km^2) of the basin is also at high risk of groundwater contamination. This area is mainly located in the central, north-eastern, and western areas of the sub-basin. The medium and low vulnerability classes cover approximately 18.1% (144.8 km2) and 21.7% (168 km2) of the Jukskei River, respectively. The shallow groundwater of the Jukskei River belongs to a very vulnerable area. Sensitivity analysis indicated that water depth, water recharge, aquifer environment, soil, and topography were the main factors contributing to the vulnerability assessment. The conclusion is that the final vulnerability map indicates that the Juksei catchment is highly susceptible to pollution, and therefore, protective measures are needed for sustainable management of groundwater resources in the study area.

Keywords: contamination, DRASTIC, groundwater, vulnerability, model

Procedia PDF Downloads 77
16032 Thermal Management of Ground Heat Exchangers Applied in High Power LED

Authors: Yuan-Ching Chiang, Chien-Yeh Hsu, Chen Chih-Hao, Sih-Li Chen

Abstract:

The p-n junction temperature of LEDs directly influences their operating life and luminous efficiency. An excessively high p-n junction temperature minimizes the output flux of LEDs, decreasing their brightness and influencing the photon wavelength; consequently, the operating life of LEDs decreases and their luminous output changes. The maximum limit of the p-n junction temperature of LEDs is approximately 120 °C. The purpose of this research was to devise an approach for dissipating heat generated in a confined space when LEDs operate at low temperatures to reduce light decay. The cooling mode of existing commercial LED lights can be divided into natural- and forced convection cooling. In natural convection cooling, the volume of LED encapsulants must be increased by adding more fins to increase the cooling area. However, this causes difficulties in achieving efficient LED lighting at high power. Compared with forced convection cooling, heat transfer through water convection is associated with a higher heat transfer coefficient per unit area; therefore, we dissipated heat by using a closed loop water cooling system. Nevertheless, cooling water exposed to air can be easily influenced by environmental factors. Thus, we incorporated a ground heat exchanger into the water cooling system to minimize the influence of air on cooling water and then observed the relationship between the amounts of heat dissipated through the ground and LED efficiency.

Keywords: helical ground heat exchanger, high power LED, ground source cooling system, heat dissipation

Procedia PDF Downloads 571
16031 Effect of Water Absorption on the Fatigue Behavior of Glass/Polyester Composite

Authors: Djamel Djeghader, Bachir Redjel

Abstract:

The composite materials of glass fibers can be used as a repair material for damage elements under repeated stresses, and in various environments. A cyclic bending characterization of a glass/polyester composite material was carried out with consideration of the period of immersion in water. These tests describe the behavior of materials and identify the mechanical fatigue characteristics using the Wohler Curve for different immersion time: 0, 90, 180 and 270 days in water. These curves are characterized by a dispersion in the lifetimes were modeled by straight whose intercepts are very similar and comparable to the static strength. This material deteriorates fatigue at a constant rate, which increases with increasing immersion time in water at a constant speed. The endurance limit seems to be independent of the immersion time in the water.

Keywords: fatigue, composite, glass, polyester, immersion, wohler

Procedia PDF Downloads 303
16030 Atmospheric Plasma Treatment to Improve Water and Oil Repellent Finishing for PET and PET/Spandex Fabrics

Authors: Mehtap Çalışkan, Nilüfer Yıldız Varan, Volkan Kaplan

Abstract:

In this study, the effects of an atmospheric plasma treatment on the durability of water and oil repellent finishes of PET and PET/Spandex fabrics were tested. Fabrics were treated with a low-frequency atmospheric pressure glow discharge. After plasma treatments, the water and oil repellent finishes were applied using pad-dry-cure method. It was observed that plasma treatments improved the durability finish for all fabrics.

Keywords: atmospheric plasma, durable coating, oil repellency, PET/spandex fabrics, water repellency

Procedia PDF Downloads 404
16029 Utilization of Two Kind of Recycling Greywater in Irrigation of Syngonium SP. Plants Grown Under Different Water Regime

Authors: Sami Ali Metwally, Bedour Helmy Abou-Leila, Hussien I.Abdel-Shafy

Abstract:

The work was carried out at the greenhouse of National Research Centre, Pot experiment was carried out during of 2020 and 2021 seasons aimed to study the effect of two types of water (two recycling gray water treatments((SMR (Sequencing Batch Reactor) and MBR(Membrane Biology Reactor) and three watering intervals 15, 20 and 25 days on Syangonium plants growth. Examination of data cleared that, (MBR) recorded increase in vegetative growth parameters, osmotic pressure, transpiration rate chlorophyll a,b,carotenoids and carbohydrate)in compared with SBR.As for water, intervalsthe highest values of most growth parameters were obtained from plants irrigated with after (20 days) compared with other treatments.15 days irrigation intervals recorded significantly increased in osmotic pressure, transpiration rate and photosynthetic pigments, while carbohydrate values recorded decreased. Interaction between water type and water intervals(SBR) recorded the highest values of most growth parameters by irrigation after 20 days. While the treatment (MBR)and irrigated after 25 days showed the highest values on leaf area and leaves fresh weight compared with other treatments.

Keywords: grey water, water intervals, Syngonium plant, recycling water, vegetative growth

Procedia PDF Downloads 102
16028 Urban Areas Management in Developing Countries: Analysis of the Urban Areas Crossed with Risk of Storm Water Drains, Aswan-Egypt

Authors: Omar Hamdy, Schichen Zhao, Hussein Abd El-Atty, Ayman Ragab, Muhammad Salem

Abstract:

One of the most risky areas in Aswan is Abouelreesh, which is suffering from flood disasters, as heavy deluge inundates urban areas causing considerable damage to buildings and infrastructure. Moreover, the main problem was the urban sprawl towards this risky area. This paper aims to identify the urban areas located in the risk areas prone to flash floods. Analyzing this phenomenon needs a lot of data to ensure satisfactory results; however, in this case the official data and field data were limited, and therefore, free sources of satellite data were used. This paper used ArcGIS tools to obtain the storm water drains network by analyzing DEM files. Additionally, historical imagery in Google Earth was studied to determine the age of each building. The last step was to overlay the urban area layer and the storm water drains layer to identify the vulnerable areas. The results of this study would be helpful to urban planners and government officials to make the disasters risk estimation and develop primary plans to recover the risky area, especially urban areas located in torrents.

Keywords: risk area, DEM, storm water drains, GIS

Procedia PDF Downloads 449
16027 Resolving Increased Water-Cut in South and East Kuwait Areas through Water Knock-Out Facility Project

Authors: Sunaitan Al Mutairi, Kumar Vallatharasu, Batool Ismaeel

Abstract:

The Water Knock-Out (WKO) facility project is to handle the undesirable impact of the increasing water production rate in South and East Kuwait (S&EK) areas and break the emulsions and ensure sufficient separation of water at the new upstream facility, to reduce the load on the existing separation equipment in the Gathering Centers (GC). As the existing separation equipment in the Gathering Centers are not efficient to separate the emulsions, the Compact Electrostatic Coalescer (CEC) and Vessel Internal Electrostatic Coalescer (VIEC) technologies have been selected for enhancing the liquid-liquid separation by using the alternating voltage/frequency on electrical fields, to handle the increasing water-cut in S&EK. In the Compact Electrostatic Coalescer (CEC) technology method, the CEC equipment is installed downstream of the inlet separator externally, whereas in the Vessel Internal Electrostatic Coalescer (VIEC) technology method, the VIEC is built inside the treater vessel, downstream of the inlet separator with advanced internals for implementing electrocoalescence of water particles and hence enhancing liquids separation. The CEC and VIEC technologies used in the Water Knockout Facility project has the ability to resolve the increasing water cut in the S&EK area and able to enhance the liquid-liquid separation in the WKO facility separation equipment. In addition, the WKO facility is minimizing the load on the existing Gathering Center’s separation equipment, by tackling the high water-cut wells, upstream of each GC. The required performances at the outlet of the WKO facility are Oil in Water 100ppmv, Water in Oil 15% volume, liquid carryover in gas 0.1 US gal/MMSCFD, for the water cut ranging from 37.5 to 75% volume. The WKO facility project is used to sustain, support and maintain Greater Burgan production at 1.7 Million Barrels of Oil Per Day (MMBOPD), by handling the increasing water production rate.

Keywords: emulsion, increasing water-cut, production, separation equipment

Procedia PDF Downloads 229
16026 Development and Implementation of a Business Technology Program Based on Techniques for Reusing Water in a Colombian Company

Authors: Miguel A. Jimenez Barros, Elyn L. Solano Charris, Luis E. Ramirez, Lauren Castro Bolano, Carlos Torres Barreto, Juliana Morales Cubillo

Abstract:

This project sought to mitigate the high levels of water consumption in industrial processes in accordance with the water-rationing plan promoted at national and international level due to the water consumption projections published by the United Nations. Water consumption has three main uses, municipal (common use), agricultural and industrial where the latter consumes a minimum percentage (around 20% of the total consumption). Awareness on world water scarcity, a Colombian company responsible for generation of massive consumption products, decided to implement politics and techniques for water treatment, recycling, and reuse. The project consisted in a business technology program that permits a better use of wastewater caused by production operations. This approach reduces the potable water consumption, generates better conditions of water in the sewage dumps, generates a positive environmental impact for the region, and is a reference model in national and international levels. In order to achieve the objective, a process flow diagram was used in order to define the industrial processes that required potable water. This strategy allowed the industry to determine a water reuse plan at the operational level without affecting the requirements associated with the manufacturing process and even more, to support the activities developed in administrative buildings. Afterwards, the company made an evaluation and selection of the chemical and biological processes required for water reuse, in compliance with the Colombian Law. The implementation of the business technology program optimized the water use and recirculation rate up to 70%, accomplishing an important reduction of the regional environmental impact.

Keywords: bio-reactor, potable water, reverse osmosis, water treatment

Procedia PDF Downloads 228
16025 Bottom-up Quantification of Mega Inter-Basin Water Transfer Vulnerability to Climate Change

Authors: Enze Zhang

Abstract:

Large numbers of inter-basin water transfer (IBWT) projects are constructed or proposed all around the world as solutions to water distribution and supply problems. Nowadays, as climate change warms the atmosphere, alters the hydrologic cycle, and perturbs water availability, large scale IBWTs which are sensitive to these water-related changes may carry significant risk. Given this reality, IBWTs have elicited great controversy and assessments of vulnerability to climate change are urgently needed worldwide. In this paper, we consider the South-to-North Water Transfer Project (SNWTP) in China as a case study, and introduce a bottom-up vulnerability assessment framework. Key hazards and risks related to climate change that threaten future water availability for the SNWTP are firstly identified. Then a performance indicator is presented to quantify the vulnerability of IBWT by taking three main elements (i.e., sensitivity, adaptive capacity, and exposure degree) into account. A probabilistic Budyko model is adapted to estimate water availability responses to a wide range of possibilities for future climate conditions in each region of the study area. After bottom-up quantifying the vulnerability based on the estimated water availability, our findings confirm that SNWTP would greatly alleviate geographical imbalances in water availability under some moderate climate change scenarios but raises questions about whether it is a long-term solution because the donor basin has a high level of vulnerability due to extreme climate change.

Keywords: vulnerability, climate change, inter-basin water transfer, bottom-up

Procedia PDF Downloads 392
16024 Evaluation of Toxic Metals in Water Hyacinth (Eichhornia crassipes) from Valsequillo Reservoir, Puebla, Central Mexico

Authors: Jacobo Tabla, P. F. Rodriguez-Espinosa, M. E. Perez-Lopez

Abstract:

Valsequillo reservoir located in Puebla City, Central Mexico receives water from the Atoyac River (Northwest) and from Alseseca River in the north. It has been the receptacle of municipal and industrial wastes for the past few decades affecting the water quality lethally. As a result, there is an outburst of water hyacinths (Eichhornia crassipes) in the reservoir occupying around 50 % of the total area. Therefore, the aim of the present work was to assess the concentration levels of toxic metals (Co, Zn, Ni, Cu and As) in the water hyacinths and the ambient waters during the dry season. Fourteen water samples and three water hyacinth samples were procured from the Valsequillo reservoir. The collected samples of water hyacinth (roots, rhizome, stems and leaves) were analyzed using an Inductively coupled plasma mass spectrometry (ICP-MS) Ultramass 700 (Varian Inc.) to determine the metal levels. Results showed that water hyacinth presented an exhaustion in metal capture from the inlet to outlet of the reservoir. The maximum bioaccumulation factors (BF) of Co, Zn, Ni, Cu and As were 5000, 47474, 4929, 17090 and 74000 respectively. On the other hand, the maximum Translocation Factor (TF) of 0.85 was observed in Zn, whilst Co presented the minimum TF of 0.059. Thus, the results presented the fact that water hyacinth in Valsequillo reservoir proves to be an important environmental utility for efficiently accumulating and translocating heavy metals from the ambient waters to its organelles (stems and leaves).

Keywords: bioaccumulation factor, toxic metals, translocation factor, water hyacinth

Procedia PDF Downloads 246
16023 Schematic Study of Groundwater Potential Zones in Granitic Terrain Using Remotesensing and GIS Techniques, in Miyapur and Bollaram Areas of Hyderabad, India

Authors: Ishrath, Tapas Kumar Chatterjee

Abstract:

The present study aims developing interpretation and evaluation to integrate various data types for management of existing water resources for sustainable use. Proper study should be followed based on the geomorphology of the area. Thematic maps such as lithology, base map, land use/land cover, geomorphology, drainage and lineaments maps are prepared to study the area by using area toposheet, IRS P6 and LISIII Satellite imagery. These thematic layers are finally integrated by using Arc GIS, Arc View, and software to prepare a ground water potential zones map of the study area. In this study, an integrated approach involving remote sensing and GIS techniques has successfully been used in identifying groundwater potential zones in the study area to classify them as good, moderate and poor. It has been observed that Pediplain shallow (PPS) has good recharge, Pediplain moderate (PPM) has moderately good recharge, Pediment Inselberg complex (PIC) has poor recharge and Inselberg (I) has no recharge. The study has concluded that remote sensing and GIS techniques are very efficient and useful for identifying ground water potential zones.

Keywords: satellite remote sensing, GIS, ground water potential zones, Miyapur

Procedia PDF Downloads 436
16022 Role of the Marshes in the Natural Decontamination of Surface Water: A Case of the Redjla Marsh, North-Eastern Algerian

Authors: S. Benessam, T. H. Debieche, A. Drouiche, S. Mahdid, F. Zahi

Abstract:

The marsh is the impermeable depression. It is not very deep and presents the stagnant water. Their water level varies according to the contributions of water (rain, groundwater, stream etc.), when this last reaches the maximum level of the marsh, it flows towards the downstream through the discharge system. The marsh accumulates all the liquid and solid contributions of upstream part. In the North-East Algerian, the Redjla marsh is located on the course of the Tassift river. Its contributions of water come from the upstream part of the river, often characterized by the presence of several pollutants in water related to the urban effluents, and its discharge system supply the downstream part of the river. In order to determine the effect of the marsh on the water quality of the river this study was conducted. A two-monthly monitoring of the physicochemical parameters and water chemistry of the river were carried out, before and after the marsh, during the period from November 2013 to January 2015. The results show that the marsh plays the role of a natural purifier of water of Tassift river, present by drops of conductivity and concentration of the pollutants (ammonium, phosphate, iron, chlorides and bicarbonates) between the upstream part and downstream of the marsh. That indicates that these pollutants are transformed with other chemical forms (case of ammonium towards nitrate), precipitated in complex forms or/and adsorbed by the sediments of the marsh. This storage of the pollutants in the ground of the marsh will be later on a source of pollution for the plants and river water.

Keywords: marsh, natural purification, urban pollution, nitrogen

Procedia PDF Downloads 250
16021 Influence of Magnetized Water on the Split Tensile Strength of Concrete

Authors: Justine Cyril E. Nunag, Nestor B. Sabado Jr., Jienne Chester M. Tolosa

Abstract:

Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength.

Keywords: hardness property, magnetic water, quick-setting admixture, split tensile strength, universal testing machine

Procedia PDF Downloads 141
16020 Well Water Pollution Caused by Central Batik Industry in Kliwonan, Sragen, Central Java, Indonesia in Ecofeminism Perspective

Authors: Intan Purnama Sari, Fitri Damayanti, Nabiila Yumna Ghina

Abstract:

Kliwonan, Sragen is a famous central batik industry village. In the process of the industry, women are placed into the central role but marginalized in economic mode. Women have the double burden on domestic sector and public sector (work as craftsmen batik). The existence of the batik industry bring on issues related to the pollution of water resources as a result of waste water with the marginalized of women. This research aims to examine the relevance of the pollution of the water from the well in Kliwonan with women as the biggest role holders through ecofeminism perspective. To examine these aspects then made observations, documentation, and interview against women batik craftsmen. The results of the study showed that the wells as sources of water to the inhabitants of contaminated because the liquid waste water batik industry. The impact of women must buy clean water each month to meet the needs of the household water with the reward that is obtained from the result of labor as much as Rp 12,000 per day. It proves the marginalized women on economic mode. Based on the results of research done, it can be concluded that the required environmental planning to promote how women do the rescue environment. The implementation requires kelor (Moringa oleifera seeds) as such as natural coagulants of sources of water-saving and easy to use.

Keywords: well water pollution, ecofeminism, environmental planning, Moringa oleifera

Procedia PDF Downloads 268
16019 The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates

Authors: R. Deju, M. Mincu, D. Gurau

Abstract:

During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of 137Cs, 60Co and 152Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient.

Keywords: gamma spectrometry, leaching behavior, reuse and recycling of radioactive concrete, waste management

Procedia PDF Downloads 235
16018 IOT Based Automated Production and Control System for Clean Water Filtration Through Solar Energy Operated by Submersible Water Pump

Authors: Musse Mohamud Ahmed, Tina Linda Achilles, Mohammad Kamrul Hasan

Abstract:

Deterioration of the mother nature is evident these day with clear danger of human catastrophe emanating from greenhouses (GHG) with increasing CO2 emissions to the environment. PV technology can help to reduce the dependency on fossil fuel, decreasing air pollution and slowing down the rate of global warming. The objective of this paper is to propose, develop and design the production of clean water supply to rural communities using an appropriate technology such as Internet of Things (IOT) that does not create any CO2 emissions. Additionally, maximization of solar energy power output and reciprocally minimizing the natural characteristics of solar sources intermittences during less presence of the sun itself is another goal to achieve in this work. The paper presents the development of critical automated control system for solar energy power output optimization using several new techniques. water pumping system is developed to supply clean water with the application of IOT-renewable energy. This system is effective to provide clean water supply to remote and off-grid areas using Photovoltaics (PV) technology that collects energy generated from the sunlight. The focus of this work is to design and develop a submersible solar water pumping system that applies an IOT implementation. Thus, this system has been executed and programmed using Arduino Software (IDE), proteus, Maltab and C++ programming language. The mechanism of this system is that it pumps water from water reservoir that is powered up by solar energy and clean water production was also incorporated using filtration system through the submersible solar water pumping system. The filtering system is an additional application platform which is intended to provide a clean water supply to any households in Sarawak State, Malaysia.

Keywords: IOT, automated production and control system, water filtration, automated submersible water pump, solar energy

Procedia PDF Downloads 78
16017 Seepage Analysis through Earth Dam Embankment: Case Study of Batu Dam

Authors: Larifah Mohd Sidik, Anuar Kasa

Abstract:

In recent years, the demands for raw water are increasing along with the growth of the economy and population. Hence, the need for the construction and operation of dams is one of the solutions for the management of water resources problems. The stability of the embankment should be taken into consideration to evaluate the safety of retaining water. The safety of the dam is mostly based on numerous measurable components, for instance, seepage flowrate, pore water pressure and deformation of the embankment. Seepage and slope stability is the primary and most important reason to ascertain the overall safety behavior of the dams. This research study was conducted to evaluate static condition seepage and slope stability performances of Batu dam which is located in Kuala Lumpur capital city. The numerical solution Geostudio-2012 software was employed to analyse the seepage using finite element method, SEEP/W and slope stability using limit equilibrium method, SLOPE/W for three different cases of reservoir level operations; normal and flooded condition. Results of seepage analysis using SEEP/W were utilized as parental input for the analysis of SLOPE/W. Sensitivity analysis on hydraulic conductivity of material was done and calibrated to minimize the relative error of simulation SEEP/W, where the comparison observed field data and predicted value were also carried out. In seepage analysis, such as leakage flow rate, pore water distribution and location of a phreatic line are determined using the SEEP/W. The result of seepage analysis shows the clay core effectively lowered the phreatic surface and no piping failure is shown in the result. Hence, the total seepage flux was acceptable and within the permissible limit.

Keywords: earth dam, dam safety, seepage, slope stability, pore water pressure

Procedia PDF Downloads 210
16016 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling

Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo

Abstract:

Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.

Keywords: computational modelling, evolutionary algorithms, genetic programming, hydrological modelling

Procedia PDF Downloads 285
16015 Capability of Intelligent Techniques for Friction Factor Simulation in Water Channels

Authors: Kiyoumars Roushangar, Shabnam Mirheidarian

Abstract:

This study proposes metamodel approaches as a new intelligent technique for the explicit formulation of friction factors of water conveyance structures. For this purpose, experimental data of a movable bed flume with dune bed form were used. Analyzing the result clears the high capability of metamodel approaches (MNE= 0.05, R= 0.92) as a powerful tool for optimizing and explicit simulation of Manning's roughness coefficients of water conveyance structures compared to other nonlinear approaches.

Keywords: intelligent techniques, explicit simulation, roughness coefficient, water conveyance structure

Procedia PDF Downloads 462
16014 Determination the Effects of Physico-Chemical Parameters on Groundwater Status by Water Quality Index

Authors: Samaneh Abolli, Mahdi Ahmadi Nasab, Kamyar Yaghmaeian, Mahmood Alimohammadi

Abstract:

The quality of drinking water, in addition to the presence of physicochemical parameters, depends on the type and geographical location of water sources. In this study, groundwater quality was investigated by sampling total dissolved solids (TDS), electrical conductivity (EC), total hardness (TH), Cl, Ca²⁺, and Mg²⁺ parameters in 13 sites, and 40 water samples were sent to the laboratory. Electrometric, titration, and spectrophotometer methods were used. In the next step, the water quality index (WQI) was used to investigate the impact and weight of each parameter in the groundwater. The results showed that only the mean of magnesium ion (40.88 mg/l) was lower than the guidelines of World Health Organization (WHO). Interpreting the WQI based on the WHO guidelines showed that the statuses of 21, 11, and 7 samples were very poor, poor, and average quality, respectively, and one sample had excellent quality. Among the studied parameters, the means of EC (2,087.49 mS/cm) and Cl (1,015.87 mg/l) exceeded the global and national limits. Classifying water quality of TH was very hard (87.5%), hard (7.5%), and moderate (5%), respectively. Based on the geographical distribution, the drinking water index in sites 4 and 11 did not have acceptable quality. Chloride ion was identified as the responsible pollutant and the most important ion for raising the index. The outputs of statistical tests and Spearman correlation had significant and direct correlation (p < 0.05, r > 0.7) between TDS, EC, and chloride, EC and chloride, as well as TH, Ca²⁺, and Mg²⁺.

Keywords: water quality index, groundwater, chloride, GIS, Garmsar

Procedia PDF Downloads 92
16013 An Evaluative Microbiological Risk Assessment of Drinking Water Supply in the Carpathian Region: Identification of Occurrent Hazardous Bacteria with Quantitative Microbial Risk Assessment Method

Authors: Anikó Kaluzsa

Abstract:

The article's author aims to introduce and analyze those microbiological safety hazards which indicate the presence of secondary contamination in the water supply system. Since drinking water belongs to primary foods and is the basic condition of life, special attention should be paid on its quality. There are such indicators among the microbiological features can be found in water, which are clear evidence of the presence of water contamination, and based on this there is no need to perform other diagnostics, because they prove properly the contamination of the given water supply section. Laboratory analysis can help - both technologically and temporally – to identify contamination, but it does matter how long takes the removal and if the disinfection process takes place in time. The identification of the factors that often occur in the same places or the chance of their occurrence is greater than the average, facilitates our work. The pathogen microbiological risk assessment by the help of several features determines the most likely occurring microbiological features in the Carpathian basin. From among all the microbiological indicators, that are recommended targets for routine inspection by the World Health Organization, there is a paramount importance of the appearance of Escherichia coli in the water network, as its presence indicates the potential ubietiy of enteric pathogens or other contaminants in the water network. In addition, the author presents the steps of microbiological risk assessment analyzing those pathogenic micro-organisms registered to be the most critical.

Keywords: drinking water, E. coli, microbiological indicators, risk assessment, water safety plan

Procedia PDF Downloads 323
16012 Application of Deep Eutectic Solvent in the Extraction of Ferulic Acid from Palm Pressed Fibre

Authors: Ng Mei Han, Nu'man Abdul Hadi

Abstract:

Extraction of ferulic acid from palm pressed fiber using deep eutectic solvent (DES) of choline chloride-acetic acid (ChCl-AA) and choline chloride-citric acid (ChCl-CA) are reported. Influence of water content in DES on the extraction efficiency was investigated. ChCl-AA and ChCl-CA experienced a drop in viscosity from 9.678 to 1.429 and 22.658 ± 1.655 mm2/s, respectively as the water content in the DES increased from 0 to 50 wt% which contributed to higher extraction efficiency for the ferulic acid. Between 41,155 ± 940 mg/kg ferulic acid was obtained after 6 h reflux when ChCl-AA with 30 wt% water was used for the extraction compared to 30,940 ± 621 mg/kg when neat ChCl-AA was used. Although viscosity of the DES could be improved with the addition of water, there is a threshold where the DES could tolerate the presence of water without changing its solvent behavior. The optimum condition for extraction of ferulic acid from palm pressed fiber was heating for 6 h with DES containing 30 wt% water.

Keywords: deep eutectic solvent, extraction, ferulic acid, palm fibre

Procedia PDF Downloads 75
16011 Preserving the Cultural Values of the Mararoa River and Waipuna–Freshwater Springs, Southland New Zealand: An Integration of Traditional and Scientific Knowledge

Authors: Erine van Niekerk, Jason Holland

Abstract:

In Māori culture water is considered to be the foundation of all life and has its own mana (spiritual power) and mauri (life force). Water classification for cultural values therefore includes categories like waitapu (sacred water), waimanawa-whenua (water from under the land), waipuna (freshwater springs), the relationship between water quantity and quality and the relationship between surface and groundwater. Particular rivers and lakes have special significance to iwi and hapu for their rohe (tribal areas). The Mararoa River, including its freshwater springs and wetlands, is an example of such an area. There is currently little information available about the sources, characteristics and behavior of these important water resources and this study on the water quality of the Mararoa River and adjacent freshwater springs will provide valuable information to be used in informed decisions about water management. The regional council of Southland, Environment Southland, is required to make changes under their water quality policy in order to comply with the requirements for the New National Standards for Freshwater to consult with Maori to determine strategies for decision making. This requires an approach that includes traditional knowledge combined with scientific knowledge in the decision-making process. This study provided the scientific data that can be used in future for decision making on fresh water springs combined with traditional values for this particular area. Several parameters have been tested in situ as well as in a laboratory. Parameters such as temperature, salinity, electrical conductivity, Total Dissolved Solids, Total Kjeldahl Nitrogen, Total Phosphorus, Total Suspended Solids, and Escherichia coli among others show that recorded values of all test parameters fall within recommended ANZECC guidelines and Environment Southland standards and do not raise any concerns for the water quality of the springs and the river at the moment. However, the destruction of natural areas, particularly due to changes in farming practices, and the changes to water quality by the introduction of Didymosphenia geminate (Didymo) means Māori have already lost many of their traditional mahinga kai (food sources). There is a major change from land use such as sheep farming to dairying in Southland which puts freshwater resources under pressure. It is, therefore, important to draw on traditional knowledge and spirituality alongside scientific knowledge to protect the waters of the Mararoa River and waipuna. This study hopes to contribute to scientific knowledge to preserve the cultural values of these significant waters.

Keywords: cultural values, freshwater springs, Maori, water quality

Procedia PDF Downloads 274
16010 Urbanization and Water Supply in Lagos State, Nigeria: The Challenges in a Climate Change Scenario

Authors: Amidu Owolabi Ayeni

Abstract:

Studies have shown that spatio-temporal distribution and variability of climatic variables, urban land use, and population have had substantial impact on water supply. It is based on these facts that the impacts of climate, urbanization, and population on water supply in Lagos State Nigeria remain the focus of this study. Population and water production data on Lagos State between 1963 and 2006 were collected, and used for time series and projection analyses. Multi-temporal land-sat images of 1975, 1995 and NigeriaSat-1 imagery of 2007 were used for land use change analysis. The population of Lagos State increased by about 557.1% between 1963 and 2006, correspondingly, safe water supply increased by 554%. Currently, 60% of domestic water use in urban areas of Lagos State is from groundwater while 75% of rural water is from unsafe surface water. Between 1975 and 2007, urban land use increased by about 235.9%. The 46years climatic records revealed that temperature and evaporation decreased slightly while rainfall and Relatively Humidity (RH) decreased consistently. Based on these trends, the Lagos State population and required water are expected to increase to about 19.8millions and 2418.9ML/D respectively by the year 2026. Rainfall is likely to decrease by -6.68mm while temperature will increase by 0.950C by 2026. Urban land use is expected to increase by 20% with expectation of serious congestion in the suburb areas. With these results, over 50% of the urban inhabitants will be highly water poor in future if the trends continue unabated.

Keywords: challenges, climate change, urbanization, water supply

Procedia PDF Downloads 417
16009 Development of an Integrated Framework for Life-Cycle Economic, Environmental and Human Health Impact Assessment for Reclaimed Water Use in Water Systems of Various Scales

Authors: Yu-Yao Wang, Xiao-Meng Hu, Joanne Yeung, Xiao-Yan Li

Abstract:

The high private cost and unquantified external cost limit the development of reclaimed water. In this study, an integrated framework comprising life cycle assessment (LCA), quantitative microbial risk assessment (QMRA), and life cycle costing (LCC) was developed to evaluate both costs of reclaimed water supply in water systems of various scales. LCA assesses the environmental impacts, and QMRA estimates the associated pathogenic impacts. These impacts are monetized as external costs and analyzed with the private cost by LCC to count the total life cycle cost. The framework evaluated the Hong Kong urban water system in the baseline scenario (BS) and five wastewater reuse scenarios (RS). They are RSI: substituting freshwater for toilet flushing only, RSII: substituting both freshwater and seawater for toilet flushing, RSIII: using reclaimed water for all non-potable uses, RSIV: using reclaimed water for all non-potable uses and indirect potable uses, and RSV: non-potable use and indirect potable use by conveying 100% reclaimed water to recharge the reservoirs. The results show that substituting freshwater and seawater for toilet flushing has the least total life cycle cost, exhibiting that it is the most cost-effective option for Hong Kong. Meanwhile, the evaluation results show that the external cost of each scenario is comparable to the corresponding private cost, indicating the importance of the inclusion of comprehensive external cost evaluation in private cost assessment of water systems with reclaimed water supply.

Keywords: life cycle assessment, life cycle costing, quantitative microbial risk assessment, water reclamation, reclaimed water, alternative water resources

Procedia PDF Downloads 115
16008 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 339
16007 Dimension of Water Accessibility in the Southern Part of Niger State, Nigeria

Authors: Kudu Dangana, Pai H. Halilu, Osesienemo R. Asiribo-Sallau, Garba Inuwa Kuta

Abstract:

The study examined the determinants of household water accessibility in Southern part of Niger State, Nigeria. Data for the study was obtained from primary and secondary sources using questionnaire, interview, personal observation and documents. 1,192 questionnaires were administered; sampling techniques adopted are combination of purposive, stratified and simple random. Purposive sampling technique was used to determine sample frame; sample unit was determined using stratified sampling method and simple random technique was used in administering questionnaires. The result was analyzed within the scope of “WHO” water accessibility indicators using descriptive statistics. Major sources of water in the area are well; hand and electric pump borehole and streams. These sources account for over 90% of household’s water. Average per capita water consumption in the area is 22 liters per day, while location efficiency of facilities revealed an average of 80 people per borehole. Household water accessibility is affected mainly by the factors of distances, time spent to obtain water, low income status of the majority of respondents to access modern water infrastructure, and to a lesser extent household size. Recommendations includes, all tiers of government to intensify efforts in providing water infrastructures and existing ones through budgetary provisions, and communities should organize fund raising bazaar, so as to raise fund to improve water infrastructures in the area.

Keywords: accessibility, determined, stratified, scope

Procedia PDF Downloads 383
16006 Numerical Method for Productivity Prediction of Water-Producing Gas Well with Complex 3D Fractures: Case Study of Xujiahe Gas Well in Sichuan Basin

Authors: Hong Li, Haiyang Yu, Shiqing Cheng, Nai Cao, Zhiliang Shi

Abstract:

Unconventional resources have gradually become the main direction for oil and gas exploration and development. However, the productivity of gas wells, the level of water production, and the seepage law in tight fractured gas reservoirs are very different. These are the reasons why production prediction is so difficult. Firstly, a three-dimensional multi-scale fracture and multiphase mathematical model based on an embedded discrete fracture model (EDFM) is established. And the material balance method is used to calculate the water body multiple according to the production performance characteristics of water-producing gas well. This will help construct a 'virtual water body'. Based on these, this paper presents a numerical simulation process that can adapt to different production modes of gas wells. The research results show that fractures have a double-sided effect. The positive side is that it can increase the initial production capacity, but the negative side is that it can connect to the water body, which will lead to the gas production drop and the water production rise both rapidly, showing a 'scissor-like' characteristic. It is worth noting that fractures with different angles have different abilities to connect with the water body. The higher the angle of gas well development, the earlier the water maybe break through. When the reservoir is a single layer, there may be a stable production period without water before the fractures connect with the water body. Once connected, a 'scissors shape' will appear. If the reservoir has multiple layers, the gas and water will produce at the same time. The above gas-water relationship can be matched with the gas well production date of the Xujiahe gas reservoir in the Sichuan Basin. This method is used to predict the productivity of a well with hydraulic fractures in this gas reservoir, and the prediction results are in agreement with on-site production data by more than 90%. It shows that this research idea has great potential in the productivity prediction of water-producing gas wells. Early prediction results are of great significance to guide the design of development plans.

Keywords: EDFM, multiphase, multilayer, water body

Procedia PDF Downloads 189
16005 Modeling Sediment Yield Using the SWAT Model: A Case Study of Upper Ankara River Basin, Turkey

Authors: Umit Duru

Abstract:

The Soil and Water Assessment Tool (SWAT) was tested for prediction of water balance and sediment yield in the Ankara gauged basin, Turkey. The overall objective of this study was to evaluate the performance and applicability of the SWAT in this region of Turkey. Thirteen years of monthly stream flow, and suspended sediment, data were used for calibration and validation. This research assessed model performance based on differences between observed and predicted suspended sediment yield during calibration (1987-1996) and validation (1982-1984) periods. Statistical comparisons of suspended sediment produced values for NSE (Nash Sutcliffe efficiency), RE (relative error), and R² (coefficient of determination), of 0.81, -1.55, and 0.93, respectively, during the calibration period, and NSE, RE (%), and R² of 0.77, -2.61, and 0.87, respectively, during the validation period. Based on the analyses, SWAT satisfactorily simulated observed hydrology and sediment yields and can be used as a tool in decision making for water resources planning and management in the basin.

Keywords: calibration, GIS, sediment yield, SWAT, validation

Procedia PDF Downloads 272
16004 Experimental Investigation of Air Gap Membrane Distillation System with Heat Recovery

Authors: Yasser Elhenaw, A. Farag, Mohamed El-Ghandour, M. Shatat, G. H. Moustafa

Abstract:

This study investigates the performance of two spiral-wound Air Gap Membrane Distillation (AGMD) units. These units are connected in two different configurations in order to be tested and compared experimentally. In AGMD, the coolant water is used to condensate water vapor leaving membrane via condensing plate. The rejected cooling water has a relativity high temperature which can be used, depending on operation parameters, to increase the thermal efficiency and water productivity. In the first configuration, the seawater feed flows parallel and equally through both units then rejected. The coolant water is divided into the two units, and the heat source is divided into the two heat exchangers. In the second one, only the feed of the first unit is heated while the cooling rejected from the unit is used in heating the feed to the second. The performance of the system, estimated by the water productivity as well as the Gain Output Ratio (GOR), is measured for the two configurations at different feed flow rates, temperatures and salinities. The results show that at steady state condition, the heat recovery configurations lead to an increase in water productivity by 25%.

Keywords: membrane distillation, heat transfer, heat recovery, desalination

Procedia PDF Downloads 256