Search results for: named entity recognition (NER)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2579

Search results for: named entity recognition (NER)

1919 Improvement of Microscopic Detection of Acid-Fast Bacilli for Tuberculosis by Artificial Intelligence-Assisted Microscopic Platform and Medical Image Recognition System

Authors: Hsiao-Chuan Huang, King-Lung Kuo, Mei-Hsin Lo, Hsiao-Yun Chou, Yusen Lin

Abstract:

The most robust and economical method for laboratory diagnosis of TB is to identify mycobacterial bacilli (AFB) under acid-fast staining despite its disadvantages of low sensitivity and labor-intensive. Though digital pathology becomes popular in medicine, an automated microscopic system for microbiology is still not available. A new AI-assisted automated microscopic system, consisting of a microscopic scanner and recognition program powered by big data and deep learning, may significantly increase the sensitivity of TB smear microscopy. Thus, the objective is to evaluate such an automatic system for the identification of AFB. A total of 5,930 smears was enrolled for this study. An intelligent microscope system (TB-Scan, Wellgen Medical, Taiwan) was used for microscopic image scanning and AFB detection. 272 AFB smears were used for transfer learning to increase the accuracy. Referee medical technicians were used as Gold Standard for result discrepancy. Results showed that, under a total of 1726 AFB smears, the automated system's accuracy, sensitivity and specificity were 95.6% (1,650/1,726), 87.7% (57/65), and 95.9% (1,593/1,661), respectively. Compared to culture, the sensitivity for human technicians was only 33.8% (38/142); however, the automated system can achieve 74.6% (106/142), which is significantly higher than human technicians, and this is the first of such an automated microscope system for TB smear testing in a controlled trial. This automated system could achieve higher TB smear sensitivity and laboratory efficiency and may complement molecular methods (eg. GeneXpert) to reduce the total cost for TB control. Furthermore, such an automated system is capable of remote access by the internet and can be deployed in the area with limited medical resources.

Keywords: TB smears, automated microscope, artificial intelligence, medical imaging

Procedia PDF Downloads 227
1918 The Significance of Islamic Concept of Good Faith to Cure Flaws in Public International Law

Authors: M. A. H. Barry

Abstract:

The concept of Good faith (husn al-niyyah) and fair-dealing (Nadl) are the fundamental guiding elements in all contracts and other agreements under Islamic law. The preaching of Al-Quran and Prophet Muhammad’s (Peace Be upon Him) firmly command people to act in good faith in all dealings. There are several Quran verses and the Prophet’s saying which stressed the significance of dealing honestly and fairly in all transactions. Under the English law, the good faith is not considered a fundamental requirement for the formation of a legal contract. However, the concept of Good Faith in private contracts is recognized by the civil law system and in Article 7(1) of the Convention on International Sale of Goods (CISG-Vienna Convention-1980). It took several centuries for the international trading community to recognize the significance of the concept of good faith for the international sale of goods transactions. Nevertheless, the recognition of good faith in Civil law is only confined for the commercial contracts. Subsequently to the CISG, this concept has made inroads into the private international law. There are submissions in favour of applying the good faith concept to public international law based on tacit recognition by the international conventions and International Tribunals. However, under public international law the concept of good faith is not recognized as a source of rights or obligations. This weakens the spirit of the good faith concept, particularly when determining the international disputes. This also creates a fundamental flaw because the absence of good faith application means the breaches tainted by bad faith are tolerated. The objective of this research is to evaluate, examine and analyze the application of the concept of good faith in the modern laws and identify its limitation, in comparison with Islamic concept of good faith. This paper also identifies the problems and issues connected with the non-application of this concept to public international law. This research consists of three key components (1) the preliminary inquiry (2) subject analysis and discovery of research results, and (3) examining the challenging problems, and concluding with proposals. The preliminary inquiry is based on both the primary and secondary sources. The same sources are used for the subject analysis. This research also has both inductive and deductive features. The Islamic concept of good faith covers all situations and circumstances where the bad faith causes unfairness to the affected parties, especially the weak parties. Under the Islamic law, the concept of good faith is a source of rights and obligations as Islam prohibits any person committing wrongful or delinquent acts in any dealing whether in a private or public life. This rule is applicable not only for individuals but also for institutions, states, and international organizations. This paper explains how the unfairness is caused by non-recognition of the good faith concept as a source of rights or obligations under public international law and provides legal and non-legal reasons to show why the Islamic formulation is important.

Keywords: good faith, the civil law system, the Islamic concept, public international law

Procedia PDF Downloads 146
1917 Using Set Up Candid Clips as Viral Marketing via New Media

Authors: P. Suparada, D. Eakapotch

Abstract:

This research’s objectives were to analyze the using of new media in the form of set up candid clip that affects the product and presenter, to study the effectiveness of using new media in the form of set up candid clip in order to increase the circulation and audience satisfaction and to use the earned information and knowledge to develop the communication for publicizing and advertising via new media. This research is qualitative research based on questionnaire from 50 random sampling representative samples and in-depth interview from experts in publicizing and advertising fields. The findings indicated the positive and negative effects to the brands’ image and presenters’ image of product named “Scotch 100” and “Snickers” that used set up candid clips via new media for publicizing and advertising in Thailand. It will be useful for fields of publicizing and advertising in the new media forms.

Keywords: candid clip, effect, new media, social network

Procedia PDF Downloads 222
1916 Protective Effect of the Histamine H3 Receptor Antagonist DL77 in Behavioral Cognitive Deficits Associated with Schizophrenia

Authors: B. Sadek, N. Khan, D. Łażewska, K. Kieć-Kononowicz

Abstract:

The effects of the non-imidazole histamine H3 receptor (H3R) antagonist DL77 in passive avoidance paradigm (PAP) and novel object recognition (NOR) task in MK801-induced cognitive deficits associated with schizophrenia (CDS) in adult male rats, and applying donepezil (DOZ) as a reference drug were investigated. The results show that acute systemic administration of DL77 (2.5, 5, and 10 mg/kg, i.p.) significantly improved MK801-induced (0.1 mg/kg, i.p.) memory deficits in PAP. The ameliorating activity of DL77 (5 mg/kg, i.p.) in MK801-induced deficits was partly reversed when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL, 10 mg/kg, i.p.) or with the antimuscarinic antagonist scopolamine (SCO, 0.1 mg/kg, i.p.), but not with the CNS penetrant H1R antagonist pyrilamine (PYR, 10 mg/kg, i.p.). Moreover, the memory enhancing effect of DL77 (5 mg/kg, i.p.) in MK801-induced memory deficits in PAP was strongly reversed when rats were pretreated with a combination of ZOL (10 mg/kg, i.p.) and SCO (1.0 mg/kg, i.p.). Furthermore, the significant ameliorative effect of DL77 (5 mg/kg, i.p.) on MK801-induced long-term memory (LTM) impairment in NOR test was comparable to the DOZ-provided memory-enhancing effect, and was abrogated when animals were pretreated with the histamine H3R agonist R-(α)-methylhistamine (RAMH, 10 mg/kg, i.p.). However, DL77(5 mg/kg, i.p.) failed to provide procognitive effect on MK801-induced short-term memory (STM) impairment in NOR test. In addition, DL77 (5 mg/kg) did not alter anxiety levels and locomotor activity of animals naive to elevated-plus maze (EPM), demonstrating that improved performances with DL77 (5 mg/kg) in PAP or NOR are unrelated to changes in emotional responding or spontaneous locomotor activity. These results provide evidence for the potential of H3Rs for the treatment of neurodegenerative disorders related to impaired memory function, e.g. CDS.

Keywords: histamine H3 receptor, antagonist, learning, memory impairment, passive avoidance paradigm, novel object recognition

Procedia PDF Downloads 202
1915 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body

Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi

Abstract:

The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.

Keywords: Accu-Check, diabetes, neural network, pattern recognition

Procedia PDF Downloads 144
1914 3D Human Face Reconstruction in Unstable Conditions

Authors: Xiaoyuan Suo

Abstract:

3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts.

Keywords: 3D photogrammetry, 3D object reconstruction, facial expression recognition, facial recognition

Procedia PDF Downloads 149
1913 Hybrid Feature Selection Method for Sentiment Classification of Movie Reviews

Authors: Vishnu Goyal, Basant Agarwal

Abstract:

Sentiment analysis research provides methods for identifying the people’s opinion written in blogs, reviews, social networking websites etc. Sentiment analysis is to understand what opinion people have about any given entity, object or thing. Sentiment analysis research can be broadly categorised into three types of approaches i.e. semantic orientation, machine learning and lexicon based approaches. Feature selection methods improve the performance of the machine learning algorithms by eliminating the irrelevant features. Information gain feature selection method has been considered best method for sentiment analysis; however, it has the drawback of selection of threshold. Therefore, in this paper, we propose a hybrid feature selection methods comprising of information gain and proposed feature selection method. Initially, features are selected using Information Gain (IG) and further more noisy features are eliminated using the proposed feature selection method. Experimental results show the efficiency of the proposed feature selection methods.

Keywords: feature selection, sentiment analysis, hybrid feature selection

Procedia PDF Downloads 336
1912 Advances on the Understanding of Sequence Convergence Seen from the Perspective of Mathematical Working Spaces

Authors: Paula Verdugo-Hernandez, Patricio Cumsille

Abstract:

We analyze a first-class on the convergence of real number sequences, named hereafter sequences, to foster exploration and discovery of concepts through graphical representations before engaging students in proving. The main goal was to differentiate between sequences and continuous functions-of-a-real-variable and better understand concepts at an initial stage. We applied the analytic frame of mathematical working spaces, which we expect to contribute to extending to sequences since, as far as we know, it has only developed for other objects, and which is relevant to analyze how mathematical work is built systematically by connecting the epistemological and cognitive perspectives, and involving the semiotic, instrumental, and discursive dimensions.

Keywords: convergence, graphical representations, mathematical working spaces, paradigms of real analysis, real number sequences

Procedia PDF Downloads 142
1911 Modeling Thin Shell Structures by a New Flat Shell Finite Element

Authors: Djamal Hamadi, Ashraf Ayoub, Ounis Abdelhafid, Chebili Rachid

Abstract:

In this paper, a new computationally-efficient rectangular flat shell finite element named 'ACM_RSBEC' is presented. The formulated element is obtained by superposition of a new rectangular membrane element 'RSBEC' based on the strain approach and the well known plate bending element 'ACM'. This element can be used for the analysis of thin shell structures, no matter how the geometrical shape might be. Tests on standard problems have been examined. The convergence of the new formulated element is also compared to other types of quadrilateral shell elements. The presented shell element ‘ACM_RSBEC’ has been demonstrated to be effective and useful in analysing thin shell structures.

Keywords: finite element, flat shell element, strain based approach, static condensation

Procedia PDF Downloads 427
1910 Secure Content Centric Network

Authors: Syed Umair Aziz, Muhammad Faheem, Sameer Hussain, Faraz Idris

Abstract:

Content centric network is the network based on the mechanism of sending and receiving the data based on the interest and data request to the specified node (which has cached data). In this network, the security is bind with the content not with the host hence making it host independent and secure. In this network security is applied by taking content’s MAC (message authentication code) and encrypting it with the public key of the receiver. On the receiver end, the message is first verified and after verification message is saved and decrypted using the receiver's private key.

Keywords: content centric network, client-server, host security threats, message authentication code, named data network, network caching, peer-to-peer

Procedia PDF Downloads 642
1909 A New Protocol Ensuring Users' Privacy in Pervasive Environment

Authors: Mohammed Nadir Djedid, Abdallah Chouarfia

Abstract:

Transparency of the system and its integration into the natural environment of the user are some of the important features of pervasive computing. But these characteristics that are considered as the strongest points of pervasive systems are also their weak points in terms of the user’s privacy. The privacy in pervasive systems involves more than the confidentiality of communications and concealing the identity of virtual users. The physical presence and behavior of the user in the pervasive space cannot be completely hidden and can reveal the secret of his/her identity and affect his/her privacy. This paper shows that the application of major techniques for protecting the user’s privacy still insufficient. A new solution named Shadow Protocol is proposed, which allows the users to authenticate and interact with the surrounding devices within an ubiquitous computing environment while preserving their privacy.

Keywords: pervasive systems, identification, authentication, privacy

Procedia PDF Downloads 480
1908 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization

Authors: Yihao Kuang, Bowen Ding

Abstract:

With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graphs and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improved strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain a better and more efficient inference effect by introducing PPO into knowledge inference technology.

Keywords: reinforcement learning, PPO, knowledge inference

Procedia PDF Downloads 241
1907 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: autonomous vehicles, deformable part model, dpm, pedestrian detection, real time

Procedia PDF Downloads 279
1906 Economic Policy to Promote small and Medium-sized Enterprises in Georgia in the Post-Pandemic Period

Authors: Gulnaz Erkomaishvili

Abstract:

Introduction: The paper assesses the impact of the COVID-19 pandemic on the activities of small and medium-sized enterprises in Georgia, identifies their problems, and analyzes the state economic policy measures. During the pandemic, entrepreneurs named the imposition of restrictions, access to financial resources, shortage of qualified personnel, high tax rates, unhealthy competition in the market, etc. as the main challenges. The Georgian government has had to take special measures to mitigate the crisis impact caused by the pandemic. For example - in 2020, they mobilized more than 1,6 billion Gel for various eventsto support entrepreneurs. Small and medium-sized entrepreneurship development strategy is presented based on the research; Corresponding conclusions are made, and recommendations are developed. Objectives: The object of research is small and medium-sized enterprises and economic-political decisions aimed at their promotion.Methodology: This paper uses general and specific methods, in particular, analysis, synthesis, induction, deduction, scientific abstraction, comparative and statistical methods, as well as experts’ evaluation. In-depth interviews with experts were conducted to determine quantitative and qualitative indicators; Publications of the National Statistics Office of Georgia are used to determine the regularity between analytical and statistical estimations. Also, theoretical and applied research of international organizations and scientist-economists are used. Contributions: The COVID-19pandemic has had a significant impact on small and medium-sized enterprises. For them, Lockdown is a major challenge. Total sales volume decreased. At the same time, the innovative capabilities of enterprises and the volume of sales in remote channels have increased. As for the assessment of state support measures by small and medium-sizedentrepreneurs, despite the existence of support programs, a large number of entrepreneurs still do not evaluate the measures taken by the state positively. Among the desirable measures to be taken by the state, which would improve the activities of small and medium-sized entrepreneurs, who negatively or largely negatively assessed the activity of the state, named: tax incentives/exemption from certain taxes at the initial stage; Need for periodic trainings/organization of digital technologies, marketing training courses to improve the qualification of employees; Logic and adequacy of criteria when awarding grants and funding; Facilitating the finding of investors; Less bureaucracy, etc.

Keywords: small and medium enterprises, small and medium entrepreneurship, economic policy for small and medium entrepreneurship development, government regulations in Georgia, COVID-19 pandemic

Procedia PDF Downloads 154
1905 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics

Procedia PDF Downloads 108
1904 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization

Procedia PDF Downloads 142
1903 An Introduction to Giulia Annalinda Neglia Viewpoint on Morphology of the Islamic City Using Written Content Analysis Approach

Authors: Mohammad Saber Eslamlou

Abstract:

Morphology of Islamic cities has been extensively studied by researchers of Islamic cities and different theories could be found about it. In this regard, there exist much difference in method of analysis, classification, recognition, confrontation and comparative method of urban morphology. The present paper aims to examine the previous methods, approaches and insights and that how Dr. Giulia Annalinda Neglia dealt with the analysis of morphology of Islamic cities. Neglia is assistant professor in University of Bari, Italy (UNIBA) who has published numerous papers and books on Islamic cities. I introduce her works in the field of morphology of Islamic cities. And then, her thoughts, insights and research methodologies are presented and analyzed in critical perspective. This is a qualitative research on her written works, which have been classified in three major categories. The first category consists mainly of her works on morphology and physical shape of Islamic cities. The results of her works’ review suggest that she has used Moratoria typology in investigating morphology of Islamic cities. Moreover, overall structure of the cities under investigation is often described linear; however, she’s against to define a single framework for the recognition of morphology in Islamic cities. She states that ‘to understand the physical complexity and irregularities in Islamic cities, it is necessary to study the urban fabric by typology method, focusing on transformation processes of the buildings’ form and their surrounding open spaces’ and she believes that fabric of each region in the city follows from the principles of an specific period or urban pattern, in particular, Hellenistic and Roman structures. Furthermore, she believes that it is impossible to understand the morphology of a city without taking into account the obvious and hidden developments associated with it, because form of building and their surrounding open spaces are written history of the city.

Keywords: city, Islamic city, Giulia Annalinda Neglia, morphology

Procedia PDF Downloads 95
1902 Pharmacy-Station Mobile Application

Authors: Taissir Fekih Romdhane

Abstract:

This paper proposes a mobile web application named Pharmacy-Station that sells medicines and permits user to search for medications based on their symptoms, making it is easy to locate a specific drug online without the need to visit a pharmacy where it may be out of stock. This application is developed using the jQuery Mobile framework, which uses many web technologies and languages such as HTML5, PHP, JavaScript and CSS3. To test the proposed application, we used data from popular pharmacies in Saudi Arabia that included important information such as location, contact, and medicines in stock, etc. This document describes the different steps followed to create the Pharmacy-Station application along with screenshots. Finally, based on the results, the paper concludes with recommendations and further works planned to improve the Pharmacy-Station mobile application.

Keywords: pharmacy, mobile application, jquery mobile framework, search, medicine

Procedia PDF Downloads 157
1901 QCARNet: Networks for Quality-Adaptive Compression Artifact

Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho

Abstract:

We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.

Keywords: compression artifact reduction, deblocking, image denoising, image restoration

Procedia PDF Downloads 135
1900 Availability Analysis of a Power Plant by Computer Simulation

Authors: Mehmet Savsar

Abstract:

Reliability and availability of power stations are extremely important in order to achieve a required level of power generation. In particular, in the hot desert climate of Kuwait, reliable power generation is extremely important because of cooling requirements at temperatures exceeding 50-centigrade degrees. In this paper, a particular power plant, named Sabiya Power Plant, which has 8 steam turbines and 13 gas turbine stations, has been studied in detail; extensive data are collected; and availability of station units are determined. Furthermore, a simulation model is developed and used to analyze the effects of different maintenance policies on availability of these stations. The results show that significant improvements can be achieved in power plant availabilities if appropriate maintenance policies are implemented.

Keywords: power plants, steam turbines, gas turbines, maintenance, availability, simulation

Procedia PDF Downloads 617
1899 Analysis of Teachers' Self Efficacy in Terms of Emotional Intelligence

Authors: Ercan Yilmaz, Ali Murat Sünbül

Abstract:

The aim of the study is to investigate teachers’ self-efficacy with regards to their emotional intelligence. The relational model was used in the study. The participant of the study included 194 teachers from secondary schools in Konya, Turkey. In order to assess teachers’ emotional intelligence, “Trait Emotional Intelligence Questionnaire-short Form was implemented. For teachers’ self-efficacy, “Teachers’ Sense of Self-Efficacy Scale” was used. As a result of the study, a significant relationship is available between teachers’ sense of self-efficacy and their emotional intelligence. Teachers’ emotional intelligence enucleates approximate eighteen percent of the variable in dimension named teachers’ self-efficacy for the students’ involvement. About nineteen percent of the variable in dimension “self-efficacy for teaching strategies is represented through emotional intelligence. Teachers’ emotional intelligence demonstrates about seventeen percent of variable aimed at classroom management.

Keywords: teachers, self-efficacy, emotional intelligence, education

Procedia PDF Downloads 452
1898 Examining How Employee Training and Development Contribute to the Favourable Results of a Business Entity: A Conceptual Analysis

Authors: Paul Saah, Charles Mbohwa, Nelson Sizwe Madonsela

Abstract:

Organisations that want to have a competitive edge over their rivals in their industry are becoming more and more aware of the value of staff training and development programs. This conceptual study's primary goal is to determine how staff development and training affect an organization's ability to succeed. A non-empirical methodological approach was chosen because this was a conceptual study, and a thorough literature analysis was conducted to determine the contribution of staff training and development to the performance of a commercial organization. Twenty of the 100 publications about employee training and development that were obtained from Google Scholar and regarded to be more pertinent were examined for this study. The impact of employee training and development in an organization was found and documented during the analyses. According to the study's findings, some of the major advantages of staff development and training include greater productivity, the discovery of employee potential, job satisfaction, the development of skills, less supervision, a decrease in turnover and absenteeism as well as less supervision and reduction of errors and accidents. The findings show that organisations that make significant investments in the training and development of their personnel are more likely to succeed than those who do not.

Keywords: impact, employment, training and development, success, business, organization

Procedia PDF Downloads 65
1897 Tourist’s Perception and Identification of Landscape Elements of Traditional Village

Authors: Mengxin Feng, Feng Xu, Zhiyong Lai

Abstract:

As a typical representative of the countryside, traditional Chinese villages are rich in cultural landscape resources and historical information, but they are still in continuous decline. The problems of people's weak protection awareness and low cultural recognition are still serious, and the protection of cultural heritage is imminent. At the same time, with the rapid development of rural tourism, its cultural value has been explored and paid attention to again. From the perspective of tourists, this study aimed to explore people's perception and identity of cultural landscape resources under the current cultural tourism development background. We selected eleven typical landscape elements of Lingshui Village, a traditional village in Beijing, as research objects and conducted a questionnaire survey with two scales of perception and identity to explore the characteristics of people's perception and identification of landscape elements. We found that there was a strong positive correlation between the perception and identity of each element and that geographical location influenced visitors' overall perception. The perception dimensions scored the highest in location, and the lowest in history and culture, and the identity dimensions scored the highest in meaning and lowest in emotion. We analyzed the impact of visitors' backgrounds on people's perception and identity characteristics and found that age and education were two important factors. The elderly had a higher degree of perceived identity, as the familiarity effect increased their attention. Highly educated tourists had more stringent criteria for perception and identification. The above findings suggest strategies for conserving and optimizing landscape elements in the traditional village to improve the acceptance and recognition of cultural information in traditional villages, which will inject new vitality into the development of traditional villages.

Keywords: traditional village, tourist perception, landscape elements, perception and identity

Procedia PDF Downloads 142
1896 The Ameliorative Effects of the Histamine H3 Receptor Antagonist/Inverse Agonist DL77 on MK801-Induced Memory Deficits in Rats

Authors: B. Sadek, N. Khan, Shreesh K. Ojha, Adel Sadeq, D. Lazewska, K. Kiec-Kononowicz

Abstract:

The involvement of Histamine H3 receptors (H3Rs) in memory and the potential role of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer disease (AD) is well established. Therefore, the memory-enhancing effects of the H3R antagonist DL77 on MK801-induced cognitive deficits were evaluated in passive avoidance paradigm (PAP) and novel object recognition (NOR) tasks in adult male rats, applying donepezil (DOZ) as a reference drug. Animals pretreated with acute systemic administration of DL77 (2.5, 5, and 10 mg/kg, i.p.) were significantly ameliorated in regard to MK801-induced memory deficits in PAP. The ameliorative effect of most effective dose of DL77 (5 mg/kg, i.p.) was abrogated when animals were pretreated with a co-injection with the H3R agonist R-(α)-methylhistamine (RAMH, 10 mg/kg, i.p.). Moreover, and in the NOR paradigm, DL77 (5 mg/kg, i.p.) reversed MK801-induced deficits long-term memory (LTM), and the DL77-provided procognitive effect was comparable to that of reference drug DOZ, and was reversed when animals were co-injected with RAMH (10 mg/kg, i.p.). However, DL77(5 mg/kg, i.p.) failed to alter short-term memory (STM) impairment in NOR test. Furthermore, DL77 (5 mg/kg) failed to induce any alterations of anxiety and locomotor behaviors of animals naive to elevated-plus maze (EPM), indicating that the ameliorative effects observed in PAP or NOR tests were not associated to alterations in emotions or in natural locomotion of tested animals. These results reveal the potential contribution of H3Rs in modulating CNS neurotransmission systems associated with neurodegenerative disorders, e.g., AD.

Keywords: histamine H3 receptor, antagonist, learning and memory, Alzheimer's disease, neurodegeneration, passive avoidance paradigm, novel object recognition, behavioral research

Procedia PDF Downloads 154
1895 Similar Script Character Recognition on Kannada and Telugu

Authors: Gurukiran Veerapur, Nytik Birudavolu, Seetharam U. N., Chandravva Hebbi, R. Praneeth Reddy

Abstract:

This work presents a robust approach for the recognition of characters in Telugu and Kannada, two South Indian scripts with structural similarities in characters. To recognize the characters exhaustive datasets are required, but there are only a few publicly available datasets. As a result, we decided to create a dataset for one language (source language),train the model with it, and then test it with the target language.Telugu is the target language in this work, whereas Kannada is the source language. The suggested method makes use of Canny edge features to increase character identification accuracy on pictures with noise and different lighting. A dataset of 45,150 images containing printed Kannada characters was created. The Nudi software was used to automatically generate printed Kannada characters with different writing styles and variations. Manual labelling was employed to ensure the accuracy of the character labels. The deep learning models like CNN (Convolutional Neural Network) and Visual Attention neural network (VAN) are used to experiment with the dataset. A Visual Attention neural network (VAN) architecture was adopted, incorporating additional channels for Canny edge features as the results obtained were good with this approach. The model's accuracy on the combined Telugu and Kannada test dataset was an outstanding 97.3%. Performance was better with Canny edge characteristics applied than with a model that solely used the original grayscale images. The accuracy of the model was found to be 80.11% for Telugu characters and 98.01% for Kannada words when it was tested with these languages. This model, which makes use of cutting-edge machine learning techniques, shows excellent accuracy when identifying and categorizing characters from these scripts.

Keywords: base characters, modifiers, guninthalu, aksharas, vattakshara, VAN

Procedia PDF Downloads 51
1894 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization

Authors: Yihao Kuang, Bowen Ding

Abstract:

With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.

Keywords: reinforcement learning, PPO, knowledge inference, supervised learning

Procedia PDF Downloads 66
1893 Evaluation Of A Start Up Business Strategy In Movie Industry: Case Study Of Visinema

Authors: Stacia E. H. Sitohang, S.Mn., Socrates Rudy Sirait

Abstract:

The first movie theater in Indonesia was established in December 1900. The movie industry started with international movie penetration. After a while, local movie producers started to rise and created local Indonesian movies. The industry is growing through ups and downs in Indonesia. In 2008, Visinema was founded in Jakarta, Indonesia, by AnggaDwimasSasongko, one of the most respected movie director in Indonesia. After getting achievements and recognition, Visinema chose to grow the company horizontally as opposed to only grow vertically and gain another similar achievement. Visinemachose to build the ecosystem that enables them to obtain many more opportunities and generatebusiness sustainability. The company proceed as an agile company. They created several business subsidiaries to support the company’s Intellectual Property (IP) development. This research was done through interview with the key persons in the company and questionnaire to get market insights regarding Visinema. The is able to transform their IP that initially started from movies to different kinds of business model. Interestingly, Angga chose to use the start up approach to create Visinema. In 2019, the company successfully gained Series A funding from Intudo Ventures and got other various investment schemes to support the business. In early 2020, Covid-19 pandemic negatively impacted many industries in Indonesia, especially the entertainment and leisure businesses. Fortunately, Visinema did not face any significant problem regarding survival during the pandemic, there were nolay-offs nor work hour reductions. Instead, they were thinking of much bigger opportunities and problems. While other companies suffer during the pandemic, Visinema created the first focused Transactional Video On Demand (TVOD) in Indonesia named Bioskop Online. The platform was created to keep the company innovating and adapting with the new online market as the result of the Covid-19 pandemic. Other than a digital platform, Visinemainvested heavily in animation to target kids and family business. They believed that penetrating the technology and animation market is going to be the biggest opportunity in Visinema’s road map. Besides huge opportunities, Visinema is also facing problems. The first is company brand positioning. Angga, as the founder, felt the need to detach his name from the brand image of Visinema to create system sustainability and scalability. Second, the company has to create a strategy to refocus in a particular business area to maintain and improve the competitive advantages. The third problem, IP piracy is a huge structural problem in Indonesia, the company considers IP thieves as their biggest competitors as opposed to other production company. As the recommendation, we suggest a set of branding and management strategy to detach the founder’s name from Visinema’s brand and improve the competitive advantages. We also suggest Visinema invest in system building to prevent IP piracy in the entertainment industry, which later can be another business subsidiary of Visinema.

Keywords: business ecosystem, agile, sustainability, scalability, start Up, intellectual property, digital platform

Procedia PDF Downloads 136
1892 An Audit of Climate Change and Sustainability Teaching in Medical School

Authors: M. Tiachachat, M. Mihoubi

Abstract:

The Bell polynomials are special polynomials in combinatorial analysis that have a wide range of applications in mathematics. They have interested many authors. The exponential partial Bell polynomials have been well reduced to some special combinatorial sequences. Numerous researchers had already been interested in the above polynomials, as evidenced by many articles in the literature. Inspired by this work, in this work, we propose a family of special polynomials named after the 2-successive partial Bell polynomials. Using the combinatorial approach, we prove the properties of these numbers, derive several identities, and discuss some special cases. This family includes well-known numbers and polynomials such as Stirling numbers, Bell numbers and polynomials, and so on. We investigate their properties by employing generating functions

Keywords: 2-associated r-Stirling numbers, the exponential partial Bell polynomials, generating function, combinatorial interpretation

Procedia PDF Downloads 108
1891 Development of a Social Assistive Robot for Elderly Care

Authors: Edwin Foo, Woei Wen, Lui, Meijun Zhao, Shigeru Kuchii, Chin Sai Wong, Chung Sern Goh, Yi Hao He

Abstract:

This presentation presents an elderly care and assistive social robot development work. We named this robot JOS and he is restricted to table top operation. JOS is designed to have a maximum volume of 3600 cm3 with its base restricted to 250 mm and his mission is to provide companion, assist and help the elderly. In order for JOS to accomplish his mission, he will be equipped with perception, reaction and cognition capability. His appearance will be not human like but more towards cute and approachable type. JOS will also be designed to be neutral gender. However, the robot will still have eyes, eyelid and a mouth. For his eyes and eyelids, they will be built entirely with Robotis Dynamixel AX18 motor. To realize this complex task, JOS will be also be equipped with micro-phone array, vision camera and Intel i5 NUC computer and a powered by a 12 V lithium battery that will be self-charging. His face is constructed using 1 motor each for the eyelid, 2 motors for the eyeballs, 3 motors for the neck mechanism and 1 motor for the lips movement. The vision senor will be house on JOS forehead and the microphone array will be somewhere below the mouth. For the vision system, Omron latest OKAO vision sensor is used. It is a compact and versatile sensor that is only 60mm by 40mm in size and operates with only 5V supply. In addition, OKAO vision sensor is capable of identifying the user and recognizing the expression of the user. With these functions, JOS is able to track and identify the user. If he cannot recognize the user, JOS will ask the user if he would want him to remember the user. If yes, JOS will store the user information together with the capture face image into a database. This will allow JOS to recognize the user the next time the user is with JOS. In addition, JOS is also able to interpret the mood of the user through the facial expression of the user. This will allow the robot to understand the user mood and behavior and react according. Machine learning will be later incorporated to learn the behavior of the user so as to understand the mood of the user and requirement better. For the speech system, Microsoft speech and grammar engine is used for the speech recognition. In order to use the speech engine, we need to build up a speech grammar database that captures the commonly used words by the elderly. This database is built from research journals and literature on elderly speech and also interviewing elderly what do they want to robot to assist them with. Using the result from the interview and research from journal, we are able to derive a set of common words the elderly frequently used to request for the help. It is from this set that we build up our grammar database. In situation where there is more than one person near JOS, he is able to identify the person who is talking to him through an in-house developed microphone array structure. In order to make the robot more interacting, we have also included the capability for the robot to express his emotion to the user through the facial expressions by changing the position and movement of the eyelids and mouth. All robot emotions will be in response to the user mood and request. Lastly, we are expecting to complete this phase of project and test it with elderly and also delirium patient by Feb 2015.

Keywords: social robot, vision, elderly care, machine learning

Procedia PDF Downloads 440
1890 Sampling and Characterization of Fines Created during the Shredding of Non Hazardous Waste

Authors: Soukaina Oujana, Peggy Zwolinski

Abstract:

Fines are heterogeneous residues created during the shredding of non-hazardous waste. They are one of the most challenging issues faced by recyclers, because they are at the present time considered as non-sortable and non-reusable mixtures destined to landfill. However, fines contain a large amount of recoverable materials that could be recycled or reused for the production of solid recovered fuel. This research is conducted in relation to a project named ValoRABES. The aim is to characterize fines and establish a suitable sorting process in order to extract the materials contained in the mixture and define their suitable recovery paths. This paper will highlight the importance of a good sampling and will propose a sampling methodology for fines characterization. First results about the characterization will be also presented.

Keywords: fines, non-hazardous waste, recovery, shredding residues, waste characterization, waste sampling

Procedia PDF Downloads 187