Search results for: lower critical solution temperature
20317 The Interplay of Communication and Critical Thinking in the Mathematics Classroom
Authors: Sharon K. O'Kelley
Abstract:
At the heart of mathematics education is the concept of communication which many teachers envision as the influential dialogue they conduct with their students. However, communication in the mathematics classroom operates in different forms at different levels, both externally and internally. Specifically, it can be a central component in the building of critical thinking skills that requires students not only to know how to communicate their solutions to others but that they also be able to navigate their own thought processes in search of those solutions. This paper provides a review of research on the role of communication in the building of critical thinking skills in mathematics with a focus on the problem-solving process and the implications this interplay has for the teaching and learning of mathematics.Keywords: communication in mathematics, critical thinking skills, mathematics education, problem-solving process
Procedia PDF Downloads 8520316 Impact Factor of Annealing on Electrical Properties of Zinc Selenide (ZnSe) Thin Films
Authors: Esubalew Yehualaw Melaku, Tizazu Abeza
Abstract:
ZnSe thin films in an aqueous solution of zinc acetate and hydrazine hydrate (HH) using the non-toxic complexing agent EDTA along with the films were annealed at 200, 300, and 400oC. This research aimed to investigate the effect of annealing on the structural, optical, and electrical properties of the films. X-ray diffraction (XRD) analysis was used to study the structure and crystallite size of the ZnSe thin film. The ZnSe thin films are annealed in an oven at various temperatures which are characterized by structural and optical properties. An increase in annealing temperature distorted the nanocrystillinity and made the ZnSe thin films amorphous. The variation of resistivity indicates the semiconducting nature of the thin film. The electrical resistivity of the films decreases with increasing annealing temperature. In this study, the Band gap of ZnSe decreases from 2.8eV to 2.65eV with the increase in temperature and decreases for as-deposited to 2.5eV. As a result of this research, ZnSe is used for certain applications; it has been widely utilized in various optoelectronic devices such as thin film solar cells, green-blue light emitting diodes, lasers, photo-luminescent, and electro-luminescent devices.Keywords: chemical bath deposition, ZnSe thin film, band gap, solar cells
Procedia PDF Downloads 12820315 Crystal Structures and High-Temperature Phase Transitions of the New Ordered Double Perovskites SrCaCoTeO6 and SrCaNiTeO6
Authors: Asmaa Zaraq
Abstract:
In the present work we report X-ray powder diffraction measurements of SrCaCoTeO6 and SrCaNiTeO6, at different temperatures. The crystal structures at room temperature of both compounds are determined; and results showing the existence of high-temperature phase transitions in them are presented. Both compounds have double perovskite structure with 1:1 ordered arrangement of the B site cations. At room temperature their symmetries are described with the P21/n space group, that correspond to the (a+b-b-) tilt system. The evolution with temperature of the structure of both compounds shows the presence of three phase transitions: a continuous one, at 450 and 500 K, a discontinuous one, at 700 and 775 K, and a continuous one at 900 and 950 K for SrCaCoTeO6 and SrCaNiTeO6, respectively with the following phase-transition sequence: P21/n → I2/m → I4/m → Fm-3m.Keywords: double perovskites, caracterisation DRX, transition de phase
Procedia PDF Downloads 51920314 Antifungal Activity of Processed Sulfur Solution as Potential Eco-Friendly Disinfectant against Saprolegnia parasitica and Its Safety in Freshwater-Farmed Fish
Authors: Hye-Hyun Lee, Hyo-Kon Chun, Kyung-Hee Kim Kim, Mi-Hee Kim, Saet-Byul Chu, Sang-Jong Lee, Seung-Hyeop Lee, Seung-Won Yi
Abstract:
Some chemicals such as malachite green, methylene blue, and copper sulfate had been used frequently as disinfectants controlling fungal infection in aquaculture. However, their carcinogenicity, mutagenicity and teratogenicity were reported in mammals. After their accumulation in food fish and its consumers was confirmed, concerns about public health has resulted in enhanced monitoring and increased demand for eco-friendly treatments. Therefore, this study aimed to evaluate safety to fish and efficacy of sulfur solution processed by effective microorganisms (EM-PSS) against Saprolegnia parasitica, for use of a potential aquatic fungicidal disinfectant. The natural sulfur purchased from Kawah Ijen volcano, East Java, Indonesia was processed by the liquid mixture consisting of following twelve effective microorganisms (Rapha-el®; Lbiotech, Jeonnam, Korea), Lactobacillus parafarraginis, L. paracasei, L. harbinensis, L. buchneri, L. perolens, L. rhamnosus, L. vaccinostercus, Acetobacter lovaniensis, A. peroxydans, Pichia fermentans, Candida ethanolica, Saccharomycopsis schoenii isolated from fermentation process of oriental medicinal herbs including green tea, privet, and puer tea. The material was applied to in vitro antifungal activity test for Saprolegnia parasitica using agar dilution method. In addition, an acute toxicity test was performed on carp (Cyprinus carpio), eel (Anguilla japonica), and mud fish (Misgurnus mizolepis) for 96 hours. After three species of fish (n=15) were accustomed to experimental water environment for three days, the EM-PSS was added to each tank as final concentrations to be 0 to 500 ppm. The fish were taken into necropsy, and the histological sections of the gill, liver, and spleen were counter-stained with hematoxylin and eosin (H-E). And hence, no observed effect concentration (NOEC) of the solution was used for taking a medicinal bath for mudfish infected by Saprolegnia parasitica in practice. The result of in vitro antifungal activity test showed the growth inhibition of the fungus at 100 ppm, which and the lower concentrations occurred no fatal case in any fish species tested until the end of the examination. The 125 ppm of the solution, however, resulted in 13.3 %, 13.3 %, and 6.3 % of mortality in carp, eel, and mudfish, respectively. But both 250 and 500 ppm of the solution leaded lethality to all population of each fish species within 24 hours. Besides, H-E staining also showed no specific evidence for toxicity in fish at lesser than 100 ppm of EM-PSS. On the other hand, as a result of field application of the solution, no growth of fungal mycelium was found in fish bodies from gross observation 5 days post treatment. In conclusion, 100ppm of EM-PSS resulted in inhibition and treatment of Saprolegnia parasitica infection. In addition, the use of EM-PSS lower than 100 ppm is safe for fish. Therefore, EM-PSS could be used as aquatic fungicide, and also may be possible to be a potential eco-friendly disinfectant in aquaculture.Keywords: antifungal activity, effective microorganism, toxicity, saprolegnia, processed sulfur solution
Procedia PDF Downloads 25420313 Non-Destructive Test of Bar for Determination of Critical Compression Force Directed towards the Pole
Authors: Boris Blostotsky, Elia Efraim
Abstract:
The phenomenon of buckling of structural elements under compression is revealed in many cases of loading and found consideration in many structures and mechanisms. In the present work the method and results of dynamic test for buckling of bar loaded by a compression force directed towards the pole are considered. Experimental determination of critical force for such system has not been made previously. The tested object is a bar with semi-rigid connection to the base at one of its ends, and with a hinge moving along a circle at the other. The test includes measuring the natural frequency of the bar at different values of compression load. The lateral stiffness is calculated based on natural frequency and reduced mass on the bar's movable end. The critical load is determined by extrapolation the values of lateral stiffness up to zero value. For the experimental investigation the special test-bed was created that allows the stability testing at positive and negative curvature of the movable end's trajectory, as well as varying the rotational stiffness of the other end connection. Decreasing a friction at the movable end allows extend the diapason of applied compression force. The testing method includes: - Methodology of the experiment planning, that allows determine the required number of tests under various loads values in the defined range and the type of extrapolating function; - Methodology of experimental determination of reduced mass at the bar's movable end including its own mass; - Methodology of experimental determination of lateral stiffness of uncompressed bar rotational semi-rigid connection at the base. For planning the experiment and for comparison of the experimental results with the theoretical values of critical load, the analytical dependencies of lateral stiffness of the bar with defined end conditions on compression load. In the particular case of perfectly rigid connection of the bar to the base, the critical load value corresponds to solution by S.P. Timoshenko. Correspondence of the calculated and experimental values was obtained.Keywords: non-destructive test, buckling, dynamic method, semi-rigid connections
Procedia PDF Downloads 35420312 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling
Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé
Abstract:
Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation
Procedia PDF Downloads 7920311 An Accurate Prediction of Surface Temperature History in a Supersonic Flight
Authors: A. M. Tahsini, S. A. Hosseini
Abstract:
In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux. The one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.Keywords: aerodynamic heating, heat conduction, numerical simulation, supersonic flight, launch vehicle
Procedia PDF Downloads 45120310 Disturbance Observer-Based Predictive Functional Critical Control of a Table Drive System
Authors: Toshiyuki Satoh, Hiroki Hara, Naoki Saito, Jun-ya Nagase, Norihiko Saga
Abstract:
This paper addresses a control system design for a table drive system based on the disturbance observer (DOB)-based predictive functional critical control (PFCC). To empower the previously developed DOB-based PFC to handle constraints on controlled outputs, we propose to take a critical control approach. To this end, we derive the transfer function representation of the PFC controller, and yield a detailed design procedure. The effectiveness of the proposed method is confirmed through an experimental evaluation.Keywords: critical control, disturbance observer, mechatronics, motion control, predictive functional control, table drive systems
Procedia PDF Downloads 48520309 Environmental Efficacy on Heracleum persicum Essential Oils
Authors: Rahele Hasani, Iraj Mehregan, Kambiz Larijani, Taher Nejadsattari, Romain Scalone
Abstract:
Essential oils of Heracleum persicum (Apiaceae) have been widely used from many years ago, but the difference of its properties among different populations have not been identified up to now. Hydrodistilation Clevenger type was used to obtaining the fruit essential oils of four populations of H. persicum from different localities in Iran, then they were characterized by GC-FID and GC-MS analyses. Some ecological factors were also measured. The oils of four populations were compared to determine the similarities and differences and the relationships between these factors and ecological factors. Based on the result, 18-32 different components were identified in four populations, while the percentage of the main components was higher in population with lower number of components. According to the statistical analyses of chemical components and ecological factors, it can be concluded that some ecological factors such as altitude, less humidity, high difference between day and night temperature and salty soil would lead to lower number of components in essential oil, whereas they consist the higher percentage.Keywords: Chemotaxonomy, Persian hogweed, Ecological factors, Apiaceae.
Procedia PDF Downloads 42920308 Analysis Rotor Bearing System Dynamic Interaction with Bearing Supports
Abstract:
Frequently, in the design of machines, some of parameters that directly affect the rotor dynamics of the machines are not accurately known. In particular, bearing stiffness support is one such parameter. One of the most basic principles to grasp in rotor dynamics is the influence of the bearing stiffness on the critical speeds and mode shapes associated with a rotor-bearing system. Taking a rig shafting as an example, this paper studies the lateral vibration of the rotor with multi-degree-of-freedom by using Finite Element Method (FEM). The FEM model is created and the eigenvalues and eigenvectors are calculated and analyzed to find natural frequencies, critical speeds, mode shapes. Then critical speeds and mode shapes are analyzed by set bearing stiffness changes. The model permitted to identify the critical speeds and bearings that have an important influence on the vibration behavior.Keywords: lateral vibration, finite element method, rig shafting, critical speed
Procedia PDF Downloads 33920307 Temperature Coefficients of the Refractive Index for Ge Film
Authors: Lingmao Xu, Hui Zhou
Abstract:
Ge film is widely used in infrared optical systems. Because of the special requirements of space application, it is usually used in low temperature. The refractive index of Ge film is always changed with the temperature which has a great effect on the manufacture of high precision infrared optical film. Specimens of Ge single film were deposited at ZnSe substrates by EB-PVD method. During temperature range 80K ~ 300K, the transmittance of Ge single film within 2 ~ 15 μm were measured every 20K by PerkinElmer FTIR cryogenic testing system. By the full spectrum inversion method fitting, the relationship between refractive index and wavelength within 2 ~ 12μm at different temperatures was received. It can be seen the relationship consistent with the formula Cauchy, which can be fitted. Then the relationship between refractive index of the Ge film and temperature/wavelength was obtained by fitting method based on formula Cauchy. Finally, the designed value obtained by the formula and the measured spectrum were compared to verify the accuracy of the formula.Keywords: infrared optical film, low temperature, thermal refractive coefficient, Ge film
Procedia PDF Downloads 29520306 Seawater Desalination for Production of Highly Pure Water Using a Hydrophobic PTFE Membrane and Direct Contact Membrane Distillation (DCMD)
Authors: Ahmad Kayvani Fard, Yehia Manawi
Abstract:
Qatar’s primary source of fresh water is through seawater desalination. Amongst the major processes that are commercially available on the market, the most common large scale techniques are Multi-Stage Flash distillation (MSF), Multi Effect distillation (MED), and Reverse Osmosis (RO). Although commonly used, these three processes are highly expensive down to high energy input requirements and high operating costs allied with maintenance and stress induced on the systems in harsh alkaline media. Beside that cost, environmental footprint of these desalination techniques are significant; from damaging marine eco-system, to huge land use, to discharge of tons of GHG and huge carbon footprint. Other less energy consuming techniques based on membrane separation are being sought to reduce both the carbon footprint and operating costs is membrane distillation (MD). Emerged in 1960s, MD is an alternative technology for water desalination attracting more attention since 1980s. MD process involves the evaporation of a hot feed, typically below boiling point of brine at standard conditions, by creating a water vapor pressure difference across the porous, hydrophobic membrane. Main advantages of MD compared to other commercially available technologies (MSF and MED) and specially RO are reduction of membrane and module stress due to absence of trans-membrane pressure, less impact of contaminant fouling on distillate due to transfer of only water vapor, utilization of low grade or waste heat from oil and gas industries to heat up the feed up to required temperature difference across the membrane, superior water quality, and relatively lower capital and operating cost. To achieve the objective of this study, state of the art flat-sheet cross-flow DCMD bench scale unit was designed, commissioned, and tested. The objective of this study is to analyze the characteristics and morphology of the membrane suitable for DCMD through SEM imaging and contact angle measurement and to study the water quality of distillate produced by DCMD bench scale unit. Comparison with available literature data is undertaken where appropriate and laboratory data is used to compare a DCMD distillate quality with that of other desalination techniques and standards. Membrane SEM analysis showed that the PTFE membrane used for the study has contact angle of 127º with highly porous surface supported with less porous and bigger pore size PP membrane. Study on the effect of feed solution (salinity) and temperature on water quality of distillate produced from ICP and IC analysis showed that with any salinity and different feed temperature (up to 70ºC) the electric conductivity of distillate is less than 5 μS/cm with 99.99% salt rejection and proved to be feasible and effective process capable of consistently producing high quality distillate from very high feed salinity solution (i.e. 100000 mg/L TDS) even with substantial quality difference compared to other desalination methods such as RO and MSF.Keywords: membrane distillation, waste heat, seawater desalination, membrane, freshwater, direct contact membrane distillation
Procedia PDF Downloads 22520305 Enzymatic Esterification of Sardine Oil Processed in Morocco
Authors: M. Kharroubi, Y. Rady, F. Bellali, S. Himmi
Abstract:
The global objective of this study is to upgrade the sardine oil processed in Morocco by using enzymatic solutions. The specific objective of this part of study is to optimize the various parameters involved in enzymatic deacidification of fish oil processed in Morocco: pressure, ratio of oil/novozymes 435, ratio of oil/glycerol, temperature. The best deacidification yields were obtained with: -A temperature of 70 °C; -A ratio -Oil/Glycerol: 2% (% P); -A ratio -Oil/Novozyme 435: 1% (% P); -A pressure: 15 to 25 mbar. On the other hand, the study of the effect of initial oil acidity showed that whatever the acidity of the oil studied (very acidic, or low acidic), the final yields are high. Acidity does not reduce the reaction efficiency. From an industrial point of view, this represents a competitive advantage to consider. This eco-friend enzymatic solution may allows Moroccan fish oil producers to achieve acid number values that meet the standard.Keywords: sardine oil, enzymatic esterfication, desacidification, acid number
Procedia PDF Downloads 38320304 Feasibility Assessment of High-Temperature Superconducting AC Cable Lines Implementation in Megacities
Authors: Andrey Kashcheev, Victor Sytnikov, Mikhail Dubinin, Elena Filipeva, Dmitriy Sorokin
Abstract:
Various variants of technical solutions aimed at improving the reliability of power supply to consumers of 110 kV substation are considered. For each technical solution, the results of calculation and analysis of electrical modes and short-circuit currents in the electrical network are presented. The estimation of electric energy consumption for losses within the boundaries of substation reconstruction was carried out in accordance with the methodology for determining the standards of technological losses of electricity during its transmission through electric networks. The assessment of the technical and economic feasibility of the use of HTS CL compared with the complex reconstruction of the 110 kV substation was carried out. It is shown that the use of high-temperature superconducting AC cable lines is a possible alternative to traditional technical solutions used in the reconstruction of substations.Keywords: superconductivity, cable lines, superconducting cable, AC cable, feasibility
Procedia PDF Downloads 9520303 Increase of Completion Rate of Nursing Care during Therapeutic Hypothermia in Critical Patients
Authors: Yi-Jiun Chou, Ying-Hsuan Li, Yi-Jung Liu, Hsin-Yu Chiang, Hsuan-Ching Wang
Abstract:
Background: Patients received therapeutic hypothermia (TH) after resuscitation from cardiac arrest are more dependent on continue and intensive nursing care. It involves many difficult steps, especially achieving target body temperature. To our best knowledge, there is no consensus or recommended standards on nursing practice of TH. Aim: The aim of this study is to increase the completion rate of nursing care at therapeutic hypothermia. Methods: We took five measures: (1) Amendment of nursing standards of therapeutic hypothermia; (2) Amendment of TH checklist items to nursing records; (3) Establishment of monitor procedure; (4) Design each period of TH care reminder cards; (5) Providing in-service training sections of TH for ICU nursing staff. Outcomes: The completion rate of nursing care at therapeutic hypothermia increased from 78.1% to 89.3%. Conclusion: The project team not only increased the completion rate but also improved patient safety and quality of care.Keywords: therapeutic hypothermia, nursing, critical care, quality of care
Procedia PDF Downloads 41720302 Climate Change in Awash River Basin of Ethiopia: A Projection Study Using Global and Regional Climate Model Simulations
Authors: Mahtsente Tadese, Lalit Kumar, Richard Koech
Abstract:
The aim of this study was to project and analyze climate change in the Awash River Basin (ARB) using bias-corrected Global and Regional Climate Model simulations. The analysis included a baseline period from 1986-2005 and two future scenarios (the 2050s and 2070s) under two representative concentration pathways (RCP4.5 and RCP8.5). Bias correction methods were evaluated using graphical and statistical methods. Following the evaluation of bias correction methods, the Distribution Mapping (DM) and Power Transformation (PT) were used for temperature and precipitation projection, respectively. The 2050s and 2070s RCP4 simulations showed an increase in precipitation during half of the months with 32 and 10%, respectively. Moreover, the 2050s and 2070s RCP8.5 simulation indicated a decrease in precipitation with 18 and 26%, respectively. The 2050s and 2070s RCP8.5 simulation indicated a significant decrease in precipitation in four of the months (February/March to May) with the highest decreasing rate of 34.7%. The 2050s and 2070s RCP4.5 simulation showed an increase of 0.48-2.6 °C in maximum temperature. In the case of RCP8.5, the increase rate reached 3.4 °C and 4.1 °C in the 2050s and 2070s, respectively. The changes in precipitation and temperature might worsen the water stress, flood, and drought in ARB. Moreover, the critical focus should be given to mitigation strategies and management options to reduce the negative impact. The findings of this study provide valuable information on future precipitation and temperature change in ARB, which will help in the planning and design of sustainable mitigation approaches in the basin.Keywords: variability, climate change, Awash River Basin, precipitation
Procedia PDF Downloads 17220301 Effects of Free-Hanging Horizontal Sound Absorbers on the Cooling Performance of Thermally Activated Building Systems
Authors: L. Marcos Domínguez, Nils Rage, Ongun B. Kazanci, Bjarne W. Olesen
Abstract:
Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to provide buildings with an optimal indoor thermal environment. This solution uses the structure of the building to store heat, reduce the peak loads, and decrease the primary energy demand. TABS require the heated or cooled surfaces to be as exposed as possible to the indoor space, but exposing the bare concrete surfaces has a diminishing effect on the acoustic qualities of the spaces in a building. Acoustic solutions capable of providing optimal acoustic comfort and allowing the heat exchange between the TABS and the room are desirable. In this study, the effects of free-hanging units on the cooling performance of TABS and the occupants’ thermal comfort was measured in a full-scale TABS laboratory. Investigations demonstrate that the use of free-hanging sound absorbers are compatible with the performance of TABS and the occupant’s thermal comfort, but an appropriate acoustic design is needed to find the most suitable solution for each case. The results show a reduction of 11% of the cooling performance of the TABS when 43% of the ceiling area is covered with free-hanging horizontal sound absorbers, of 23% for 60% ceiling coverage ratio and of 36% for 80% coverage. Measurements in actual buildings showed an increase of the room operative temperature of 0.3 K when 50% of the ceiling surface is covered with horizontal panels and of 0.8 to 1 K for a 70% coverage ratio. According to numerical simulations using a new TRNSYS Type, the use of comfort ventilation has a considerable influence on the thermal conditions in the room; if the ventilation is removed, then the operative temperature increases by 1.8 K for a 60%-covered ceiling.Keywords: acoustic comfort, concrete core activation, full-scale measurements, thermally activated building systems, TRNSys
Procedia PDF Downloads 32720300 Transient Heat Transfer of a Spiral Fin
Authors: Sen-Yung Lee, Li-Kuo Chou, Chao-Kuang Chen
Abstract:
In this study, the problem of temperature transient response of a spiral fin, with its end insulated, is analyzed with base end subjected to a variation of fluid temperature. The hybrid method of Laplace transforms/Adomian decomposed method-Padé, is applied to the temperature transient response of the fin, the result of the temperature distribution and the heat flux at the base of the spiral fin are obtained, show a good agreement in the physical phenomenon.Keywords: Laplace transforms, Adomian decomposed method- Padé, transient response, heat transfer
Procedia PDF Downloads 42520299 The Performance Improvement of Solar Aided Power Generation System by Introducing the Second Solar Field
Authors: Junjie Wu, Hongjuan Hou, Eric Hu, Yongping Yang
Abstract:
Solar aided power generation (SAPG) technology has been proven as an efficient way to make use of solar energy for power generation purpose. In an SAPG plant, a solar field consisting of parabolic solar collectors is normally used to supply the solar heat in order to displace the high pressure/temperature extraction steam. To understand the performance of such a SAPG plant, a new simulation model was developed by the authors recently, in which the boiler was treated, as a series of heat exchangers unlike other previous models. Through the simulations using the new model, it was found the outlet properties of reheated steam, e.g. temperature, would decrease due to the introduction of the solar heat. The changes make the (lower stage) turbines work under off-design condition. As a result, the whole plant’s performance may not be optimal. In this paper, the second solar filed was proposed to increase the inlet temperature of steam to be reheated, in order to bring the outlet temperature of reheated steam back to the designed condition. A 600MW SAPG plant was simulated as a case study using the new model to understand the impact of the second solar field on the plant performance. It was found in the study, the 2nd solar field would improve the plant’s performance in terms of cycle efficiency and solar-to-electricity efficiency by 1.91% and 6.01%. The solar-generated electricity produced by per aperture area under the design condition was 187.96W/m2, which was 26.14% higher than the previous design.Keywords: solar-aided power generation system, off-design performance, coal-saving performance, boiler modelling, integration schemes
Procedia PDF Downloads 28920298 Critical Path Segments Method for Scheduling Technique
Authors: Sherif M. Hafez, Remon F. Aziz, May S. A. Elalim
Abstract:
Project managers today rely on scheduling tools based on the Critical Path Method (CPM) to determine the overall project duration and the activities’ float times which lead to greater efficiency in planning and control of projects. CPM was useful for scheduling construction projects, but researchers had highlighted a number of serious drawbacks that limit its use as a decision support tool and lacks the ability to clearly record and represent detailed information. This paper discusses the drawbacks of CPM as a scheduling technique and presents a modified critical path method (CPM) model which is called critical path segments (CPS). The CPS scheduling mechanism addresses the problems of CPM in three ways: decomposing the activity duration of separated but connected time segments; all relationships among activities are converted into finish–to–start relationship; and analysis and calculations are made with forward path. Sample cases are included to illustrate the shortages in CPM, CPS full analysis and calculations are explained in details, and how schedules can be handled better with the CPS technique.Keywords: construction management, scheduling, critical path method, critical path segments, forward pass, float, project control
Procedia PDF Downloads 35020297 Solid Particle Erosion of Heat Treated TNB-V4 at Ambient and Elevated Temperatures
Authors: Muhammad Naveed, Richard Stechow, Sebastian Bolz, Katharina Hobusch, Sabine Weiß
Abstract:
Solid particle erosion has been identified as a critical wear phenomenon which takes place during operation of aeroengines in dusty environment. The present work discusses the erosion behavior of Ti-44.5Al-6.25Nb-0.8Mo-0.1B alloy (TNB-V4) which finds its application in low pressure gas turbines and can be used for high pressure compressors too. Prior to the erosion tests, the alloy was heat treated to improve the mechanical properties. Afterwards, specimens were eroded at impact angles of 30° and 90° at room and high temperatures (100 °C-400 °C). Volume loss and erosion behavior are studied through gravimetric analysis, whereas erosion mechanisms are characterized through scanning electron microscopy. The results indicate a clear difference in the erosion mechanism for different impact angles. The influence of the test temperature on the erosion behavior of the alloy is also discussed in the present contribution.Keywords: solid particle erosion, gamma TiAl, TNB-V4, high temperature erosion
Procedia PDF Downloads 35220296 Second-Order Slip Flow and Heat Transfer in a Long Isothermal Microchannel
Authors: Huei Chu Weng, Chien-Hung Liu
Abstract:
This paper presents a study on the effect of second-order slip and jump on forced convection through a long isothermally heated or cooled planar microchannel. The fully developed solutions of thermal flow fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and Smoluchowski jump boundary conditions. Results reveal that the second-order term in the Karniadakis slip boundary condition is found to contribute a negative velocity slip and then to lead to a higher pressure drop as well as a higher fluid temperature for the heated-wall case or to a lower fluid temperature for the cooled-wall case. These findings are contrary to predictions made by the Deissler model. In addition, the role of second-order slip becomes more significant when the Knudsen number increases.Keywords: microfluidics, forced convection, gas rarefaction, second-order boundary conditions
Procedia PDF Downloads 45020295 Dielectric and Impedance Spectroscopy of Samarium and Lanthanum Doped Barium Titanate at Room Temperature
Authors: Sukhleen Bindra Narang, Dalveer Kaur, Kunal Pubby
Abstract:
Dielectric ceramic samples in the BaO-Re2O3-TiO2 ternary system were synthesized with structural formula Ba2-xRe4+2x/3Ti8O24 where Re= rare earth metal and Re= Sm and La where x varies from 0.0 to 0.6 with step size 0.1. Polycrystalline samples were prepared by the conventional solid state reaction technique. The dielectric, electrical and impedance analysis of all the samples in the frequency range 1KHz- 1MHz at room temperature (25°C) have been done to get the understanding of electrical conduction and dielectric relaxation and their correlation. Dielectric response of the samples at lower frequencies shows dielectric dispersion while at higher frequencies it shows dielectric relaxation. The ac conductivity is well fitted by the Jonscher law (σac = σdc+Aωn). The spectroscopic data in the impedance plane confirms the existence of grain contribution to the relaxation. All the properties are found out to be function of frequency as well as the amount of substitution.Keywords: dielectric ceramics, dielectric constant, loss tangent, AC conductivity, impedance spectroscopy
Procedia PDF Downloads 45320294 Solution for Thick Plate Resting on Winkler Foundation by Symplectic Geometry Method
Authors: Mei-Jie Xu, Yang Zhong
Abstract:
Based on the symplectic geometry method, the theory of Hamilton system can be applied in the analysis of problem solved using the theory of elasticity and in the solution of elliptic partial differential equations. With this technique, this paper derives the theoretical solution for a thick rectangular plate with four free edges supported on a Winkler foundation by variable separation method. In this method, the governing equation of thick plate was first transformed into state equations in the Hamilton space. The theoretical solution of this problem was next obtained by applying the method of variable separation based on the Hamilton system. Compared with traditional theoretical solutions for rectangular plates, this method has the advantage of not having to assume the form of deflection functions in the solution process. Numerical examples are presented to verify the validity of the proposed solution method.Keywords: symplectic geometry method, Winkler foundation, thick rectangular plate, variable separation method, Hamilton system
Procedia PDF Downloads 30420293 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction
Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat
Abstract:
The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge-Kutta solution using 38 time steps.Keywords: impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision
Procedia PDF Downloads 48620292 Formulating Rough Approximations in Information Tables with Possibilistic Information
Authors: Michinori Nakata, Hiroshi Sakai
Abstract:
A rough set, which consists of lower and upper approximations, is formulated in information tables containing possibilistic information. First, lower and upper approximations on the basis of possible world semantics in the same way as Lipski did in the field of incomplete databases are shown in order to clarify fundamentals of rough sets under possibilistic information. Possibility and necessity measures are used, as is done in possibilistic databases. As a result, each object has certain and possible membership degrees to lower and upper approximations, which degrees are the lower and upper bounds. Therefore, the degree that the object belongs to lower and upper approximations is expressed by an interval value. And the complementary property linked with the lower and upper approximations holds, as is valid under complete information. Second, the approach based on indiscernibility relations, which is proposed by Dubois and Prade, are extended in three cases. The first case is that objects used to approximate a set of objects are characterized by possibilistic information. The second case is that objects used to approximate a set of objects with possibilistic information are characterized by complete information. The third case is that objects that are characterized by possibilistic information approximate a set of objects with possibilistic information. The extended approach create the same results as the approach based on possible world semantics. This justifies our extension.Keywords: rough sets, possibilistic information, possible world semantics, indiscernibility relations, lower approximations, upper approximations
Procedia PDF Downloads 32020291 Mechanical Properties of Organic Polymer and Exfoliated Graphite Reinforced Bacteria Cellulose Paper
Authors: T. Thompson, E. F. Zegeye
Abstract:
Bacterial Cellulose (BC) is a structural organic compound produced in the anaerobic process. This material can be a useful eco-friendly substitute for commercial textiles that are used in industries today. BC is easily and sustainably produced and has the capabilities to be used as a replacement in textiles. However, BC is extremely fragile when it completely dries. This research was conducted to improve the mechanical properties of the BC by reinforcing with an organic polymer and exfoliated graphite (EG). The BC films were grown over a period of weeks in a green tea and kombucha solution at 30 °C, then cleaned and added to an enhancing solution. The enhancing solutions were a mixture of 2.5 wt% polymer and 2.5 wt% latex solution, a 5 wt% polymer solution, a 0.20 wt% graphite solution and were each allowed to sit in a furnace for 48 h at 50 °C. Tensile test samples were prepared and tested until fracture at a strain rate of 8 mm/min. From the research with the addition of a 5 wt% polymer solution, the flexibility of the BC has significantly improved with the maximum strain significantly larger than that of the base sample. The addition of EG has also increased the modulus of elasticity of the BC by about 25%.Keywords: bacterial cellulose, exfoliated graphite, kombucha scoby, tensile test
Procedia PDF Downloads 11520290 Uncontrollable Inaccuracy in Inverse Problems
Authors: Yu Menshikov
Abstract:
In this paper the influence of errors of function derivatives in initial time which have been obtained by experiment (uncontrollable inaccuracy) to the results of inverse problem solution was investigated. It was shown that these errors distort the inverse problem solution as a rule near the beginning of interval where the solution are analyzed. Several methods for remove the influence of uncontrollable inaccuracy have been suggested.Keywords: inverse problems, filtration, uncontrollable inaccuracy
Procedia PDF Downloads 50220289 Temperature Control Improvement of Membrane Reactor
Authors: Pornsiri Kaewpradit, Chalisa Pourneaw
Abstract:
Temperature control improvement of a membrane reactor with exothermic and reversible esterification reaction is studied in this work. It is well known that a batch membrane reactor requires different control strategies from a continuous one due to the fact that it is operated dynamically. Due to the effect of the operating temperature, the suitable control scheme has to be designed based reliable predictive model to achieve a desired objective. In the study, the optimization framework has been preliminary formulated in order to determine an optimal temperature trajectory for maximizing a desired product. In model predictive control scheme, a set of predictive models have been initially developed corresponding to the possible operating points of the system. The multiple predictive control moves have been further calculated on-line using the developed models corresponding to current operating point. It is obviously seen in the simulation results that the temperature control has been improved compared to the performance obtained by the conventional predictive controller. Further robustness tests have also been investigated in this study.Keywords: model predictive control, batch reactor, temperature control, membrane reactor
Procedia PDF Downloads 46620288 Implementation of Total Quality Management in a Small Scale Industry: A Case Study
Authors: Soham Lalwala, Ronita Singh, Yaman Pattanaik
Abstract:
In the present scenario of globalization and privatization, it becomes difficult for small scale industries to sustain due to rapidly increasing competition. In a developing country, most of the gross output is generally obtained from small scale industries. Thus, quality plays a vital role in maintaining customer satisfaction. Total quality management (TQM) is an approach which enables employees to focus on quality rather quantity, further improving the competitiveness, effectiveness and flexibility of the whole organization. The objective of the paper is to present the application of TQM and develop a TQM Model in a small scale industry of narrow fabrics in Surat, India named ‘Rajdhani Lace & Borders’. Further, critical success factors relating all the fabric processes involved were identified. The data was collected by conducting a questionnaire survey. After data was collected, critical areas were visualized using different tools of TQM such as cause and effect diagram, control charts and run charts. Overall, responses were analyzed, and factor analysis was used to develop the model. The study presented here will aid the management of the above-mentioned industry in identifying the weaker areas and thus give a plausible solution to improve the total productivity of the firm along with effective utilization of resources and better customer satisfaction.Keywords: critical success factors, narrow fabrics, quality, small scale industries, total quality management (TQM)
Procedia PDF Downloads 253