Search results for: force variations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3695

Search results for: force variations

3035 The Effect of Isokinetic Fatigue of Ankle, Knee, and Hip Muscles on the Dynamic Postural Stability Index

Authors: Masoumeh Shojaei, Natalie Gedayloo, Amir Sarshin

Abstract:

The purpose of the present study was to investigate the effect of Isokinetic fatigue of muscles around the ankle, knee, and hip on the indicators of dynamic postural stability. Therefore, 15 female university students (age 19.7± 0.6 years old, weight 54.6± 9.4 kg, and height 163.9± 5.6 cm) participated in within-subjects design for 5 different days. In the first session, the postural stability indices (time to stabilization after jump-landing) without fatigue were assessed by force plate and in each next sessions, one of muscle groups of the lower limb including the muscles around ankles, knees, and hip was randomly exhausted by Biodex Isokinetic dynamometer and the indices were assessed immediately after the fatigue of each muscle group. The method involved landing on a force plate from a dynamic state, and transitioning balance into a static state. Results of ANOVA with repeated measures indicated that there was no significant difference between the time to stabilization (TTS) before and after Isokinetic fatigue of the muscles around the ankle, knee and hip in medial – lateral direction (p > 0.05), but in the anterior – posterior (AP) direction, the difference was statistically significant (p < 0.05). Least Significant Difference (LSD) post hoc test results also showed that there was significant difference between TTS in knee and hip muscles before and after isokinetic fatigue in AP direction. In the other hand knee and hip muscles group were affected by isokinetic fatigue only in AP surface (p < 0.05).

Keywords: dynamic balance, fatigue, lower limb muscles, postural control

Procedia PDF Downloads 237
3034 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication

Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti

Abstract:

In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.

Keywords: grinding, MQL, precision grinding, Taguchi optimization, titanium alloy

Procedia PDF Downloads 276
3033 Vertical and Lateral Vibration Response for Corrugated Track Curves Supported on High-Density Polyethylene and Hytrel Rail Pads

Authors: B.M. Balekwa, D.V.V. Kallon, D.J. Fourie

Abstract:

Modal analysis is applied to establish the dynamic difference between vibration response of the rails supported on High Density Polyethylene (HDPE) and Hytrel/6358 rail pads. The experiment was conducted to obtain the results in the form of Frequency Response Functions (FRFs) in the vertical and lateral directions. Three antiresonance modes are seen in the vertical direction; one occurs at about 150 Hz when the rail resting on the Hytrel/6358 pad experiences a force mid-span. For the rail resting on this type of rail pad, no antiresonance occurs when the force is applied on the point of the rail that is resting on the pad and directly on top of a sleeper. The two antiresonance modes occur in a frequency range of 250 – 300 Hz in the vertical direction for the rail resting on HDPE pads. At resonance, the rail vibrates with a higher amplitude, but at antiresonance, the rail transmits vibration downwards to the sleepers. When the rail is at antiresonance, the stiffness of the rail pads play a vital role in terms of damping the vertical vibration to protect the sleepers. From the FRFs it is understood that the Hytrel/6358 rail pads perform better than the HDPE in terms of vertical response, given that at a lower frequency range of 0 – 300 Hz only one antiresonance mode was identified for vertical vibration of the rail supported on Hytrel/6358. This means the rail is at antiresonance only once within this frequency range and this is the only time when vibration is transmitted downwards.

Keywords: accelerance, FRF, rail corrugation, rail pad

Procedia PDF Downloads 177
3032 On the Effects of the Frequency and Amplitude of Sinusoidal External Cross-Flow Excitation Forces on the Vortex-Induced-Vibrations of an Oscillating Cylinder

Authors: Abouzar Kaboudian, Ravi Chaithanya Mysa, Boo Cheong Khoo, Rajeev Kumar Jaiman

Abstract:

Vortex induced vibrations can significantly affect the effectiveness of structures in aerospace as well as offshore marine industries. The oscillatory nature of the forces resulting from the vortex shedding around bluff bodies can result in undesirable effects such as increased loading, stresses, deflections, vibrations and noise in the structures, and also reduced fatigue life of the structures. To date, most studies concentrate on either the free oscillations or the prescribed motion of the bluff bodies. However, the structures in operation are usually subject to the external oscillatory forces (e.g. due to the platform motions in offshore industries). Periodic forces can be considered as a combinations of sinusoids. In this work, we present the effects of sinusoidal external cross-flow forces on the vortex-induced vibrations of an oscillating cylinder. The effects of the amplitude, as well as the frequency of these sinusoidal external force on the fluid-forces on the oscillating cylinder are carefully studied and presented. Moreover, we present the transition of the response to be dominated by the vortex-induced-vibrations to the range where it is mostly dictated by the external oscillatory forces. Furthermore, we will discuss how the external forces can affect the flow structures around a cylinder. All results are compared against free oscillations of the cylinder.

Keywords: circular cylinder, external force, vortex-shedding, VIV

Procedia PDF Downloads 369
3031 Recent Advancement in Fetal Electrocardiogram Extraction

Authors: Savita, Anurag Sharma, Harsukhpreet Singh

Abstract:

Fetal Electrocardiogram (fECG) is a widely used technique to assess the fetal well-being and identify any changes that might be with problems during pregnancy and to evaluate the health and conditions of the fetus. Various techniques or methods have been employed to diagnose the fECG from abdominal signal. This paper describes the facile approach for the estimation of the fECG known as Adaptive Comb. Filter (ACF). The ACF can adjust according to the temporal variations in fundamental frequency by itself that used for the estimation of the quasi periodic signal of ECG signal.

Keywords: aECG, ACF, fECG, mECG

Procedia PDF Downloads 408
3030 A Multivariate Analysis of Patent Price Variations in the Emerging United States Patent Auction Market: Role of Patent, Seller, and Bundling Related Characteristics

Authors: Pratheeba Subramanian, Anjula Gurtoo, Mary Mathew

Abstract:

Transaction of patents in emerging patent markets is gaining momentum. Pricing patents for a transaction say patent sale remains a challenge. Patents vary in their pricing with some patents fetching higher prices than others. Sale of patents in portfolios further complicates pricing with multiple patents playing a role in pricing a bundle. In this paper, a set of 138 US patents sold individually as single invention lots and 462 US patents sold in bundles of 120 portfolios are investigated to understand the dynamics of selling prices of singletons and portfolios and their determinants. Firstly, price variations when patents are sold individually as singletons and portfolios are studied. Multivariate statistical techniques are used for analysis both at the lot level as well as at the individual patent level. The results show portfolios fetching higher prices than singletons at the lot level. However, at the individual patent level singletons show higher prices than per patent price of individual patent members within the portfolio. Secondly, to understand the price determinants, the effect of patent, seller, and bundling related characteristics on selling prices is studied separately for singletons and portfolios. The results show differences in the set of characteristics determining prices of singletons and portfolios. Selling prices of singletons are found to be dependent on the patent related characteristics, unlike portfolios whose prices are found to be dependent on all three aspects – patent, seller, and bundling. The specific patent, seller and bundling characteristics influencing selling price are discussed along with the implications.

Keywords: auction, patents, portfolio bundling, seller type, selling price, singleton

Procedia PDF Downloads 328
3029 Resistance Spot Welding of Boron Steel 22MnB5 with Complex Welding Programs

Authors: Szymon Kowieski, Zygmunt Mikno

Abstract:

The study involved the optimization of process parameters during resistance spot welding of Al-coated martensitic boron steel 22MnB5, applied in hot stamping, performed using a programme with a multiple current impulse mode and a programme with variable pressure force. The aim of this research work was to determine the possibilities of a growth in welded joint strength and to identify the expansion of a welding lobe. The process parameters were adjusted on the basis of welding process simulation and confronted with experimental data. 22MnB5 steel is known for its tendency to obtain high hardness values in weld nuggets, often leading to interfacial failures (observed in the study-related tests). In addition, during resistance spot welding, many production-related factors can affect process stability, e.g. welding lobe narrowing, and lead to the deterioration of quality. Resistance spot welding performed using the above-named welding programme featuring 3 levels of force made it possible to achieve 82% of welding lobe extension. Joints made using the multiple current impulse program, where the total welding time was below 1.4s, revealed a change in a peeling mode (to full plug) and an increase in weld tensile shear strength of 10%.

Keywords: 22MnB5, hot stamping, interfacial fracture, resistance spot welding, simulation, single lap joint, welding lobe

Procedia PDF Downloads 387
3028 High-Risk Gene Variant Profiling Models Ethnic Disparities in Diabetes Vulnerability

Authors: Jianhua Zhang, Weiping Chen, Guanjie Chen, Jason Flannick, Emma Fikse, Glenda Smerin, Yanqin Yang, Yulong Li, John A. Hanover, William F. Simonds

Abstract:

Ethnic disparities in many diseases are well recognized and reflect the consequences of genetic, behavior, and environmental factors. However, direct scientific evidence connecting the ethnic genetic variations and the disease disparities has been elusive, which may have led to the ethnic inequalities in large scale genetic studies. Through the genome-wide analysis of data representing 185,934 subjects, including 14,955 from our own studies of the African America Diabetes Mellitus, we discovered sets of genetic variants either unique to or conserved in all ethnicities. We further developed a quantitative gene function-based high-risk variant index (hrVI) of 20,428 genes to establish profiles that strongly correlate with the subjects' self-identified ethnicities. With respect to the ability to detect human essential and pathogenic genes, the hrVI analysis method is both comparable with and complementary to the well-known genetic analysis methods, pLI and VIRlof. Application of the ethnicity-specific hrVI analysis to the type 2 diabetes mellitus (T2DM) national repository, containing 20,791 cases and 24,440 controls, identified 114 candidate T2DM-associated genes, 8.8-fold greater than that of ethnicity-blind analysis. All the genes identified are defined as either pathogenic or likely-pathogenic in ClinVar database, with 33.3% diabetes-associated and 54.4% obesity-associated genes. These results demonstrate the utility of hrVI analysis and provide the first genetic evidence by clustering patterns of how genetic variations among ethnicities may impede the discovery of diabetes and foreseeably other disease-associated genes.

Keywords: diabetes-associated genes, ethnic health disparities, high-risk variant index, hrVI, T2DM

Procedia PDF Downloads 137
3027 A Comparison between Shear Bond Strength of VMK Master Porcelain with Three Base-Metal Alloys (Ni-Cr-T3, Verabond, Super Cast) and One Noble Alloy (X-33) in Metal-Ceramic Restorations

Authors: Ammar Neshati, Elham Hamidi Shishavan

Abstract:

Statement of Problem: The increase in the use of metal-ceramic restorations and a high prevalence of porcelain chipping entails introducing an alloy which is more compatible with porcelain and which causes a stronger bond between the two. This study is to compare shear bond strength of three base-metal alloys and one noble alloy with the common VMK Master Porcelain. Materials and Method: Three different groups of base-metal alloys (Ni-cr-T3, Super Cast, Verabond) and one group of noble alloy (x-33) were selected. The number of alloys in each group was 15. All the groups went through the casting process and change from wax pattern into metal disks. Then, VMK Master Porcelain was fired on each group. All the specimens were put in the UTM and a shear force was loaded until a fracture occurred. The fracture force was then recorded by the machine. The data was subjected to SPSS Version 16 and One-Way ANOVA was run to compare shear strength between the groups. Furthermore, the groups were compared two by two through running Tukey test. Results: The findings of this study revealed that shear bond strength of Ni-Cr-T3 alloy was higher than the three other alloys (94 Mpa or 330 N). Super Cast alloy had the second greatest shear bond strength (80. 87 Mpa or 283.87 N). Both Verabond (69.66 Mpa or 245 N) and x-33 alloys (66.53 Mpa or 234 N) took the third place. Conclusion: Ni-Cr-T3 with VMK Master Porcelain has the greatest shear bond strength. Therefore, the use of this low-cost alloy is recommended in metal-ceramic restorations.

Keywords: shear bond, base-metal alloy, noble alloy, porcelain

Procedia PDF Downloads 489
3026 Reduction Conditions of Briquetted Solid Wastes Generated by the Integrated Iron and Steel Plant

Authors: Gökhan Polat, Dicle Kocaoğlu Yılmazer, Muhlis Nezihi Sarıdede

Abstract:

Iron oxides are the main input to produce iron in integrated iron and steel plants. During production of iron from iron oxides, some wastes with high iron content occur. These main wastes can be classified as basic oxygen furnace (BOF) sludge, flue dust and rolling scale. Recycling of these wastes has a great importance for both environmental effects and reduction of production costs. In this study, recycling experiments were performed on basic oxygen furnace sludge, flue dust and rolling scale which contain 53.8%, 54.3% and 70.2% iron respectively. These wastes were mixed together with coke as reducer and these mixtures are pressed to obtain cylindrical briquettes. These briquettes were pressed under various compacting forces from 1 ton to 6 tons. Also, both stoichiometric and twice the stoichiometric cokes were added to investigate effect of coke amount on reduction properties of the waste mixtures. Then, these briquettes were reduced at 1000°C and 1100°C during 30, 60, 90, 120 and 150 min in a muffle furnace. According to the results of reduction experiments, the effect of compacting force, temperature and time on reduction ratio of the wastes were determined. It is found that 1 ton compacting force, 150 min reduction time and 1100°C are the optimum conditions to obtain reduction ratio higher than 75%.

Keywords: Coke, iron oxide wastes, recycling, reduction

Procedia PDF Downloads 340
3025 Spatio-Temporal Variability and Trends in Frost-Free Season Parameters in Finland: Influence of Climate Teleconnections

Authors: Masoud Irannezhad, Sirpa Rasmus, Saghar Ahmadian, Deliang Chen, Bjorn Klove

Abstract:

Variability and changes in thermal conditions play a crucial role in functioning of human society, particularly over cold climate regions like Finland. Accordingly, the frost-free season (FFS) parameters in terms of start (FFSS), end (FFSE) and length (FFSL) have substantial effects not only on natural environment (e.g. flora and fauna), but also on human requirements (e.g. agriculture, forestry and energy generation). Applying the 0°C threshold of minimum temperature (Tmin), the FFS was defined as the period between the last spring frost as FFSS and the first fall frost as FFSE. For this study, gridded (10 x 10 km2) daily minimum temperature datasets throughout Finland during 1961-2011 was used to investigate recent spatio-temporal variations and trends in frost-free season (FFS) parameters and their relationships with the well-known large-scale climate teleconnections (CTs). The FFS in Finland naturally increases from north (~60 days) to south (~190 days), in association with earlier FFSS (~24 April) and later FFSE (~30 October). Statistically significant (p<0.05) trends in FFSL were all positive (increasing) ranged between 0 and 13.5 (days/decade) and mainly observed in the east, upper west, centre and upper north of Finland. Such lengthening trends in FFS were attributable to both earlier FFSS and later FFSE mostly over central and upper northern Finland, while only to later FFSE in eastern and upper western parts. Variations in both FFSL and FFSS were significantly associated with the Polar (POL) pattern over northern Finland, while with the East Atlantic (EA) pattern over eastern and upper western areas. However, the POL and Scandinavia (SCA) patterns were most influential CTs for FFSE variability over northern Finland.

Keywords: climate teleconnections, Finland, frost-free season, trend analysis

Procedia PDF Downloads 203
3024 Energy Consumption Estimation for Hybrid Marine Power Systems: Comparing Modeling Methodologies

Authors: Kamyar Maleki Bagherabadi, Torstein Aarseth Bø, Truls Flatberg, Olve Mo

Abstract:

Hydrogen fuel cells and batteries are one of the promising solutions aligned with carbon emission reduction goals for the marine sector. However, the higher installation and operation costs of hydrogen-based systems compared to conventional diesel gensets raise questions about the appropriate hydrogen tank size, energy, and fuel consumption estimations. Ship designers need methodologies and tools to calculate energy and fuel consumption for different component sizes to facilitate decision-making regarding feasibility and performance for retrofits and design cases. The aim of this work is to compare three alternative modeling approaches for the estimation of energy and fuel consumption with various hydrogen tank sizes, battery capacities, and load-sharing strategies. A fishery vessel is selected as an example, using logged load demand data over a year of operations. The modeled power system consists of a PEM fuel cell, a diesel genset, and a battery. The methodologies used are: first, an energy-based model; second, considering load variations during the time domain with a rule-based Power Management System (PMS); and third, a load variations model and dynamic PMS strategy based on optimization with perfect foresight. The errors and potentials of the methods are discussed, and design sensitivity studies for this case are conducted. The results show that the energy-based method can estimate fuel and energy consumption with acceptable accuracy. However, models that consider time variation of the load provide more realistic estimations of energy and fuel consumption regarding hydrogen tank and battery size, still within low computational time.

Keywords: fuel cell, battery, hydrogen, hybrid power system, power management system

Procedia PDF Downloads 36
3023 Morphological Variation of the Mesenteric Lymph Node in Dromedary Camels: The Impact of Rearing Systems

Authors: Khenenou Tarek, Mohamed Amine Fares, Djallal Eddine Rahmoun

Abstract:

The study intends to evaluate the morphological changes in the mesenteric lymph nodes of dromedaries in different rearing systems. we aimed to evaluate the adaptative behavior of the animal’s immune system with environmental variations, and to conduct a comparative analysis on the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued, with two different rearing systems, with different practices and different purposes. The study was conducted using histo-morphometric techniques to analyze the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued. Two groups of dromedaries were used in the study, one group raised in a free-roaming housing system and another group raised in a restricted-roaming housing system. The results revealed that there were significant differences between the two groups in terms of active follicle ratio and size and also the cellular population of functional zones. Animals living and roaming outside the farm barriers were more exposed to pathogens, which leads to the installation of an adaptative process, whereas the animals living under restricted-roaming housing system were not exposed to pathogens. This study indicated that the adaptative behavior of the animal’s immune system with environmental variations is the functional translation of morphological changes. The obtained findings revealed that the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued are directly linked to the rearing system practices

Keywords: adaptative behavior, dromedary, lymph node, morphology, rearing systems

Procedia PDF Downloads 22
3022 Biomechanical Analysis on Skin and Jejunum of Chemically Prepared Cat Cadavers Used in Surgery Training

Authors: Raphael C. Zero, Thiago A. S. S. Rocha, Marita V. Cardozo, Caio C. C. Santos, Alisson D. S. Fechis, Antonio C. Shimano, FabríCio S. Oliveira

Abstract:

Biomechanical analysis is an important factor in tissue studies. The objective of this study was to determine the feasibility of a new anatomical technique and quantify the changes in skin and the jejunum resistance of cats’ corpses throughout the process. Eight adult cat cadavers were used. For every kilogram of weight, 120ml of fixative solution (95% 96GL ethyl alcohol and 5% pure glycerin) was applied via the external common carotid artery. Next, the carcasses were placed in a container with 96 GL ethyl alcohol for 60 days. After fixing, all carcasses were preserved in a 30% sodium chloride solution for 60 days. Before fixation, control samples were collected from fresh cadavers and after fixation, three skin and jejunum fragments from each cadaver were tested monthly for strength and displacement until complete rupture in a universal testing machine. All results were analyzed by F-test (P <0.05). In the jejunum, the force required to rupture the fresh samples and the samples fixed in alcohol for 60 days was 31.27±19.14N and 29.25±11.69N, respectively. For the samples preserved in the sodium chloride solution for 30 and 60 days, the strength was 26.17±16.18N and 30.57±13.77N, respectively. In relation to the displacement required for the rupture of the samples, the values of fresh specimens and those fixed in alcohol for 60 days was 2.79±0.73mm and 2.80±1.13mm, respectively. For the samples preserved for 30 and 60 days with sodium chloride solution, the displacement was 2.53±1.03mm and 2.83±1.27mm, respectively. There was no statistical difference between the samples (P=0.68 with respect to strength, and P=0.75 with respect to displacement). In the skin, the force needed to rupture the fresh samples and the samples fixed for 60 days in alcohol was 223.86±131.5N and 211.86±137.53N respectively. For the samples preserved in sodium chloride solution for 30 and 60 days, the force was 227.73±129.06 and 224.78±143.83N, respectively. In relation to the displacement required for the rupture of the samples, the values of fresh specimens and those fixed in alcohol for 60 days were 3.67±1.03mm and 4.11±0.87mm, respectively. For the samples preserved for 30 and 60 days with sodium chloride solution, the displacement was 4.21±0.93mm and 3.93±0.71mm, respectively. There was no statistical difference between the samples (P=0.65 with respect to strength, and P=0.98 with respect to displacement). The resistance of the skin and intestines of the cat carcasses suffered little change when subjected to alcohol fixation and preservation in sodium chloride solution, each for 60 days, which is promising for use in surgery training. All experimental procedures were approved by the Municipal Legal Department (protocol 02.2014.000027-1). The project was funded by FAPESP (protocol 2015-08259-9).

Keywords: anatomy, conservation, fixation, small animal

Procedia PDF Downloads 296
3021 Aerodynamic Design Optimization of High-Speed Hatchback Cars for Lucrative Commercial Applications

Authors: A. Aravind, M. Vetrivel, P. Abhimanyu, C. A. Akaash Emmanuel Raj, K. Sundararaj, V. R. S. Kumar

Abstract:

The choice of high-speed, low budget hatchback car with diversified options is increasing for meeting the new generation buyers trend. This paper is aimed to augment the current speed of the hatchback cars through the aerodynamic drag reduction technique. The inverted airfoils are facilitated at the bottom of the car for generating the downward force for negating the lift while increasing the current speed range for achieving a better road performance. The numerical simulations have been carried out using a 2D steady pressure-based    k-ɛ realizable model with enhanced wall treatment. In our numerical studies, Reynolds-averaged Navier-Stokes model and its code of solution are used. The code is calibrated and validated using the exact solution of the 2D boundary layer displacement thickness at the Sanal flow choking condition for adiabatic flows. We observed through the parametric analytical studies that the inverted airfoil integrated with the bottom surface at various predesigned locations of Hatchback cars can improve its overall aerodynamic efficiency through drag reduction, which obviously decreases the fuel consumption significantly and ensure an optimum road performance lucratively with maximum permissible speed within the framework of the manufactures constraints.

Keywords: aerodynamics of commercial cars, downward force, hatchback car, inverted airfoil

Procedia PDF Downloads 275
3020 Investigation of the Jupiter’s Galilean Moons

Authors: Revaz Chigladze

Abstract:

The purpose of the research is to investigate the surfaces of Jupiter's Galilean moons, namely which moon has the most uniform surface among them, what is the difference between the front (in the direction of motion) and the back sides of each moon's surface, as well as the temporal variations of the moons. Since 1981, the E. Kharadze National Astrophysical Observatory of Georgia has been conducting polarimetric (P) and photometric (M) observations of Jupiter's Galilean moons with telescopes of different diameters (40 cm and 125 cm) and the polarimeter ASEP-78 in combination with them and the latest generation photometer with a polarimeter and modern light receiver SBIG. As it turns out from the analysis of the observed material, the parameters P and M depend on α-the phase angle of the moon (satellite), L- the orbital latitude of the moon (satellite), λ- the wavelength, and t - the period of observation, i.e., P = P (α, L, λ , t), and similarly M = M (α, L, λ. , t). Based on the analysis of the observed material, the following was studied: Jupiter's Galilean moons: dependence of the magnitude and phase angle of the degree of linear polarization for different wavelengths; Dependence of the degree of polarization and the orbital longitude; dependence between the magnitude of the degree of polarization and the wavelength; time dependence of the degree of polarization and the dependence between photometric and polarimetric characteristics (including establishing correlation). From the analysis of the obtained results, we get: The magnitude of the degree of polarization of Jupiter's Galilean moons near the opposition significantly differs from zero. Europa appears to have the most uniform surface, and Callisto the least uniform. Time variations are most characteristic of Io, which confirms the presence of volcanic activity on its surface. Based on the observed material, it can be seen that the intensity of light reflected from the front hemisphere of the first three moons: Io, Europa, and Ganymede, is less than the intensity of light reflected from the rear hemisphere, and in the case of the Callisto it is the opposite. The paper provides a convincing (natural, real) explanation of this fact.

Keywords: Galilean moons, polarization, degree of polarization, photometry, front and rear hemispheres

Procedia PDF Downloads 101
3019 Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other

Authors: M. Azadi, M. Kalhor

Abstract:

Excavation of shallow tunnels such as subways in urban areas plays a significant role as a life line and investigation of the soil behavior against tunnel construction is one of the vital subjects studied in the geotechnical scope. Nowadays, urban tunnels are mostly drilled by T.B.Ms and changing the applied forces to tunnel lining is one of the most risky matters while drilling tunnels by these machines. Variation of soil cementation can change the behavior of these forces in the tunnel lining. Therefore, this article is designed to assess the impact of tunnel excavation in different soils and several amounts of cementation on applied loads to tunnel lining under static and dynamic loads. According to the obtained results, changing the cementation of soil will affect the applied loadings to the tunnel envelope significantly. It can be determined that axial force in tunnel lining decreases considerably when soil cementation increases. Also, bending moment and shear force in tunnel lining decreases as the soil cementation increases and causes bending and shear behavior of the segments to improve. Based on the dynamic analyses, as cohesion factor in soil increases, bending moment, axial and shear forces of segments decrease but lining behavior of the tunnel is the same as static state. The results show that decreasing the overburden applied to lining caused by cementation is different in two static and dynamic states.

Keywords: seismic behavior, twin tunnels, tunnel positions, TBM, optimum distance

Procedia PDF Downloads 296
3018 Discussion as a Means to Improve Peer Assessment Accuracy

Authors: Jung Ae Park, Jooyong Park

Abstract:

Writing is an important learning activity that cultivates higher level thinking. Effective and immediate feedback is necessary to help improve students' writing skills. Peer assessment can be an effective method in writing tasks because it makes it possible for students not only to receive quick feedback on their writing but also to get a chance to examine different perspectives on the same topic. Peer assessment can be practiced frequently and has the advantage of immediate feedback. However, there is controversy about the accuracy of peer assessment. In this study, we tried to demonstrate experimentally how the accuracy of peer assessment could be improved. Participants (n=76) were randomly assigned to groups of 4 members. All the participant graded two sets of 4 essays on the same topic. They graded the first set twice, and the second set or the posttest once. After the first grading of the first set, each group in the experimental condition 1 (discussion group), were asked to discuss the results of the peer assessment and then to grade the essays again. Each group in the experimental condition 2 (reading group), were asked to read the assessment on each essay by an expert and then to grade the essays again. In the control group, the participants were asked to grade the 4 essays twice in different orders. Afterwards, all the participants graded the second set of 4 essays. The mean score from 4 participants was calculated for each essay. The accuracy of the peer assessment was measured by Pearson correlation with the scores of the expert. The results were analyzed by two-way repeated measure ANOVA. The main effect of grading was observed: Grading accuracy got better as the number of grading experience increased. Analysis of posttest accuracy revealed that the score variations within a group of 4 participants decreased in both discussion and reading conditions but not in the control condition. These results suggest that having students discuss their grading together can be an efficient means to improve peer assessment accuracy. By discussing, students can learn from others about what to consider in grading and whether their grading is too strict or lenient. Further research is needed to examine the exact cause of the grading accuracy.

Keywords: peer assessment, evaluation accuracy, discussion, score variations

Procedia PDF Downloads 267
3017 Sensitivity Analysis of Prestressed Post-Tensioned I-Girder and Deck System

Authors: Tahsin A. H. Nishat, Raquib Ahsan

Abstract:

Sensitivity analysis of design parameters of the optimization procedure can become a significant factor while designing any structural system. The objectives of the study are to analyze the sensitivity of deck slab thickness parameter obtained from both the conventional and optimum design methodology of pre-stressed post-tensioned I-girder and deck system and to compare the relative significance of slab thickness. For analysis on conventional method, the values of 14 design parameters obtained by the conventional iterative method of design of a real-life I-girder bridge project have been considered. On the other side for analysis on optimization method, cost optimization of this system has been done using global optimization methodology 'Evolutionary Operation (EVOP)'. The problem, by which optimum values of 14 design parameters have been obtained, contains 14 explicit constraints and 46 implicit constraints. For both types of design parameters, sensitivity analysis has been conducted on deck slab thickness parameter which can become too sensitive for the obtained optimum solution. Deviations of slab thickness on both the upper and lower side of its optimum value have been considered reflecting its realistic possible ranges of variations during construction. In this procedure, the remaining parameters have been kept unchanged. For small deviations from the optimum value, compliance with the explicit and implicit constraints has been examined. Variations in the cost have also been estimated. It is obtained that without violating any constraint deck slab thickness obtained by the conventional method can be increased up to 25 mm whereas slab thickness obtained by cost optimization can be increased only up to 0.3 mm. The obtained result suggests that slab thickness becomes less sensitive in case of conventional method of design. Therefore, for realistic design purpose sensitivity should be conducted for any of the design procedure of girder and deck system.

Keywords: sensitivity analysis, optimum design, evolutionary operations, PC I-girder, deck system

Procedia PDF Downloads 137
3016 An Evolutionary Perspective on the Role of Extrinsic Noise in Filtering Transcript Variability in Small RNA Regulation in Bacteria

Authors: Rinat Arbel-Goren, Joel Stavans

Abstract:

Cell-to-cell variations in transcript or protein abundance, called noise, may give rise to phenotypic variability between isogenic cells, enhancing the probability of survival under stress conditions. These variations may be introduced by post-transcriptional regulatory processes such as non-coding, small RNAs stoichiometric degradation of target transcripts in bacteria. We study the iron homeostasis network in Escherichia coli, in which the RyhB small RNA regulates the expression of various targets as a model system. Using fluorescence reporter genes to detect protein levels and single-molecule fluorescence in situ hybridization to monitor transcripts levels in individual cells, allows us to compare noise at both transcript and protein levels. The experimental results and computer simulations show that extrinsic noise buffers through a feed-forward loop configuration the increase in variability introduced at the transcript level by iron deprivation, illuminating the important role that extrinsic noise plays during stress. Surprisingly, extrinsic noise also decouples of fluctuations of two different targets, in spite of RyhB being a common upstream factor degrading both. Thus, phenotypic variability increases under stress conditions by the decoupling of target fluctuations in the same cell rather than by increasing the noise of each. We also present preliminary results on the adaptation of cells to prolonged iron deprivation in order to shed light on the evolutionary role of post-transcriptional downregulation by small RNAs.

Keywords: cell-to-cell variability, Escherichia coli, noise, single-molecule fluorescence in situ hybridization (smFISH), transcript

Procedia PDF Downloads 164
3015 Exploring the Difficulties of Acceleration Concept from the Perspective of Historical Textual Analysis

Authors: Yun-Ju Chiu, Feng-Yi Chen

Abstract:

Kinematics is the beginning to learn mechanics in physics course. The concept of acceleration plays an important role in learning kinematics. Teachers usually instruct the conception through the formulas and graphs of kinematics and the well-known law F = ma. However, over the past few decades, a lot of researchers reveal numerous students’ difficulties in learning acceleration. One of these difficulties is that students frequently confuse acceleration with velocity and force. Why is the concept of acceleration so difficult to learn? The aim of this study is to understand the conceptual evolution of acceleration through the historical textual analysis. Text analysis and one-to-one interviews with high school students and teachers are used in this study. This study finds the history of science constructed from textbooks is usually quite different from the real evolution of history. For example, most teachers and students believe that the best-known law F = ma was written down by Newton. The expression of the second law is not F = ma in Newton’s best-known book Principia in 1687. Even after more than one hundred years, a famous Cambridge textbook titled An Elementary Treatise on Mechanics by Whewell of Trinity College did not express this law as F = ma. At that time of Whewell, the early mid-nineteenth century Britain, the concept of acceleration was not only ambiguous but also confused with the concept of force. The process of learning the concept of acceleration is analogous to its conceptual development in history. The study from the perspective of historical textual analysis will promote the understanding of the concept learning difficulties, the development of professional physics teaching, and the improvement of the context of physics textbooks.

Keywords: acceleration, textbooks, mechanics, misconception, history of science

Procedia PDF Downloads 252
3014 3D Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

This paper is part of a study to develop robots for farming. As such power requirement to operate equipment attach to such robots become an important factor. Soil-tool interaction play major role in power consumption, thus predicting accurately the forces which act on the blade during the farming is prime importance for optimal designing of farm equipment. In this paper a finite element investigation for tillage tools and soil interaction is described by using an inelastic constitutive material law for agriculture application. A 3-dimentional (3D) nonlinear finite element analysis (FEA) is developed to examine behavior of a blade with different rake angles moving in a block of soil, and to estimate the blade force. The soil model considered is an elastic-plastic with non-associated Drucker-Prager material model. Special use of contact elements are employed to consider connection between soil-blade and soil-soil surfaces. The FEA results are compared with experiment ones, which show good agreement in accurately predicting draft forces developed on the blade when it moves through the soil. Also, a very good correlation was obtained between FEA results and analytical results from classical soil mechanics theories for straight blades. These comparisons verified the FEA model developed. For analyzing complicated soil-tool interactions and for optimum design of blades, this method will be useful.

Keywords: finite element analysis, soil-blade contact modeling, blade force, mechanical engineering

Procedia PDF Downloads 296
3013 Performance Analysis of Air Conditioning System Working on the Vapour Compression Refrigeration Cycle under Magnetohydrodynamic Influence

Authors: Nikhil S. Mane, Mukund L. Harugade, Narayan V. Hargude, Vishal P. Patil

Abstract:

The fluids exposed to magnetic field can enhance the convective heat transfer by inducing secondary convection currents due to Lorentz force. The use of magnetohydrodynamic (MHD) forces in power generation and mass transfer is increasing steadily but its application to enhance the convective currents in fluids needed to be explored. The enhancement in convective heat transfer using MHD forces can be employed in heat exchangers, cooling of molten metal, vapour compression refrigeration (VCR) systems etc. The effective increase in the convective heat transfer without any additional energy consumption will lead to the energy efficient heat exchanging devices. In this work, the effect of MHD forces on the performance of air conditioning system working on the VCR system is studied. The refrigerant in VCR system is exposed to the magnetic field which influenced the flow of refrigerant. The different intensities of magnets are used on the different liquid refrigerants and investigation on performance of split air conditioning system is done under different loading conditions. The results of this research work show that the application of magnet on refrigerant flow has positive influence on the coefficient of performance (COP) of split air conditioning system. It is also observed that with increasing intensity of magnetic force the COP of split air conditioning system also increases.

Keywords: magnetohydrodynamics, heat transfer enhancement, VCRS, air conditioning, refrigeration

Procedia PDF Downloads 212
3012 Numerical Simulation of Unsteady Cases of Fluid Flow Using Modified Dynamic Boundary Condition (mDBC) in Smoothed Particle Hydrodynamics Models

Authors: Exa Heydemans, Jessica Sjah, Dwinanti Rika Marthanty

Abstract:

This paper presents numerical simulations using an open boundary algorithm with modified dynamic boundary condition (mDBC) for weakly compressible smoothed particle hydrodynamics models from particle-based code Dualsphysics. The problems of piping erosion in dams and dikes are aimed for studying the algorithm. The case 2D model of unsteady fluid flow past around a fixed cylinder is simulated, where various values of Reynold’s numbers (Re40, Re60, Re80, and Re100) and different model’s resolution are considered. A constant velocity with different values of viscosity for generating various Reynold’s numbers and different numbers of particles over a cylinder for the resolution are modeled. The interaction between solid particles of the cylinder and fluid particles is concerned. The cylinder is affected by the hydrodynamics force caused by the flow of fluid particles. The solid particles of the cylinder are the observation points to obtain force and pressure due to the hydrodynamics forces. As results of the simulation, which is to show the capability to model 2D unsteady with various Reynold’s numbers, the pressure coefficient, drag coefficient, lift coefficient, and Strouhal number are compared to the previous work from literature.

Keywords: hydrodynamics, internal erosion, dualsphysics, viscous fluid flow

Procedia PDF Downloads 165
3011 Kinematics and Dynamics Analysis of Crank-Piston System of a High-Power, Nine-Cylinder Aircraft Engine

Authors: Michal Biały, Konrad Pietrykowski, Rafal Sochaczewski

Abstract:

The kinematics and dynamics analysis of crank-piston system of aircraft engine. The object of the study was the high power aircraft engine ASz 62-IR. This engine is produced by a Polish company WSK "PZL-KALISZ" S.A.". All analyzes were performed numerically using CAD and CAE environment. Three-dimensional model of the crank-piston system was developed based on real engine located in the Laboratory of Centre of Innovation and Advanced Technologies of Lublin University of Technology. During the development of the model, the technique of reverse engineering - 3D scanning was used. ASz 62-IR engine is characterized by a radial type of crank-piston system. In this system the cylinders are arranged radially around the circle. This crank-piston system consists of a main connecting rod and eight additional connecting rods. In addition, three-dimensional model consists of a piston pins, pistons and piston rings. As a result of the specific engine design, characteristics of the piston individual movement are slightly different from each other. But the model assumes that they are the same during the analysis. Three-dimensional model of the engine was implemented into the MSC Adams software. The environment of MSC Adams allows for multibody simulation of the dynamic phenomena. This determines the state parameters of the moving elements, among which the load or force distribution on each kinematic node can be distinguished. Materials and characteristic materials parameters were adopted on the basis of commonly used materials for engine parts. The mass values of individual elements were adopted on the basis of real engine parts. The piston gas forces were replaced by calculation of pressure variations recorded during engine tests on the engine test bench. The research the changes of forces acting in the individual kinematic pairs of crank-piston system. The model allows to determine the load on the crankshaft main bearings. This gives the possibility for the main supports forces analysis The model allows for testing and simulation of kinematics and dynamics of a radial aircraft engine. This is the first stage of the work, which aims to numerical simulation of vibration of multi-cylinder aircraft engine. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: aircraft engine, CAD, CAE, dynamics, kinematics, MSC Adams, numerical simulation

Procedia PDF Downloads 388
3010 Association of ApoB, CETP and GALNT2 Genetic Variants with Type 2 Diabetes-Related Traits in Population from Bosnia and Herzegovina

Authors: Anida Causevic-Ramosevac, Sabina Semiz

Abstract:

The aim of this study was to investigate the association of four single nucleotide polymorphisms (SNPs) - rs673548, rs693 in ApoB gene, rs1800775 in CETP gene and rs4846914 in GALNT2 gene with parameters of type 2 diabetes (T2D) and diabetic dyslipidemia in the population of Bosnia and Herzegovina (BH). Materials and methods: Our study involved 352 patients with T2D and 156 healthy subjects. Biochemical and anthropometric parameters were measured in all participants. DNA was extracted from the peripheral blood for the purpose of genetic testing. Polymorphisms in ApoB (rs673548, rs693), CETP (rs1800775) and GALNT2 (rs4846914) genes were analyzed by using Sequenom IPLEX platform. Results: Our results demonstrated significant associations for rs180075 polymorphism in CETP gene with levels of fasting insulin (p = 0.020; p = 0.027; p = 0.044), triglycerides (p = 0.046) and ALT (p = 0.031) activity in control group. In group of diabetic patients, results showed a significant association of rs673548 in ApoB gene with levels of fasting insulin (p = 0.008), HOMA-IR (p = 0.013), VLDL-C (p = 0.037) and CRP (p = 0.029) and rs693 in ApoB gene with BMI (p = 0.025), systolic blood pressure (p = 0.027), fasting insulin (p = 0.037) and HOMA-IR (p = 0.023) levels. Significant associations were also observed for rs1800775 in CETP gene with triglyceride (p = 0.023) levels and rs4846914 in GALNT2 gene with HbA1C (p = 0.013) and triglyceride (p = 0.043) levels. Conclusion: In conclusion, this is the first study that examined the impact of variations of candidate genes on a wide range of metabolic parameters in BH population. Our results suggest an association of variations of ApoB, CETP and GALNT2 genes with specific markers of T2D and dyslipidemia. Further studies would be needed in order to confirm these genetic effects in other ethnic groups as well.

Keywords: ApoB, CETP, dyslipidemia, GALNT2, type 2 diabetes

Procedia PDF Downloads 249
3009 Morphological and Molecular Analysis of Selected Fast-Growing Blue Swimming Crab (Portunus pelagicus) in South of Sulawesi

Authors: Yushinta Fujaya, Andi Ivo Asphama, Andi Parenrengi, Andi Tenriulo

Abstract:

Blue Swimming crab (Portunus pelagicus) is an important commercial species throughout the subtropical waters and as such constitutes part of the fisheries resources. Data are lacking on the morphological variations of selected fast-growing crabs reared in a pond. This study aimed to analyze the morphological and molecular character of a selected fast-growing crab reared in ponds in South of Sulawesi. The crab seeds were obtained from local fish-trap and hatchery. A study on the growth was carried out in the population of crabs. The dimensions analyzed were carapace width (CW) measured after 3 months of grow out. Morphological character states were examined based on the pattern of spots on the carapace. Molecular analysis was performed using RAPD (Random Amplified Polymorphic DNA). Genetic distance was analysed using TFPGA (Tools for Population Genetic Analyses) version 1.3. The results showed that there were variations in the growth of crabs. These crabs clustered morphologically into three quite distinct groups. The crab with white spots irregularly spread over its carapace was the largest size while the crab with large white spots scattered over the carapace was the smaller size (3%). The crab with small white spots scattered over the carapace was the smallest size found in this study. Molecular analysis showed that there are morphologically and genetically different between groups of crabs. Genetic distances among crabs ranged from 0.1527 to 0.5856. Thus, this study provides information the use of white spots pattern over carapace as indicators to identify the type of blue swimming crabs.

Keywords: crab, portunus pelagicus, morphology, RAPD, Carapace

Procedia PDF Downloads 538
3008 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior

Procedia PDF Downloads 329
3007 Comparison of Iodine Density Quantification through Three Material Decomposition between Philips iQon Dual Layer Spectral CT Scanner and Siemens Somatom Force Dual Source Dual Energy CT Scanner: An in vitro Study

Authors: Jitendra Pratap, Jonathan Sivyer

Abstract:

Introduction: Dual energy/Spectral CT scanning permits simultaneous acquisition of two x-ray spectra datasets and can complement radiological diagnosis by allowing tissue characterisation (e.g., uric acid vs. non-uric acid renal stones), enhancing structures (e.g. boost iodine signal to improve contrast resolution), and quantifying substances (e.g. iodine density). However, the latter showed inconsistent results between the 2 main modes of dual energy scanning (i.e. dual source vs. dual layer). Therefore, the present study aimed to determine which technology is more accurate in quantifying iodine density. Methods: Twenty vials with known concentrations of iodine solutions were made using Optiray 350 contrast media diluted in sterile water. The concentration of iodine utilised ranged from 0.1 mg/ml to 1.0mg/ml in 0.1mg/ml increments, 1.5 mg/ml to 4.5 mg/ml in 0.5mg/ml increments followed by further concentrations at 5.0 mg/ml, 7mg/ml, 10 mg/ml and 15mg/ml. The vials were scanned using Dual Energy scan mode on a Siemens Somatom Force at 80kV/Sn150kV and 100kV/Sn150kV kilovoltage pairing. The same vials were scanned using Spectral scan mode on a Philips iQon at 120kVp and 140kVp. The images were reconstructed at 5mm thickness and 5mm increment using Br40 kernel on the Siemens Force and B Filter on Philips iQon. Post-processing of the Dual Energy data was performed on vendor-specific Siemens Syngo VIA (VB40) and Philips Intellispace Portal (Ver. 12) for the Spectral data. For each vial and scan mode, the iodine concentration was measured by placing an ROI in the coronal plane. Intraclass correlation analysis was performed on both datasets. Results: The iodine concentrations were reproduced with a high degree of accuracy for Dual Layer CT scanner. Although the Dual Source images showed a greater degree of deviation in measured iodine density for all vials, the dataset acquired at 80kV/Sn150kV had a higher accuracy. Conclusion: Spectral CT scanning by the dual layer technique has higher accuracy for quantitative measurements of iodine density compared to the dual source technique.

Keywords: CT, iodine density, spectral, dual-energy

Procedia PDF Downloads 119
3006 Design and Biomechanical Analysis of a Transtibial Prosthesis for Cyclists of the Colombian Team Paralympic

Authors: Jhonnatan Eduardo Zamudio Palacios, Oscar Leonardo Mosquera Dussan, Daniel Guzman Perez, Daniel Alfonso Botero Rosas, Oscar Fabian Rubiano Espinosa, Jose Antonio Garcia Torres, Ivan Dario Chavarro, Ivan Ramiro Rodriguez Camacho, Jaime Orlando Rodriguez

Abstract:

The training of cilsitas with some type of disability finds in the technological development an indispensable ally, generating every day advances to contribute to the quality of life allowing to maximize the capacities of the athletes. The performance of a cyclist depends on physiological and biomechanical factors, such as aerodynamic profile, bicycle measurements, connecting rod length, pedaling systems, type of competition, among others. This study particularly focuses on the description of the dynamic model of a transtibial prosthesis for Paralympic cyclists. To make the model, two points are chosen: in the radius centers of rotation of the plate and pinion of the track bicycle. The parametric scheme of the track bike represents a model of 6 degrees of freedom due to the displacement in X - Y of each of the reference points of the angles of the curve profile β, cant of the velodrome α and the angle of rotation of the connecting rod φ. The force exerted on the crank of the bicycle varies according to the angles of the curve profile β, the velodrome cant of α and the angle of rotation of the crank φ. The behavior is analyzed through the Matlab R2015a software. The average strength that a cyclist exerts on the cranks of a bicycle is 1,607.1 N, the Paralympic cyclist must perform a force on each crank about 803.6 N. Once the maximum force associated with the movement has been determined, it is continued to the dynamic modeling of the transtibial prosthesis that represents a model of 6 degrees of freedom with displacement in X - Y in relation to the angles of rotation of the hip π, knee γ and ankle λ. Subsequently, an analysis of the kinematic behavior of the prosthesis was carried out by means of SolidWorks 2017 and Matlab R2015a, which was used to model and analyze the variation of the hip angles π, knee γ and ankle of the λ prosthesis. The reaction forces generated in the prosthesis were performed on the ankle of the prosthesis, performing the summation of forces on the X and Y axes. The same analysis was then applied to the tibia of the prosthesis and the socket. The reaction force of the parts of the prosthesis varies according to the hip angles π, knee γ and ankle of the prosthesis λ. Therefore, it can be deduced that the maximum forces experienced by the ankle of the prosthesis is 933.6 N on the X axis and 2.160.5 N on the Y axis. Finally, it is calculated that the maximum forces experienced by the tibia and the socket of the transtibial prosthesis in high performance competitions is 3.266 N on the X axis and 1.357 N on the Y axis. In conclusion, it can be said that the performance of the cyclist depends on several physiological factors, linked to biomechanics of training. The influence of biomechanical factors such as aerodynamics, bicycle measurements, connecting rod length, or non-circular pedaling systems on the cyclist performance.

Keywords: biomechanics, dynamic model, paralympic cyclist, transtibial prosthesis

Procedia PDF Downloads 341