Search results for: soil physical properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15600

Search results for: soil physical properties

14940 An Empirical Approach to NO2 Gas Sensing Properties of Carbon Films Fabricated by Arc Discharge Methane Decomposition Technique

Authors: Elnaz Akbari, Zolkafle Buntat

Abstract:

Today, the use of carbon-based materials such as graphene, carbon nanotubes, etc. in various applications is being extensively studied by researchers in the field. One of such applications is using them in gas sensors. While analytical investigations on the physical and chemical properties of carbon nanomaterials are the focal points in the studies, the need for experimental measurements on various physical characteristics of these materials is deeply felt. In this work, a set of experiments has been conducted using arc discharge Methane decomposition attempting to obtain carbonaceous materials (C-strands) formed between graphite electrodes. The current-voltage (I-V) characteristics of the fabricated C-strands have been investigated in the presence and absence of two different gases, NO2 and CO2. The results reveal that the current passing through the carbon films increases when the concentrations of gases are increased from 200 to 800 ppm. This phenomenon is a result of conductance changes and can be employed in sensing applications such as gas sensors.

Keywords: carbonaceous materials, gas sensing, methane arc discharge decomposition, I-V characteristics

Procedia PDF Downloads 201
14939 Assessment of Soil Quality Indicators in Rice Soil of Tamil Nadu

Authors: Kaleeswari R. K., Seevagan L .

Abstract:

Soil quality in an agroecosystem is influenced by the cropping system, water and soil fertility management. A valid soil quality index would help to assess the soil and crop management practices for desired productivity and soil health. The soil quality indices also provide an early indication of soil degradation and needy remedial and rehabilitation measures. Imbalanced fertilization and inadequate organic carbon dynamics deteriorate soil quality in an intensive cropping system. The rice soil ecosystem is different from other arable systems since rice is grown under submergence, which requires a different set of key soil attributes for enhancing soil quality and productivity. Assessment of the soil quality index involves indicator selection, indicator scoring and comprehensive score into one index. The most appropriate indicator to evaluate soil quality can be selected by establishing the minimum data set, which can be screened by linear and multiple regression factor analysis and score function. This investigation was carried out in intensive rice cultivating regions (having >1.0 lakh hectares) of Tamil Nadu viz., Thanjavur, Thiruvarur, Nagapattinam, Villupuram, Thiruvannamalai, Cuddalore and Ramanathapuram districts. In each district, intensive rice growing block was identified. In each block, two sampling grids (10 x 10 sq.km) were used with a sampling depth of 10 – 15 cm. Using GIS coordinates, and soil sampling was carried out at various locations in the study area. The number of soil sampling points were 41, 28, 28, 32, 37, 29 and 29 in Thanjavur, Thiruvarur, Nagapattinam, Cuddalore, Villupuram, Thiruvannamalai and Ramanathapuram districts, respectively. Principal Component Analysis is a data reduction tool to select some of the potential indicators. Principal Component is a linear combination of different variables that represents the maximum variance of the dataset. Principal Component that has eigenvalues equal or higher than 1.0 was taken as the minimum data set. Principal Component Analysis was used to select the representative soil quality indicators in rice soils based on factor loading values and contribution percent values. Variables having significant differences within the production system were used for the preparation of the minimum data set. Each Principal Component explained a certain amount of variation (%) in the total dataset. This percentage provided the weight for variables. The final Principal Component Analysis based soil quality equation is SQI = ∑ i=1 (W ᵢ x S ᵢ); where S- score for the subscripted variable; W-weighing factor derived from PCA. Higher index scores meant better soil quality. Soil respiration, Soil available Nitrogen and Potentially Mineralizable Nitrogen were assessed as soil quality indicators in rice soil of the Cauvery Delta zone covering Thanjavur, Thiruvavur and Nagapattinam districts. Soil available phosphorus could be used as a soil quality indicator of rice soils in the Cuddalore district. In rain-fed rice ecosystems of coastal sandy soil, DTPA – Zn could be used as an effective soil quality indicator. Among the soil parameters selected from Principal Component Analysis, Microbial Biomass Nitrogen could be used quality indicator for rice soils of the Villupuram district. Cauvery Delta zone has better SQI as compared with other intensive rice growing zone of Tamil Nadu.

Keywords: soil quality index, soil attributes, soil mapping, and rice soil

Procedia PDF Downloads 63
14938 Soil-Structure Interaction in a Case Study Bridge: Seismic Response under Moderate and Strong Near-Fault Earthquakes

Authors: Nastaran Cheshmehkaboodi, Lotfi Guizani, Noureddine Ghlamallah

Abstract:

Seismic isolation proves to be a powerful technology in reducing seismic hazards and enhancing overall structural resilience. However, the performance of the technology can be influenced by various factors, including seismic inputs and soil conditions. This research aims to investigate the effects of moderate and strong earthquakes associated with different distances of the source on the seismic responses of conventional and isolated bridges, considering the soil-structure interaction effects. Two groups of moderate and strong near-fault records are applied to the conventional and isolated bridges, with and without considering the underlying soil. For this purpose, using the direct method, three soil properties representing rock, dense, and stiff soils are modeled in Abaqus software. Nonlinear time history analysis is carried out, and structural responses in terms of maximum deck acceleration, deck displacement, and isolation system displacement are studied. The comparison of dynamic responses between both earthquake groups demonstrates a consistent pattern, indicating that the bridge performance and the effects of soil-structure interaction are primarily influenced by the ground motions and their frequency contents. Low ratios of PGA/PGV are found to significantly impact all dynamic responses, resulting in higher force and displacement responses, regardless of the distance associated with the ruptured fault. In addition, displacement responses increase drastically on softer soils. Thus, meticulous consideration is crucial in designing isolation systems to avoid underestimating displacement demands and to ensure sufficient displacement capacity. Despite a lower PGA value in high seismicity areas in this study, the acceleration demand during strong earthquakes is up to 1.3 times higher in conventional bridges and up to 3 times higher in isolated bridges than in moderate earthquakes. Additionally, the displacement demand in strong earthquakes is up to 2 times higher in conventional bridges and up to 5 times higher in isolated bridges compared to moderate earthquakes, highlighting the increased force and displacement demand in strong earthquakes.

Keywords: bridges, seismic isolation, near-fault, earthquake characteristics, soil-structure interaction

Procedia PDF Downloads 45
14937 An Evaluation of Edible Plants for Remediation of Contaminated Soil- Can Edible Plants Be Used to Remove Heavy Metals on Soil?

Authors: Celia Marilia Martins, Sonia I. V. Guilundo, Iris M. Victorino, Antonio O. Quilambo

Abstract:

In Mozambique rapid industrialization (mining, aluminium and cement activities) and urbanization processes has led to the incorporation of heavy metals on soil, thus degrading not only the quality of the environment, but also affecting plants, animals and human healthy. Several methods have been used to remediate contaminated soils, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals from contaminated soil. Phytoremediation is the use of plants to clean up a contamination from soils, sediments, and water. This technology is environmental friendly and potentially cost effective. The present investigation summarised the potential of edible vegetable to grow under the high level of heavy metals such as lead and zinc. The plants used in these studies include Tomatoes, lettuce and Soya beans. The studies have shown that edible plants can be grown under the high level of heavy metals on the soil. Further investigations are identifying mechanisms used by plants to ensure a safe and sustainable use for remediation of contaminated soils by heavy metals.

Keywords: contaminated soil, edible plants, heavy metals, phytoremediation

Procedia PDF Downloads 348
14936 The Effects of Green Manure Returning on Properties and Fungal Communities in Vanadium/Titanium Magnet Tailings

Authors: Hai-Hong Gu, Yan-Jun Ai, Zheng Zhou

Abstract:

Vanadium and titanium are rare metals with superior properties and are important resources in aerospace, aviation, and military. The vanadium/titanium magnetite are mostly ultra-lean ores, and a large number of tailings has been produced in the exploitation process. The tailings are characterized by loose structure, poor nutrient, complex composition and high trace metal contents. Returning green manure has been shown to not only increase plant biomass and soil nutrients but also change the bioavailability of trace metals and the microbial community structure. Fungi play an important role in decomposing organic matter and increasing soil fertility, and the application of organic matter also affects the community structure of fungi. The effects of green manure plants, alfalfa (Medicago sativa L.), returned to the tailings in situ on community structure of fungi, nutrients and bioavailability of trace metals in vanadium/titanium magnetite tailings were investigated in a pot experiment. The results showed that the fungal community diversity and richness were increase after alfalfa green manure returned in situ. The dominant phyla of the fungal community were Ascomycota, Basidiomycota and Ciliophora, especially, the phyla Ciliophora was rare in ordinary soil, but had been found to be the dominant phyla in tailings. Meanwhile, the nutrient properties and various trace metals may shape the microbial communities by affecting the abundance of fungi. It was found that the plant growth was stimulated and the available N and organic C were significantly improved in the vanadium/titanium magnetite tailing with the long-term returning of alfalfa green manure. Moreover, the DTPA-TEA extractable Cd and Zn concentrations in the vanadium/titanium magnetite tailing were reduced by 7.72%~23.8% and 8.02%~24.4%, respectively, compared with those in the non-returning treatment. The above results suggest that the returning of alfalfa green manure could be a potential approach to improve fungal community structure and restore mine tailing ecosystem.

Keywords: fungal community, green manure returning, vanadium/titanium magnet tailings, trace metals

Procedia PDF Downloads 49
14935 Investigation of Effective Parameters on Pullout Capacity in Soil Nailing with Special Attention to International Design Codes

Authors: R. Ziaie Moayed, M. Mortezaee

Abstract:

An important and influential factor in design and determining the safety factor in Soil Nailing is the ultimate pullout capacity, or, in other words, bond strength. This important parameter depends on several factors such as material and soil texture, method of implementation, excavation diameter, friction angle between the nail and the soil, grouting pressure, the nail depth (overburden pressure), the angle of drilling and the degree of saturation in soil. Federal Highway Administration (FHWA), a customary regulation in the design of nailing, is considered only the effect of the soil type (or rock) and the method of implementation in determining the bond strength, which results in non-economic design. The other regulations are each of a kind, some of the parameters affecting bond resistance are not taken into account. Therefore, in the present paper, at first the relationships and tables presented by several valid regulations are presented for estimating the ultimate pullout capacity, and then the effect of several important factors affecting on ultimate Pullout capacity are studied. Finally, it was determined, the effect of overburden pressure (in method of injection with pressure), soil dilatation and roughness of the drilling surface on pullout strength is incremental, and effect of degree of soil saturation on pullout strength to a certain degree of saturation is increasing and then decreasing. therefore it is better to get help from nail pullout-strength test results and numerical modeling to evaluate the effect of parameters such as overburden pressure, dilatation, and degree of soil saturation, and so on to reach an optimal and economical design.

Keywords: soil nailing, pullout capacity, federal highway administration (FHWA), grout

Procedia PDF Downloads 128
14934 Impact of Fly Ash-Based Geopolymer Modification on the High-Temperature Properties of Bitumen

Authors: Burak Yigit Katanalp, Murat Tastan, Perviz Ahmedzade, çIgdem Canbay Turkyilmaz, Emrah Turkyilmaz

Abstract:

This study evaluated the mechanical and rheological performance of fly ash-based geopolymer at high temperatures. A series of laboratory tests were conducted on neat bitumen and three modified bitumen samples, which incorporated fly ash-based geopolymer at various percentages. Low-calcium fly ash was used as the alumina-silica source. The dynamic shear rheometer and rotational viscometer were employed to determine high-temperature properties, while conventional tests such as penetration and softening point were used to evaluate the physical properties of bitumen. The short-term aging resistance of the samples was assessed using the rolling thin film oven. The results show that geopolymer has a compromising effect on bitumen properties, with improved stiffness, enhanced mechanical strength, and increased thermal susceptibility of the asphalt binder.

Keywords: bitumen, geopolymer, modification, dynamic mechanical analysis

Procedia PDF Downloads 76
14933 Analysis of Pollution Caused by the Animal Feed Industry and the Fertilizer Industry Using Rock Magnetic Method

Authors: Kharina Budiman, Adinda Syifa Azhari, Eleonora Agustine

Abstract:

Industrial activities get increase in this globalization era, one of the major impacts of industrial activities is a problem to the environment. This can happen because at the industrial production term will bring out pollutant in the shape of solid, liquid or gas. Normally this pollutant came from some dangerous materials for environment. However not every industry produces the same amount of pollutant, every industry produces different kind of pollution. To compare the pollution impact of industrial activities, soil sample has been taken around the animal feed industry and the fertilizer industry. This study applied the rock magnetic method and used Bartington MS2B to measured magnetic susceptibility (χ) as the physical parameter. This study tested soil samples using the value of susceptibility low frequency (χ lf) and Frequency Dependent (χ FD). Samples only taken in the soil surface with 0-5 cm depth and sampling interval was 20 cm. The animal feed factory has susceptibility low frequency (χ lf) = 111,9 – 325,7 and Frequency Dependent (χ FD) = 0,8 – 3,57 %. And the fertilizer factory has susceptibility low frequency (χ lf) = 187,1 – 494,8 and Frequency Dependent (χ FD) = 1,37 – 2,46 %. Based on the results, the highest value of susceptibility low frequency (χ lf) is the fertilizer factory, but the highest value of Frequency Dependent (FD) is the animal feed factory.

Keywords: industrial, pollution, magnetic susceptibility, χlf, χfd, animal feed industry and fertilizer industry

Procedia PDF Downloads 381
14932 Tomato Quality Produced in Saline Soils Using Irrigation with Treated Electromagnetic Water

Authors: Angela Vacaro de Souza, Fernando Ferrari Putti

Abstract:

One of the main plants cultivated in protected environment is tomato crop, which presents significant growth in its demand, because it is a tasty fruit, rich in nutrients and of high added value, however, poor management of fertilizers induces the process of soil salinization, causing several consequences, from reduced productivity to even soil infertility. These facts are derived from the increased concentration of salts, which hampers the process of water absorption by the plant, resulting in a biochemical and nutritional imbalance in the plant. Thus, this study aimed to investigate the effects of untreated and electromagnetically treated water in salinized soils on physical, physicochemical, and biochemical parameters in tomato fruits. The experiment was conducted at the Faculty of Science and Engineering, Tupã Campus (FCE/UNESP). A randomized complete block design with two types of treated water was adopted, with five different levels of initial salinity (0; 1.5; 2.5; 4; 5.5; 7 dS m⁻¹) by fertigation. Although the effects of salinity on fruit quality parameters are evident, no beneficial effects on increasing or maintaining postharvest quality of fruits whose plants were treated with electromagnetized water were evidenced.

Keywords: Solanum lycopersicum, soil salinization, protected environment, fertigation

Procedia PDF Downloads 98
14931 Registered Nurse's Attitudes and Practices towards Physical Examination in the Clinical Settings

Authors: Besher Gharaibeh

Abstract:

This article addressed the issue of using physical exam in nursing. Nurses hold different attitudes toward using physical exam in the clinical settings. These attitudes determine to embrace physical examination in practice. So, the aim of the study was to examine registered nurses’ attitudes and practices, identify perceived barriers, and to identify the factors which influence the performance and the attitudes towards physical examinations. Results showed that even though nurses reported performing physical exam often, they had negative attitudes toward it. Stress and performing physical examinations on someone of the opposite gender (n=236; 87.4%) were the main barriers. Nurse's level of education influenced the attitude (t=-4.3; p < .01). These results indicated that RNs recognize the necessity of physical examinations, but they face many barriers and challenges which hinder the performance of the examination. Cultural factors and experience were the most influential barriers which deter performance of the physical examination.

Keywords: physical exam, nursing, barriers, practices, attitudes

Procedia PDF Downloads 149
14930 Preliminary Assessment of Arsenic Levels in Farmland Soils of Bokkos Local Government Area, Plateau State Nigeria

Authors: W. M. Buba, J. G. Nangbes, J. P. Butven

Abstract:

This research was undertaken to evolve community based awareness on the arsenic contamination from agricultural practices in Communities of Bokkos local government area. Contaminated farmland soil samples were collected from the surface for tailings and at various depths (50, 100, 150 cm intervals) in eight holes drilled in each farm at different locations using hand auger. A total of sixty- four (64) soil samples were collected from eight (8) different communities. A standard titrimetric method was applied for the determination of arsenic. It was found that the average concentration of arsenic in the surface soil (0-150cm) for the entire study areas was 0.0525mg/kg with range 0.0425 -0.0601mg/kg which is well above the recommended the soil to plant concentration guideline range of 2.3 – 4.3 x10-4 mg/kg value. This indicates that the arsenic concentration in the study areas does pose health risk for agricultural practices via potential bioaccumulation in plant food crops. However, some risks measures could follow the arsenic occurrence through direct exposure such as those resulting from the inhalation, oral or dermal intake of arsenic during agricultural practices and in the course of stay on the contaminated soil.

Keywords: agrochemicals, arsenic, bokkos, contamination, soil

Procedia PDF Downloads 325
14929 A Study to Evaluate Some Physical and Mechanical Properties, Relevant in Estimating Energy Requirements in Grinding the Palm Kernel and Coconut Shells

Authors: Saheed O. Akinwale, Olufemi A. Koya

Abstract:

Based on the need to modify palm kernel shell (PKS) and coconut shell (CNS) for some engineering applications, the study evaluated some physical characteristics and fracture resistance, relevant in estimating energy requirements in comminution of the nutshells. The shells, obtained from local processing mills, were washed, sun-dried and sorted to remove kernels, nuts and other extraneous materials. Experiments were then conducted to determine the thickness, density, moisture content, and hardness of the shells. Fracture resistances were characterised by the average compressive load, stiffness and toughness at bio-yield point of specially prepared section of the shells, under quasi-static compression loading. The densities of the dried PKS at 7.12% and the CNS at 6.47% (wb) moisture contents were 1291.20 and 1247.40 kg/m3, respectively. The corresponding Brinnel Hardness Numbers were 58.40 ± 1.91 and 56.33 ± 4.33. Close shells thickness of both PKS and CNS exhibited identical physical properties although; CNS is relatively larger in physical dimensions than PKS. The findings further showed that both shell types exhibited higher resistance with compression along the longitudinal axes than the transverse axes. With compressions along the longitudinal axes, the fracture force were 1.41 ± 0.11 and 3.62 ± 0.09 kN; bio-stiffness; 934.70 ± 67.03 kN/m and 1980.74 ± 8.92 kN/m; and toughness, 2.17 ± 0.16 and 6.51 ± 0.15 KN mm for the PKS and CNS, respectively. With the estimated toughness of CNS higher than that of PKS, the study showed the requirement of higher comminution energy for CNS.

Keywords: bio-stiffness, coconut shell, comminution, crushing strength, energy requirement, palm kernel shell, toughness

Procedia PDF Downloads 209
14928 Thermomechanical Behavior of Asphalt Modified with Thermoplastic Polymer and Nanoclay Dellite 43B

Authors: L. F. Tamele Jr., G. Buonocore, H. F. Muiambo

Abstract:

Asphalt binders play an essential role in the performance and properties of asphalt mixtures. The increase in heavy loads, greater traffic volume, and high tire pressure, combined with a substantial variation in daily and seasonal pavement temperatures, are the main responsible for the failure of asphalt pavements. To avoid or mitigate these failures, the present research proposes the use of thermoplastic polymers, HDPE and LLDPE, and nanoclay Dellite 43B for modification of asphalt in order to improve its thermomechanical and rheological properties. The nanocomposites were prepared by the solution intercalation method in a high shear mixer for a mixing time of 2 h, at 180℃ and 5000 rpm. The addition of Dellite 43B improved the physical, rheological, and thermal properties of asphalt, either separated or in the form of polymer/bitumen blends. The results of the physical characterization showed a decrease in penetration and an increase in softening point, thermal susceptibility, viscosity, and stiffness. On the other hand, thermal characterization showed that the nanocomposites have greater stability at higher temperatures by exhibiting greater amounts of residues and improved initial and final decomposition temperatures. Thus, the modification of asphalt by polymers and nanoclays seems to be a suitable solution for road pavement in countries which experiment with high temperatures combined with long heavy rain seasons.

Keywords: asphalt, nanoclay dellite 43B, polymer modified asphalt, thermal and rheological properties

Procedia PDF Downloads 130
14927 The Concept of Anchor Hazard Potential Map

Authors: Sao-Jeng Chao, Chia-Yun Wei, Si-Han Lai, Cheng-Yu Huang, Yu-Han Teng

Abstract:

In Taiwan, the landforms are mainly dominated by mountains and hills. Many road sections of the National Highway are impossible to avoid problems such as slope excavation or slope filling. In order to increase the safety of the slope, various slope protection methods are used to stabilize the slope, especially the soil anchor technique is the most common. This study is inspired by the soil liquefaction potential map. The concept of the potential map is widely used. The typhoon, earth-rock flow, tsunami, flooded area, and the recent discussion of soil liquefaction have safety potential concepts. This paper brings the concept of safety potential to the anchored slope. Because the soil anchor inspection is only the concept of points, this study extends the concept of the point to the surface, using the Quantum GIS program to present the slope damage area, and depicts the slope appearance and soil anchor point with the slope as-built drawing. The soil anchor scores are obtained by anchor inspection data, and the low, medium and high potential areas are remitted by interpolation. Thus, the area where the anchored slope may be harmful is judged and relevant maintenance is provided. The maintenance units can thus prevent judgment and deal with the anchored slope as soon as possible.

Keywords: anchor, slope, potential map, lift-off test, existing load

Procedia PDF Downloads 121
14926 Statistical Analysis of the Factors that Influence the Properties of Blueberries from Cultivar Bluecrop

Authors: Raquel P. F. Guiné, Susana R. Matos, Daniela V. T. A. Costa, Fernando J. Gonçalves

Abstract:

Because blueberries are worldwide recognized as a good source of beneficial components, their consumption has increased in the past decades, and so have the scientific works about their properties. Hence this work was undertaken to evaluate the effect of some production and conservation factors on the properties of blueberries from cultivar Bluecrop. The physical and chemical analyses were done according to established methodologies and then all data was treated using software SPSS for assessment of the possible differences among the factors investigated and/or the correlations between the variables at study. The results showed that location of production influenced some of the berries properties (caliber, sugars, antioxidant activity, color and texture) and that the age of the bushes was correlated with moisture, sugars and acidity, as well as lightness. On the other hand, altitude of the farm only was correlated to sugar content. With regards to conservation, it influenced only anthocyanins content and DPPH antioxidant activity. Finally, the type of extract and the order of extraction had a pronounced influence on all the phnolic properties evaluated.

Keywords: Antioxidant activity, blueberry, conservation, geographical origin, phenolic compounds, statistical analysis

Procedia PDF Downloads 454
14925 Assessment the Capacity of Retention of a Natural Material for the Protection of Ground Water

Authors: Hakim Aguedal, Abdelkader Iddou, Abdalla Aziz, Abdelhadi Bentouami, Ferhat Bensalah, Salah Bensadek

Abstract:

The major environmental risk of soil pollution is the contamination of groundwater by infiltration of organic and inorganic pollutants that can cause a serious pollution. To prevent the migration of this pollution through this structure, many studies propose the installation of layers, which play a role of a barrier that inhibiting the contamination of groundwater by limiting or slowing the flow of rainwater carrying pollution through the layers of soil. However, it is practically impossible to build a barrier layer that let through only water, but it is possible to design a structure with low permeability, which reduces the infiltration of dangerous pollutant. In an environmental context of groundwater protection, the main objective of this study was to investigate the environmental and appropriate suitability method to preserve groundwater, by establishment of a permeable reactive barrier (PRB) intermediate in soil. Followed the influence of several parameters allow us to find the most effective materials and the most appropriate way to incorporate this barrier in the soil.

Keywords: Ground water, protection, permeable reactive Barrier, soil pollution.

Procedia PDF Downloads 539
14924 Biochar from Empty Fruit Bunches Generated in the Palm Oil Extraction and Its Nutrients Contribution in Cultivated Soils with Elaeis guineensis in Casanare, Colombia

Authors: Alvarado M. Lady G., Ortiz V. Yaylenne, Quintero B. Quelbis R.

Abstract:

The oil palm sector has seen significant growth in Colombia after the insertion of policies to stimulate the use of biofuels, which eventually contributes to the reduction of greenhouse gases (GHG) that deteriorate not only the environment but the health of people. However, the policy of using biofuels has been strongly questioned by the impacts that can generate; an example is the increase of other more harmful GHGs like the CH₄ that underlies the amount of solid waste generated. Casanare's department is estimated be one of the major producers of palm oil of the country given that has recently expanded its sowed area, which implies an increase in waste generated primarily in the industrial stage. For this reason, the following study evaluated the agronomic potential of the biochar obtained from empty fruit bunches and its nutritional contribution in cultivated soils with Elaeis guineensis in Casanare, Colombia. The biochar was obtained by slow pyrolysis of the clusters in a retort oven at an average temperature of 190 °C and a residence time of 8 hours. The final product was taken to the laboratory for its physical and chemical analysis as well as a soil sample from a cultivation of Elaeis guineensis located in Tauramena-Casanare. With the results obtained plus the bibliographical reports of the nutrient demand in this cultivation, the possible nutritional contribution of the biochar was determined. It is estimated that the cultivation requirements of nitrogen is 12.1 kg.ha⁻¹, potassium is 59.3 kg.ha⁻¹, magnesium is -31.5 kg.ha⁻¹ and phosphorus is 5.6 kg.ha⁻¹ obtaining a biochar contribution of 143.1 kg.ha⁻¹, 1204.5 kg.ha⁻¹, 39.2 kg.ha⁻¹ and 71.6 kg.ha⁻¹ respectively. The incorporation of biochar into the soil would significantly improve the concentrations of N, P, K and Mg, nutrients considered important in the yield of palm oil, coupled with the importance of nutrient recycling in agricultural production systems sustainable. The biochar application improves the physical properties of soils, mainly in the humidity retention. On the other hand, it regulates the availability of nutrients for plants absorption, with economic savings in the application of synthetic fertilizers and water by irrigation. It also becomes an alternative to manage agricultural waste, reducing the involuntary emissions of greenhouse gases to the environment by decomposition in the field, reducing the CO₂ content in the atmosphere.

Keywords: biochar, nutrient recycling, oil palm, pyrolysis

Procedia PDF Downloads 141
14923 The Effects of Soil Parameters on Efficiency of Essential Oil from Zingiber zerumbet (L.) Smith in Thailand

Authors: Worakrit Worananthakij, Kamonchanok Doungtadum, Nattagan Mingkwan, Supatsorn Chupong

Abstract:

Natural products from herb have been used in different aspects of life as a result of their various biological activities. Generally, plant growth and production of secondary compounds largely depend on environmental conditions. To better understand this correlation, study on biological activity and soil parameter is necessary. This research aims to study the soil parameters which affect the efficiency of the antioxidant activity of essential oils extracted from the Zingiber zerumbet in three areas of Thailand, including Min Buri district, Bangkok province; Muang district, Chiang Mai province and Kaeng Sanam Nang district, Nakhon Ratchasima province. The soil samples in each area were collected and analyzed in the laboratory. The essential oil of Z. zerumbet in each province was extracted and tested for antioxidant activity by hydrodistillation method and DPPH (2,2-diphenyl-1-picrylhydrazyl radical) assay, respectively. The results showed that, the soil parameters such as pH, nitrogen, potassium and phosphorus elements and exchange of cations of soil specimen from Nakhon Ratchasima province were the highest (P<0.05) (6.10 ±0.03, 0.15 ± 0.04 percent of total nitrogen, 16.67 ± 0.46 mg/L, 3.35 ± 0.65 mg/kg and 12.87 ± 0.11 cmol/kg, respectively). In addition, IC50 (Inhibition Concentrtion of antioxidant at 50%) of Z. zerumbet essential oil collected from Nakhon Ratchasima showed the highest value (P<0.05) (1,400 µg/mL). In conclusion, the soil parameters are once important factor for the efficiency of essential oils extract from Z. zerumbet.

Keywords: antioxidant, essential oil, herb, soil parameter, Zingiber zerumbet

Procedia PDF Downloads 223
14922 Effect of High Temperature on Residual Mechanical and Physical Properties of Brick Aggregate Concrete

Authors: Samia Hachemi, Abdelhafid Ounis, W. Heriheri

Abstract:

This paper presents an experimental investigation of high temperatures applied to normal and high performance concrete made with natural coarse aggregates. The experimental results of physical and mechanical properties were compared with those obtained with recycled brick aggregates produced by replacing 30% of natural coarse aggregates by recycled brick aggregates. The following parameters: compressive strength, concrete mass loss, apparent density and water porosity were examined in this experiment. The results show that concrete could be produced by using recycled brick aggregates and reveals that at high temperatures recycled aggregate concrete preformed similar or even better than natural aggregate concrete.

Keywords: high temperature, compressive strength, mass loss, recycled brick aggregate

Procedia PDF Downloads 226
14921 Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells

Authors: B. Samuel Raj, Solomon R. D. Jebakumar

Abstract:

Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy.

Keywords: microbial fuel cell, biofilm, soil microbial fuel cell, plant microbial fuel cell

Procedia PDF Downloads 327
14920 Austenite Transformation in Duplex Stainless Steels under Fast Cooling Rates

Authors: L. O. Luengas, E. V. Morales, L. F. G. De Souza, I. S. Bott

Abstract:

Duplex Stainless Steels are well known for its good mechanical properties, and corrosion resistance. However, when submitted to heating, these features can be lost since the good properties are strongly dependent on the austenite-ferrite phase ratio which has to be approximately 1:1 to keep the phase balance. In a welded joint, the transformation kinetics at the heat affected zone (HAZ) is a function of the cooling rates applied which in turn are dependent on the heat input. The HAZ is usually ferritized at these temperatures, and it has been argued that small variations of the chemical composition can play a role in the solid state transformation sequence of ferrite to austenite during cooling. The δ → γ transformation has been reported to be massive and diffusionless due to the fast cooling rate, but it is also considered a diffusion controlled transformation. The aim of this work is to evaluate the effect of different heat inputs on the HAZ of two duplex stainless steels UNS S32304 and S32750, obtained by physical simulation.

Keywords: duplex stainless steels, HAZ, microstructural characterization, physical simulation

Procedia PDF Downloads 259
14919 2D Numerical Modeling for Induced Current Distribution in Soil under Lightning Impulse Discharge

Authors: Fawwaz Eniola Fajingbesi, Nur Shahida Midia, Elsheikh M. A. Elsheikh, Siti Hajar Yusoff

Abstract:

Empirical analysis of lightning related phenomena in real time is extremely dangerous due to the relatively high electric discharge involved. Hence, design and optimization of efficient grounding systems depending on real time empirical methods are impeded. Using numerical methods, the dynamics of complex systems could be modeled hence solved as sets of linear and non-linear systems . In this work, the induced current distribution as lightning strike traverses the soil have been numerically modeled in a 2D axial-symmetry and solved using finite element method (FEM) in COMSOL Multiphysics 5.2 AC/DC module. Stratified and non- stratified electrode system were considered in the solved model and soil conductivity (σ) varied between 10 – 58 mS/m. The result discussed therein were the electric field distribution, current distribution and soil ionization phenomena. It can be concluded that the electric field and current distribution is influenced by the injected electric potential and the non-linearity in soil conductivity. The result from numerical calculation also agrees with previously laboratory scale empirical results.

Keywords: current distribution, grounding systems, lightning discharge, numerical model, soil conductivity, soil ionization

Procedia PDF Downloads 298
14918 Evaluation of Agricultural Drought Impact in the Crop Productivity of East Gojjam Zone

Authors: Walelgn Dilnesa Cherie, Fasikaw Atanaw Zimale, Bekalu W. Asres

Abstract:

The most catastrophic condition for agricultural production is a drought event, which is also one of the most hydro-metrological-related hazards. According to the combined susceptibility of plants to meteorological and hydrological conditions, agricultural drought is defined as the magnitude, severity, and duration of a drought that affects crop production. The accurate and timely assessment of agricultural drought can lead to the development of risk management strategies, appropriate proactive mechanisms for the protection of farmers, and the improvement of food security. The evaluation of agricultural drought in the East Gojjam zone was the primary subject of this study. To identify the agricultural drought, soil moisture anomalies, soil moisture deficit indices, and Normalized Difference Vegetation Indices (NDVI) are used. The measured welting point, field capacity, and soil moisture were utilized to validate the soil water deficit indices computed from the satellite data. The soil moisture and soil water deficit indices in 2013 in all woredas were minimum; this makes vegetation stress also in all woredas. The soil moisture content decreased in 2013/2014/2019, and 2021 in Dejen, 2014, and 2019 in Awobel Woreda. The max/ min values of NDVI in 2013 are minimum; it dominantly shows vegetation stress and an observed agricultural drought that happened in all woredas. The validation process of satellite and in-situ soil moisture and soil water deficit indices shows a good agreement with a value of R²=0.87 and 0.56, respectively. The study area becomes drought detected region, so government officials, policymakers, and environmentalists pay attention to the protection of drought effects.

Keywords: NDVI, agricultural drought, SWDI, soil moisture

Procedia PDF Downloads 63
14917 Increase of Quinoa Tolerance to High Salinity Involves Agrophysiological Parameters Improvement by Soil Amendments

Authors: Bourhim Mohammad Redouane, Cheto Said, Qaddoury Ahmed, Hirich Abdelaziz, Ghoulam Cherki

Abstract:

Several abiotic stresses cause disruptions in the properties of agricultural soils and hence their loss worldwide. Among these abiotic stresses, Salinity to which most crops were exposed caused an important reduction in their productivity. Therefore, in order to deal with this challenging problem, we rely on cultivating alternative plants that can tolerate the adverse salinity stress, such as quinoa (Chenopodium quinoa). Although even it was qualified as tolerant to Salinity, the quinoa’s performance could be negatively affected under high salinity levels. Thus, our study aims to assess the effects of the application of soil amendments to improve quinoa tolerance levels under high Salinity. Thus, three quinoa varieties (Puno, ICBA-Q5, and Titicaca) were grown on agricultural soil under a greenhouse with five amendments; Biochar “Bc,” compost “Cp,” black soldier insect frass “If,” cow manure “Fb” and phosphogypsum “Pg.” Two controls without amendment were adopted consisting of the salinized negative one “T(-)” and the non-salinized positive one “T(+).” After 20 days from sowing, the plants were irrigated with a saline solution of 16 dS/m prepared with NaCl for a period of 60 days. Then plant tolerance was assessed based on agrophysiological parameters. The results showed that salinity stress negatively affected the quinoa plants for all the analyzed agrophysiological parameters in the three varieties compared to their corresponding controls “T(+).” However, most of these parameters were significantly enhanced by the application of soil amendments compared to their negative controls “T(-).” For instance, the biomass was improved by 91.8% and 69.4%, respectively, for Puno and Titicaca varieties amended with “Bc.” The total nitrogen amount was increased by 220% for Titicaca and ICBA-Q5 plants cultivated in the soil amended with “If.” One of the most important improvements was noted for potassium content in Titicaca amended with “Pg,” which was six times higher compared to the negative control. Besides, the plants of Puno amended with “Cp” showed an improvement of 75.9% for the stomatal conductance and 58.5% for nitrate reductase activity. Nevertheless, the pronounced varietal difference was registered between Puno and Titicaca, presenting the highest performances mainly for the soil amended with “If,” “Bc,” and “Pg.”

Keywords: chenopodium quinoa, salinity, soil amendments, growth, nutrients, nitrate reductase

Procedia PDF Downloads 55
14916 Characterization of Nickel Based Metallic Superconducting Materials

Authors: Y. Benmalem , A. Abbad, W. Benstaali, T. Lantri

Abstract:

Density functional theory is used to investigate the.the structural, electronic, and magnetic properties of the cubic anti-perovskites InNNi3 and ZnNNi3. The structure of antiperovskite also called (perovskite-inverse) identical to the perovskite structure of the general formula ABX3, where A is a main group (III–V) element or a metallic element, B is carbon or nitrogen, and X is a transition metal, displays a wide range of interesting physical properties, such as giant magnetoresistance. Elastic and electronic properties were determined using generalized gradient approximation (GGA), and local spin density approximation (LSDA) approaches, ), as implemented in the Wien2k computer package. The results show that the two compounds are strong ductile and satisfy the Born-Huang criteria, so they are mechanically stable at normal conditions. Electronic properties show that the two compounds studied are metallic and non-magnetic. The studies of these compounds have confirmed the effectiveness of the two approximations and the ground-state properties are in good agreement with experimental data and theoretical results available.

Keywords: anti-perovskites, elastic anisotropy, electronic band structure, first-principles calculations

Procedia PDF Downloads 264
14915 Nickel-Titanium Endodontic Instruments: The Evolution

Authors: Fadwa Chtioui

Abstract:

The field of endodontics has witnessed constant advancements in treatment methods and instrument design, particularly for nickel-titanium (NiTi) files. Despite these developments, it remains crucial for clinicians to have a thorough understanding of their characteristics and behavior to choose the appropriate instruments for different clinical and anatomical situations. Research Aim: The aim of this work is to study and discuss the impact of heat treatment developments on the properties of endodontic NiTi files, with the ultimate goal of providing ways to adapt these files to the anatomical features of dental roots. Methodology: This study involves both clinical cases and extensive bibliographic research. Findings: The study highlights the importance of heat treatment in the design and manufacture of NiTi files, as it significantly affects their physical and mechanical properties. It also provides insights into the ways in which NiTi files can be adapted to the complex geometries of dental roots for more effective endodontic treatments. Theoretical Importance: Theoretical implications of this study include a better understanding of the relationship between heat treatment and the properties of NiTi files, leading to improvements in both their manufacturing methods and clinical applications. Data Collection and Analysis Procedures: The data for this study was collected through clinical cases and an extensive review of relevant literature. Analysis was performed through qualitative and quantitative methods, examining the impact of heat treatment on the physical and mechanical properties of NiTi files. Questions Addressed: This study aims to answer questions concerning the properties of NiTi files and the impact of heat treatment on their behavior. It also seeks to examine ways in which these files can be adapted to complex dental root geometries for more effective endodontic treatments. Conclusion: In conclusion, this study emphasizes the importance of heat treatment in the design and manufacture of NiTi files, as it significantly impacts their physical and mechanical properties. Further research is necessary to explore additional methods for adapting NiTi files to the unique anatomies of dental roots to improve endodontic treatments further. Ultimately, this study provides valuable insights into the continued evolution of endodontic treatment and instrument design.

Keywords: endodontic files, nickel-titanium, tooth anatomy, heat treatment

Procedia PDF Downloads 47
14914 Development and Analysis of Waste Human Hair Fiber Reinforced Composite

Authors: Tesfaye Worku

Abstract:

Human hair, chicken feathers, and hairs of other birds and animals are commonly described as waste products, and the currently available disposal methods, such as burying and burning these waste products, are contributing to environmental pollution. However, those waste products are used to develop fiber-reinforced textile composite material. In this research work, the composite was developed using human hair fiber and analysis of the mechanical and physical properties of the developed composite sample. A composite sample was made with different ratios of human hair and unsaturated polyester resin, and an analysis of the mechanical and physical properties of the developed composite sample was tested according to standards. The fabricated human hair fibers reinforced polymer matrix composite sample has given encouraging results in terms of high strength and rigidity for lightweight house ceiling board material.

Keywords: composite, human hair fiber, matrix, unsaturated polyester

Procedia PDF Downloads 37
14913 Hot Air Flow Annealing of MAPbI₃ Perovskite: Structural and Optical Properties

Authors: Mouad Ouafi, Lahoucine Atourki, Larbi Laanab, Erika Vega, Miguel Mollar, Bernabe Marib, Boujemaa Jaber

Abstract:

Despite the astonishing emergence of the methylammonium lead triiodide perovskite as a promising light harvester for solar cells, their physical properties in solution-processed MAPbI₃ are still crucial and need to be improved. The objective of this work is to investigate the hot airflow effect during the growth of MAPbI₃ films using the spin-coating process on their structural, optical and morphological proprieties. The experimental results show that many physical proprieties of the perovskite strongly depend on the air flow temperature and the optimization which has a beneficial effect on the perovskite quality. In fact, a clear improvement of the crystallinity and the crystallite size of MAPbI₃ perovskite is demonstrated by the XRD analyses, when the airflow temperature is increased up to 100°C. Alternatively, as far as the surface morphology is concerned, SEM micrographs show that significant homogenous nucleation, uniform surface distribution and pin holes free with highest surface coverture of 98% are achieved when the airflow temperature reaches 100°C. At this temperature, the improvement is also observed when considering the optical properties of the films. By contrast, a remarkable degradation of the MAPbI₃ perovskites associated to the PbI₂ phase formation is noticed, when the hot airflow temperature is higher than 100°C, especially 300°C.

Keywords: hot air flow, crystallinity, surface coverage, perovskite morphology

Procedia PDF Downloads 142
14912 The Effectiveness of Water Indices in Detecting Soil Moisture as an Indicator of Mudflow in Arid Regions

Authors: Zahraa Al Ali, Ammar Abulibdeh, Talal Al-Awadhi, Midhun Mohan, Mohammed Al-Barwani, Mohammed Al-Barwani, Sara Al Nabbi, Meshal Abdullah

Abstract:

This study aims to evaluate the performance and effectiveness of six spectral water indices - derived from Multispectral sentinel-2 data - to detect soil moisture and inundated area in arid regions to be used as an indicator of mudflow phenomena to predict high-risk areas. Herein, the validation of the performance of spectral indices was conducted using threshold method, spectral curve performance, and soil-line method. These indirect validation techniques play a key role in saving time, effort, and cost, particularly for large-scale and inaccessible areas. It was observed that the Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (mNDWI), and RSWIR indices have the potential to detect soil moisture and inundated areas in arid regions. According to the temporal spectral curve performance, the spectral characteristics of water and soil moisture were distinct in the Near infrared (NIR), Short-wave Infrared (SWIR1,2) bands. However, the rate and degree differed between these bands, depending on the amount of water in the soil. Furthermore, the soil line method supported the appropriate selection of threshold values to detect soil moisture. However, the threshold values varied with location, time, season, and between indices. We concluded that considering the factors influencing the behavior of water and soil reflectivity could support decision-makers in identifying high-risk mudflow locations.

Keywords: spectral reflectance curve, soil-line method, spectral indices, Shaheen cyclone

Procedia PDF Downloads 50
14911 Reinforcement Effect on Dynamic Properties of Saturated Sand

Authors: R. Ziaie Moayed, M. Alibolandi

Abstract:

Dynamic behavior of soil are evaluated relative to a number of factors including: strain level, density, number of cycles, material type, fine content, geosynthetic inclusion, saturation, and effective stress. This paper investigate the dynamic behavior of saturated reinforced sand under cyclic stress condition. The cyclic triaxial tests are conducted on remolded specimens under various CSR which reinforced by different arrangement of non-woven geotextile. Aforementioned tests simulate field reinforced saturated deposits during earthquake or other cyclic loadings. This analysis revealed that the geotextile arrangement played dominant role on dynamic soil behavior and as geotextile close to top of specimen, the liquefaction resistance increased.

Keywords: dynamic behavior, reinforced sand, triaxial test, non-woven geotextile

Procedia PDF Downloads 217