Search results for: online sequential extreme learning machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11543

Search results for: online sequential extreme learning machine

10883 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 75
10882 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 58
10881 Disruptions to Medical Education during COVID-19: Perceptions and Recommendations from Students at the University of the West, Indies, Jamaica

Authors: Charléa M. Smith, Raiden L. Schodowski, Arletty Pinel

Abstract:

Due to the COVID-19 pandemic, the Faculty of Medical Sciences of The University of the West Indies (UWI) Mona in Kingston, Jamaica, had to rapidly migrate to digital and blended learning. Students in the preclinical stage of the program transitioned to full-time online learning, while students in the clinical stage experienced decreased daily patient contact and the implementation of a blend of online lectures and virtual clinical practice. Such sudden changes were coupled with the institutional pressure of the need to introduce a novel approach to education without much time for preparation, as well as additional strain endured by the faculty, who were overwhelmed by serving as frontline workers. During the period July 20 to August 23, 2021, this study surveyed preclinical and clinical students to capture their experiences with these changes and their recommendations for future use of digital modalities of learning to enhance medical education. It was conducted with a fellow student of the 2021 cohort of the MultiPod mentoring program. A questionnaire was developed and distributed digitally via WhatsApp to all medical students of the UWI Mona campus to assess students’ experiences and perceptions of the advantages, challenges, and impact on individual knowledge proficiencies brought about by the transition to predominantly digital learning environments. 108 students replied, 53.7% preclinical and 46.3% clinical. 67.6% of the total were female and 30.6 % were male; 1.8% did not identify themselves by gender. 67.2% of preclinical students preferred blended learning and 60.3% considered that the content presented did not prepare them for clinical work. Only 31% considered that the online classes were interactive and encouraged student participation. 84.5% missed socialization with classmates and friends and 79.3% missed a focused environment for learning. 80% of the clinical students felt that they had not learned all that they expected and only 34% had virtual interaction with patients, mostly by telephone and video calls. Observing direct consultations was considered the most useful, yet this was the least-used modality. 96% of the preclinical students and 100% of the clinical ones supplemented their learning with additional online tools. The main recommendations from the survey are the use of interactive teaching strategies, more discussion time with lecturers, and increased virtual interactions with patients. Universities are returning to face-to-face learning, yet it is unlikely that blended education will disappear. This study demonstrates that students’ perceptions of their experience during mobility restrictions must be taken into consideration in creating more effective, inclusive, and efficient blended learning opportunities.

Keywords: blended learning, digital learning, medical education, student perceptions

Procedia PDF Downloads 166
10880 Hull Detection from Handwritten Digit Image

Authors: Sriraman Kothuri, Komal Teja Mattupalli

Abstract:

In this paper we proposed a novel algorithm for recognizing hulls in a hand written digits. This is an extension to the work on “Digit Recognition Using Freeman Chain code”. In order to find out the hulls in a user given digit it is necessary to follow three steps. Those are pre-processing, Boundary Extraction and at last apply the Hull Detection system in a way to attain the better results. The detection of Hull Regions is mainly intended to increase the machine learning capability in detection of characters or digits. This can also extend this in order to get the hull regions and their intensities in Black Holes in Space Exploration.

Keywords: chain code, machine learning, hull regions, hull recognition system, SASK algorithm

Procedia PDF Downloads 400
10879 A Study of Learning to Enhance Ability Career Skills Consistent With Disruptive Innovation in Creative Strategies for Advertising Course

Authors: Kornchanok Chidchaisuwan

Abstract:

This project is a study of learning activities through experience to enhance career skills and technical abilities on the creative strategies for advertising course of undergraduate students. This instructional model consisted of study learning approaches: 1) Simulation-based learning: used to create virtual learning activities plans for work like working at advertising companies. 2) Project-based learning: Actual work based on the processed creating and focus on producing creative works to present on new media channels. The results of learning management found that there were effects on the students in various areas, including 1) The learners have experienced in the step by step of advertising work process. 2) The learner has the skills to work from the actual work (Learning by Doing), allowing the ability to create, present, and produce the campaign accomplished achievements and published on online media at a better level.

Keywords: technical, advertising, presentation, career skills, experience, simulation based learning

Procedia PDF Downloads 91
10878 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 40
10877 Current Methods for Drug Property Prediction in the Real World

Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh

Abstract:

Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.

Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning

Procedia PDF Downloads 81
10876 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning

Authors: Ali Kazemi

Abstract:

The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.

Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis

Procedia PDF Downloads 57
10875 Changes in Temperature and Precipitation Extremes in Northern Thailand

Authors: Chakrit Chotamonsak

Abstract:

This study was analyzed changes in temperature and precipitation extremes in northern Thailand for the period 1981-2011.The study includes an analysis of the average and trends of changes in temperature and precipitation using 22 climate indices, related to the intensity, frequency and duration of extreme climate events. The results showed that the averaged trend of maximum, minimum and mean temperature is likely to increase over the study area in rate of 0.5, 0.9 and 0.7 °C in last 30 years. Changes in temperature at nighttime, then rising at a rate higher daytime is resulting to decline of diurnal temperature range throughout the area. Trend of changes in average precipitation during the year 1981-2011 is expected to increase at an average rate of 21%. The intensity of extreme temperature events is increasing almost all station. In particular, the changes of the night were unusually hot has intensified throughout the region. In some provinces such as Chiang Mai and Lampang are likely be faced with the severity of hot days and hot nights in increasing rate. Frequency of extreme temperature events are likely to increase each station, especially hot days, and hot nights are increasing at a rate of 2.38 and 3.58 days per decade. Changes in the cold days and cold nights are declining at a rate of 0.82 and 3.03 days per decade. The duration of extreme temperature events is expected to increase the events hot in every station. An average of 17.8 days per decade for the number of consecutive cold winter nights likely shortens the rate of 2.90 days per decade. The analysis of the precipitation indices reveals the intensity of extreme precipitation is increasing almost across the region. The intensify expressed the heavy rain in one day (Rx1day) and very heavy rain accumulated in 5 days (RX5day) which is likely to increase, and very heavy rainfall is likely to increase in intensity. Frequency of extreme precipitation events is likely to increase over the station. The average frequency of heavy precipitation events increased xxx days per decade. The duration of extreme precipitation events, such as the consecutive dry days are likely to reduce the numbers almost all station while the consecutive wet days tends to increase and decrease at different numbers in different areas.

Keywords: climate extreme, temperature extreme, precipitation extreme, Northern Thailand

Procedia PDF Downloads 283
10874 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 277
10873 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 41
10872 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence

Authors: C. J. Rossouw, T. I. van Niekerk

Abstract:

The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.

Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring

Procedia PDF Downloads 88
10871 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 78
10870 Comparison of Linear Discriminant Analysis and Support Vector Machine Classifications for Electromyography Signals Acquired at Five Positions of Elbow Joint

Authors: Amna Khan, Zareena Kausar, Saad Malik

Abstract:

Bio Mechatronics has extended applications in the field of rehabilitation. It has been contributing since World War II in improving the applicability of prosthesis and assistive devices in real life scenarios. In this paper, classification accuracies have been compared for two classifiers against five positions of elbow. Electromyography (EMG) signals analysis have been acquired directly from skeletal muscles of human forearm for each of the three defined positions and at modified extreme positions of elbow flexion and extension using 8 electrode Myo armband sensor. Features were extracted from filtered EMG signals for each position. Performance of two classifiers, support vector machine (SVM) and linear discriminant analysis (LDA) has been compared by analyzing the classification accuracies. SVM illustrated classification accuracies between 90-96%, in contrast to 84-87% depicted by LDA for five defined positions of elbow keeping the number of samples and selected feature the same for both SVM and LDA.

Keywords: classification accuracies, electromyography, linear discriminant analysis (LDA), Myo armband sensor, support vector machine (SVM)

Procedia PDF Downloads 368
10869 Application of Granular Computing Paradigm in Knowledge Induction

Authors: Iftikhar U. Sikder

Abstract:

This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.

Keywords: concept approximation, granular computing, reducts, rough set theory, rule induction

Procedia PDF Downloads 531
10868 Using E-learning in a Tertiary Institution during Community Outbreak of COVID-19 in Hong Kong

Authors: Susan Ka Yee Chow

Abstract:

The Coronavirus disease (COVID-19) reached Hong Kong in 2019 resulting in epidemic in late January 2020. Considering the epidemic development, tertiary institutions made announcements that all on-campus classes were suspended since 01/29/2020. In Tung Wah College, e-learning was adopted in all courses for all programmes. For the undergraduate nursing students, the contact hours and curriculum are bounded by the Nursing Council of Hong Kong to ensure core competence after graduation. Unlike the usual e-learning where students are allowed having flexibility of time and place in their learning, real time learning mode using Blackboard was used to mimic the actual classroom learning environment. Students were required to attend classes according to the timetable using online platform. For lectures, voice over PowerPoint file was the initial step for mass lecturing. Real time lecture was then adopted to improve interactions between teacher and students. Post-lecture quizzes were developed to monitor the effectiveness of lecture delivery. The seminars and tutorials were conducted using real time mode where students were separated into small groups with interactive discussions with teacher within the group. Live time demonstrations were conducted during laboratory sessions. All teaching sessions were audio/video recorded for students’ referral. The assessments including seminar presentation and debate were retained. The learning mode creates an atmosphere for students to display the visual, audio and written works in a non-threatening atmosphere. Other students could comment using text or direct voice as they desired. Real time online learning is the pedagogy to replace classroom contacts in the emergent and unforeseeable circumstances. The learning pace and interaction between students and students with teacher are maintained. The learning mode has the advantage of creating an effective and beneficial learning experience.

Keywords: e-learning, nursing curriculum, real time mode, teaching and learning

Procedia PDF Downloads 116
10867 Heuristic Classification of Hydrophone Recordings

Authors: Daniel M. Wolff, Patricia Gray, Rafael de la Parra Venegas

Abstract:

An unsupervised machine listening system is constructed and applied to a dataset of 17,195 30-second marine hydrophone recordings. The system is then heuristically supplemented with anecdotal listening, contextual recording information, and supervised learning techniques to reduce the number of false positives. Features for classification are assembled by extracting the following data from each of the audio files: the spectral centroid, root-mean-squared values for each frequency band of a 10-octave filter bank, and mel-frequency cepstral coefficients in 5-second frames. In this way both time- and frequency-domain information are contained in the features to be passed to a clustering algorithm. Classification is performed using the k-means algorithm and then a k-nearest neighbors search. Different values of k are experimented with, in addition to different combinations of the available feature sets. Hypothesized class labels are 'primarily anthrophony' and 'primarily biophony', where the best class result conforming to the former label has 104 members after heuristic pruning. This demonstrates how a large audio dataset has been made more tractable with machine learning techniques, forming the foundation of a framework designed to acoustically monitor and gauge biological and anthropogenic activity in a marine environment.

Keywords: anthrophony, hydrophone, k-means, machine learning

Procedia PDF Downloads 170
10866 Developing Creative and Critically Reflective Digital Learning Communities

Authors: W. S. Barber, S. L. King

Abstract:

This paper is a qualitative case study analysis of the development of a fully online learning community of graduate students through arts-based community building activities. With increasing numbers and types of online learning spaces, it is incumbent upon educators to continue to push the edge of what best practices look like in digital learning environments. In digital learning spaces, instructors can no longer be seen as purveyors of content knowledge to be examined at the end of a set course by a final test or exam. The rapid and fluid dissemination of information via Web 3.0 demands that we reshape our approach to teaching and learning, from one that is content-focused to one that is process-driven. Rather than having instructors as formal leaders, today’s digital learning environments require us to share expertise, as it is the collective experiences and knowledge of all students together with the instructors that help to create a very different kind of learning community. This paper focuses on innovations pursued in a 36 hour 12 week graduate course in higher education entitled “Critical and Reflective Practice”. The authors chronicle their journey to developing a fully online learning community (FOLC) by emphasizing the elements of social, cognitive, emotional and digital spaces that form a moving interplay through the community. In this way, students embrace anywhere anytime learning and often take the learning, as well as the relationships they build and skills they acquire, beyond the digital class into real world situations. We argue that in order to increase student online engagement, pedagogical approaches need to stem from two primary elements, both creativity and critical reflection, that are essential pillars upon which instructors can co-design learning environments with students. The theoretical framework for the paper is based on the interaction and interdependence of Creativity, Intuition, Critical Reflection, Social Constructivism and FOLCs. By leveraging students’ embedded familiarity with a wide variety of technologies, this case study of a graduate level course on critical reflection in education, examines how relationships, quality of work produced, and student engagement can improve by using creative and imaginative pedagogical strategies. The authors examine their professional pedagogical strategies through the lens that the teacher acts as facilitator, guide and co-designer. In a world where students can easily search for and organize information as self-directed processes, creativity and connection can at times be lost in the digitized course environment. The paper concludes by posing further questions as to how institutions of higher education may be challenged to restructure their credit granting courses into more flexible modules, and how students need to be considered an important part of assessment and evaluation strategies. By introducing creativity and critical reflection as central features of the digital learning spaces, notions of best practices in digital teaching and learning emerge.

Keywords: online, pedagogy, learning, communities

Procedia PDF Downloads 405
10865 The Synchronous Online Environment: Impact on Instructor’s Empathy

Authors: Lystra Huggins

Abstract:

The COVID-19 pandemic affected all facets of life, including pedagogical strategies and perceptual experiences for both instructors and students. While there have also been many challenges and advantages to the online teaching and learning environment, when students’ cameras are on, the daily experiences of students’ lives have been magnified during synchronous online instruction and have served to humanize them in the classroom. This means that students’ everyday experiences, now often on display on ZOOM, allow instructors to see the realities of students. They include children running, spouses walking by parents cooking or sitting on the sofa following the lecture, students at their place of employment or driving from work, or having their classroom engagement interrupted by a delivery. Students’ backgrounds and spaces create unique dynamics during synchronous instruction, which offers a holistic view of them outside academia. This research explores whether witnessing students’ daily experiences leads to empathy from their instructors and whether it results in a greater understanding of students’ challenges and circumstances. Ultimately, it will amplify instructors’ stance on the advantages of students having their cameras on during synchronous online classes to develop a connection with the instructor and a more cohesive classroom environment.

Keywords: instructor’s empathy, synchronous class, asynchronous class, online environment

Procedia PDF Downloads 96
10864 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator

Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong

Abstract:

Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.

Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce

Procedia PDF Downloads 33
10863 A Comprehensive Framework for Fraud Prevention and Customer Feedback Classification in E-Commerce

Authors: Samhita Mummadi, Sree Divya Nagalli, Harshini Vemuri, Saketh Charan Nakka, Sumesh K. J.

Abstract:

One of the most significant challenges faced by people in today’s digital era is an alarming increase in fraudulent activities on online platforms. The fascination with online shopping to avoid long queues in shopping malls, the availability of a variety of products, and home delivery of goods have paved the way for a rapid increase in vast online shopping platforms. This has had a major impact on increasing fraudulent activities as well. This loop of online shopping and transactions has paved the way for fraudulent users to commit fraud. For instance, consider a store that orders thousands of products all at once, but what’s fishy about this is the massive number of items purchased and their transactions turning out to be fraud, leading to a huge loss for the seller. Considering scenarios like these underscores the urgent need to introduce machine learning approaches to combat fraud in online shopping. By leveraging robust algorithms, namely KNN, Decision Trees, and Random Forest, which are highly effective in generating accurate results, this research endeavors to discern patterns indicative of fraudulent behavior within transactional data. Introducing a comprehensive solution to this problem in order to empower e-commerce administrators in timely fraud detection and prevention is the primary motive and the main focus. In addition to that, sentiment analysis is harnessed in the model so that the e-commerce admin can tailor to the customer’s and consumer’s concerns, feedback, and comments, allowing the admin to improve the user’s experience. The ultimate objective of this study is to ramp up online shopping platforms against fraud and ensure a safer shopping experience. This paper underscores a model accuracy of 84%. All the findings and observations that were noted during our work lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as technologies continue to evolve.

Keywords: behavior analysis, feature selection, Fraudulent pattern recognition, imbalanced classification, transactional anomalies

Procedia PDF Downloads 28
10862 Damage Cost for Private Property by Extreme Wind over the past 10 Years in Korea

Authors: Gou-Moon Choi, Woo-Young Jung, Chan-Young Yune

Abstract:

Recently, the natural disaster has increased worldwide. In Korea, the damage to life and property caused by a typhoon, heavy rain, heavy snow, and an extreme wind also increases every year. Among natural disasters, the frequency and the strength of wind have increased because sea surface temperature has risen due to the increase of the average temperature of the Earth. In the case of extreme wind disaster, it is impossible to control or reduce the occurrence, and the recovery cost always exceeds the damage cost. Therefore, quantitative estimation of the damage cost for extreme wind needs to be established beforehand to install proactive countermeasures. In this study, the damage cost for private properties was analyzed based on the data for the past 10 years in Korea. The damage cost curve was also suggested for the metropolitan cities and provinces. The result shows the possibility for the regional application of the damage cost curve because the damage cost of the regional area is estimated based on the cost of cities and provinces.

Keywords: damage cost, extreme wind, natural disaster, private property

Procedia PDF Downloads 305
10861 Online Yoga Asana Trainer Using Deep Learning

Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam

Abstract:

Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.

Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN

Procedia PDF Downloads 240
10860 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 24
10859 Enhancing Project Performance Forecasting using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management

Procedia PDF Downloads 50
10858 University Short Courses Web Application Using ASP.Net

Authors: Ahmed Hariri

Abstract:

E-Learning has become a necessity in the advanced education. It is easier for the student and teacher communication also it speed up the process with less time and less effort. With the progress and the enormous development of distance education must keep up with this age of making a website that allows students and teachers to take all the advantages of advanced education. In this regards, we developed University Short courses web application which is specially designed for Faculty of computing and information technology, Rabigh, Kingdom of Saudi Arabia. After an elaborate review of the current state-of-the-art methods of teaching and learning, we found that instructors deliver extra short courses and workshop to students to enhance the knowledge of students. Moreover, this process is completely manual. The prevailing methods of teaching and learning consume a lot of time; therefore in this context, University Short courses web application will help to make process easy and user friendly. The site allows for students can view and register short courses online conducted by instructor also they can see courses starting dates, finishing date and locations. It also allows the instructor to put things on his courses on the site and see the students enrolled in the study material. Finally, student can print the certificate after finished the course online. ASP.NET, SQLSERVER, JavaScript SQL SERVER Database will use to develop the University Short Courses web application.

Keywords: e-learning, short courses, ASP.NET, SQL SERVER

Procedia PDF Downloads 134
10857 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 111
10856 Impact of Grade Sensitivity on Learning Motivation and Academic Performance

Authors: Salwa Aftab, Sehrish Riaz

Abstract:

The objective of this study was to check the impact of grade sensitivity on learning motivation and academic performance of students and to remove the degree of difference that exists among students regarding the cause of their learning motivation and also to gain knowledge about this matter since it has not been adequately researched. Data collection was primarily done through the academic sector of Pakistan and was depended upon the responses given by students solely. A sample size of 208 university students was selected. Both paper and online surveys were used to collect data from respondents. The results of the study revealed that grade sensitivity has a positive relationship with the learning motivation of students and their academic performance. These findings were carried out through systematic correlation and regression analysis.

Keywords: academic performance, correlation, grade sensitivity, learning motivation, regression

Procedia PDF Downloads 400
10855 Perception and Implementation of Machine Translation Applications by the Iranian English Translators

Authors: Abdul Amir Hazbavi

Abstract:

The present study is an attempt to provide a relatively comprehensive preview of the Iranian English translators’ perception on Machine Translation. Furthermore, the study tries to shed light on the status of implementation of Machine Translation among the Iranian English Translators. To reach the aforementioned objectives, the Localization Industry Standards Association’s questioner for measuring perceptions with regard to the adoption of a technology innovation was adapted and used to investigate three parameter among the participants of the study, namely familiarity with Machine Translation, general perception on Machine Translation and implementation of Machine Translation systems in translation tasks. The participants of the study were 224 last-year undergraduate Iranian students of English translation at 10 universities across the country. The study revealed a very low level of adoption and a very high level of willingness to get familiar with and learn about Machine Translation, as well as a positive perception of and attitude toward Machine Translation by the Iranian English translators.

Keywords: translation technology, machine translation, perception, implementation

Procedia PDF Downloads 524
10854 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization

Authors: R. O. Osaseri, A. R. Usiobaifo

Abstract:

The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.

Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault

Procedia PDF Downloads 324