Search results for: fast generalized multi-directional Radon transform
3424 Advanced Statistical Approaches for Identifying Predictors of Poor Blood Pressure Control: A Comprehensive Analysis Using Multivariable Logistic Regression and Generalized Estimating Equations (GEE)
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Effective management of hypertension remains a critical public health challenge, particularly among racially and ethnically diverse populations. This study employs sophisticated statistical models to rigorously investigate the predictors of poor blood pressure (BP) control, with a specific focus on demographic, socioeconomic, and clinical risk factors. Leveraging a large sample of 19,253 adults drawn from the National Health and Nutrition Examination Survey (NHANES) across three distinct time periods (2013-2014, 2015-2016, and 2017-2020), we applied multivariable logistic regression and generalized estimating equations (GEE) to account for the clustered structure of the data and potential within-subject correlations. Our multivariable models identified significant associations between poor BP control and several key predictors, including race/ethnicity, age, gender, body mass index (BMI), prevalent diabetes, and chronic kidney disease (CKD). Non-Hispanic Black individuals consistently exhibited higher odds of poor BP control across all periods (OR = 1.99; 95% CI: 1.69, 2.36 for the overall sample; OR = 2.33; 95% CI: 1.79, 3.02 for 2017-2020). Younger age groups demonstrated substantially lower odds of poor BP control compared to individuals aged 75 and older (OR = 0.15; 95% CI: 0.11, 0.20 for ages 18-44). Men also had a higher likelihood of poor BP control relative to women (OR = 1.55; 95% CI: 1.31, 1.82), while BMI ≥35 kg/m² (OR = 1.76; 95% CI: 1.40, 2.20) and the presence of diabetes (OR = 2.20; 95% CI: 1.80, 2.68) were associated with increased odds of poor BP management. Further analysis using GEE models, accounting for temporal correlations and repeated measures, confirmed the robustness of these findings. Notably, individuals with chronic kidney disease displayed markedly elevated odds of poor BP control (OR = 3.72; 95% CI: 3.09, 4.48), with significant differences across the survey periods. Additionally, higher education levels and better self-reported diet quality were associated with improved BP control. College graduates exhibited a reduced likelihood of poor BP control (OR = 0.64; 95% CI: 0.46, 0.89), particularly in the 2015-2016 period (OR = 0.48; 95% CI: 0.28, 0.84). Similarly, excellent dietary habits were associated with significantly lower odds of poor BP control (OR = 0.64; 95% CI: 0.44, 0.94), underscoring the importance of lifestyle factors in hypertension management. In conclusion, our findings provide compelling evidence of the complex interplay between demographic, clinical, and socioeconomic factors in predicting poor BP control. The application of advanced statistical techniques such as GEE enhances the reliability of these results by addressing the correlated nature of repeated observations. This study highlights the need for targeted interventions that consider racial/ethnic disparities, clinical comorbidities, and lifestyle modifications in improving BP control outcomes.Keywords: hypertension, blood pressure, NHANES, generalized estimating equations
Procedia PDF Downloads 113423 Field-Programmable Gate Arrays Based High-Efficiency Oriented Fast and Rotated Binary Robust Independent Elementary Feature Extraction Method Using Feature Zone Strategy
Authors: Huang Bai-Cheng
Abstract:
When deploying the Oriented Fast and Rotated Binary Robust Independent Elementary Feature (BRIEF) (ORB) extraction algorithm on field-programmable gate arrays (FPGA), the access of global storage for 31×31 pixel patches of the features has become the bottleneck of the system efficiency. Therefore, a feature zone strategy has been proposed. Zones are searched as features are detected. Pixels around the feature zones are extracted from global memory and distributed into patches corresponding to feature coordinates. The proposed FPGA structure is targeted on a Xilinx FPGA development board of Zynq UltraScale+ series, and multiple datasets are tested. Compared with the streaming pixel patch extraction method, the proposed architecture obtains at least two times acceleration consuming extra 3.82% Flip-Flops (FFs) and 7.78% Look-Up Tables (LUTs). Compared with the non-streaming one, the proposed architecture saves 22.3% LUT and 1.82% FF, causing a latency of only 0.2ms and a drop in frame rate for 1. Compared with the related works, the proposed strategy and hardware architecture have the superiority of keeping a balance between FPGA resources and performance.Keywords: feature extraction, real-time, ORB, FPGA implementation
Procedia PDF Downloads 1223422 A Variational Reformulation for the Thermomechanically Coupled Behavior of Shape Memory Alloys
Authors: Elisa Boatti, Ulisse Stefanelli, Alessandro Reali, Ferdinando Auricchio
Abstract:
Thanks to their unusual properties, shape memory alloys (SMAs) are good candidates for advanced applications in a wide range of engineering fields, such as automotive, robotics, civil, biomedical, aerospace. In the last decades, the ever-growing interest for such materials has boosted several research studies aimed at modeling their complex nonlinear behavior in an effective and robust way. Since the constitutive response of SMAs is strongly thermomechanically coupled, the investigation of the non-isothermal evolution of the material must be taken into consideration. The present study considers an existing three-dimensional phenomenological model for SMAs, able to reproduce the main SMA properties while maintaining a simple user-friendly structure, and proposes a variational reformulation of the full non-isothermal version of the model. While the considered model has been thoroughly assessed in an isothermal setting, the proposed formulation allows to take into account the full nonisothermal problem. In particular, the reformulation is inspired to the GENERIC (General Equations for Non-Equilibrium Reversible-Irreversible Coupling) formalism, and is based on a generalized gradient flow of the total entropy, related to thermal and mechanical variables. Such phrasing of the model is new and allows for a discussion of the model from both a theoretical and a numerical point of view. Moreover, it directly implies the dissipativity of the flow. A semi-implicit time-discrete scheme is also presented for the fully coupled thermomechanical system, and is proven unconditionally stable and convergent. The correspondent algorithm is then implemented, under a space-homogeneous temperature field assumption, and tested under different conditions. The core of the algorithm is composed of a mechanical subproblem and a thermal subproblem. The iterative scheme is solved by a generalized Newton method. Numerous uniaxial and biaxial tests are reported to assess the performance of the model and algorithm, including variable imposed strain, strain rate, heat exchange properties, and external temperature. In particular, the heat exchange with the environment is the only source of rate-dependency in the model. The reported curves clearly display the interdependence between phase transformation strain and material temperature. The full thermomechanical coupling allows to reproduce the exothermic and endothermic effects during respectively forward and backward phase transformation. The numerical tests have thus demonstrated that the model can appropriately reproduce the coupled SMA behavior in different loading conditions and rates. Moreover, the algorithm has proved effective and robust. Further developments are being considered, such as the extension of the formulation to the finite-strain setting and the study of the boundary value problem.Keywords: generalized gradient flow, GENERIC formalism, shape memory alloys, thermomechanical coupling
Procedia PDF Downloads 2213421 Optimization the Multiplicity of Infection for Large Produce of Lytic Bacteriophage pAh6-C
Authors: Sang Guen Kim, Sib Sankar Giri, Jin Woo Jun, Saekil Yun, Hyoun Joong Kim, Sang Wha Kim, Jung Woo Kang, Se Jin Han, Se Chang Park
Abstract:
Emerging of the super bacteria, bacteriophages are considered to be as an alternative to antibiotics. As the demand of phage increased, economical and large production of phage is becoming one of the critical points. For the therapeutic use, what is important is to eradicate the pathogenic bacteria as fast as possible, so higher concentration of phages is generally needed for effective therapeutic function. On the contrary, for the maximum production, bacteria work as a phage producing factory. As a microbial cell factory, bacteria is needed to last longer producing the phages without eradication. Consequently, killing the bacteria fast has a negative effect on large production. In this study, Multiplicity of Infection (MOI) was manipulated based on initial bacterial inoculation and used phage pAh-6C which has therapeutic effect against Aeromonas hydrophila. 1, 5 and 10 percent of overnight bacterial culture was inoculated and each bacterial culture was co-cultured with the phage of which MOI of 0.01, 0.0001, and 0.000001 respectively. Simply changing the initial MOI as well as bacterial inoculation concentration has regulated the production quantity of the phage without any other changes to culture conditions. It is anticipated that this result can be used as a foundational data for mass production of lytic bacteriophages which can be used as the therapeutic bio-control agent.Keywords: bacteriophage, multiplicity of infection, optimization, Aeromonas hydrophila
Procedia PDF Downloads 3083420 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method
Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson
Abstract:
Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 1933419 Denoising Transient Electromagnetic Data
Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen
Abstract:
Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform
Procedia PDF Downloads 853418 Correlations in the Ising Kagome Lattice
Authors: Antonio Aguilar Aguilar, Eliezer Braun Guitler
Abstract:
Using a previously developed procedure and with the aid of algebraic software, a two-dimensional generalized Ising model with a 4×2 unitary cell (UC), we obtain a Kagome Lattice with twelve different spin-spin values of interaction, in order to determine the partition function per spin L(T). From the partition function we can study the magnetic behavior of the system. Because of the competition phenomenon between spins, a very complex behavior among them in a variety of magnetic states can be observed.Keywords: correlations, Ising, Kagome, exact functions
Procedia PDF Downloads 3683417 Nonstationary Modeling of Extreme Precipitation in the Wei River Basin, China
Authors: Yiyuan Tao
Abstract:
Under the impact of global warming together with the intensification of human activities, the hydrological regimes may be altered, and the traditional stationary assumption was no longer satisfied. However, most of the current design standards of water infrastructures were still based on the hypothesis of stationarity, which may inevitably result in severe biases. Many critical impacts of climate on ecosystems, society, and the economy are controlled by extreme events rather than mean values. Therefore, it is of great significance to identify the non-stationarity of precipitation extremes and model the precipitation extremes in a nonstationary framework. The Wei River Basin (WRB), located in a continental monsoon climate zone in China, is selected as a case study in this study. Six extreme precipitation indices were employed to investigate the changing patterns and stationarity of precipitation extremes in the WRB. To identify if precipitation extremes are stationary, the Mann-Kendall trend test and the Pettitt test, which is used to examine the occurrence of abrupt changes are adopted in this study. Extreme precipitation indices series are fitted with non-stationary distributions that selected from six widely used distribution functions: Gumbel, lognormal, Weibull, gamma, generalized gamma and exponential distributions by means of the time-varying moments model generalized additive models for location, scale and shape (GAMLSS), where the distribution parameters are defined as a function of time. The results indicate that: (1) the trends were not significant for the whole WRB, but significant positive/negative trends were still observed in some stations, abrupt changes for consecutive wet days (CWD) mainly occurred in 1985, and the assumption of stationarity is invalid for some stations; (2) for these nonstationary extreme precipitation indices series with significant positive/negative trends, the GAMLSS models are able to capture well the temporal variations of the indices, and perform better than the stationary model. Finally, the differences between the quantiles of nonstationary and stationary models are analyzed, which highlight the importance of nonstationary modeling of precipitation extremes in the WRB.Keywords: extreme precipitation, GAMLSSS, non-stationary, Wei River Basin
Procedia PDF Downloads 1243416 Traditional Industries Innovation and Brand Value Analysis in Taiwan: Case Study of a Certain Plastic Company
Authors: Ju Shan Lin
Abstract:
The challenges for traditional industries in Taiwan the past few years are the changes of overall domestic and foreign industry structure, the entrepreneurs not only need to keep on improving their profession skills but also continuously research and develop new products. It is also necessary for the all traditional industries to keep updating the business strategy, let the enterprises continue to progress, and won't be easily replaced by the other industries. The traditional industry in Taiwan attach great importance to the field of enterprises upgrading and innovation in recent years, by the enterprise innovation and transformation can enhance the overall business situation also enable them to obtain more additional profits than in the past. Except the original industry structure's need to transform and upgrade, the brand's business and marketing strategy are also essential. This study will take a certain plastic company as case analysis, for the brand promotion of traditional industries, brand values and business innovation model for further exploration. It will also be mentioned that the other traditional industries cases which were already achieved success on the enterprise's upgrading and innovation, at the same time, the difficulties which they faced with and the way they overcome will be explored as well. This study will use the case study method combined with expert interviews to discuss and analyze this certain plastic company's current business situation, the existing products and the possible trends in the future. Looking forward to providing an innovative business model that will enable this plastic company to upgrade its corporate image and the brand could transform successfully.Keywords: brand marketing strategy, enterprise upgrade, industrial transformation, traditional industry
Procedia PDF Downloads 2393415 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron
Authors: Filippo Portera
Abstract:
Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.Keywords: loss, binary-classification, MLP, weights, regression
Procedia PDF Downloads 953414 Tracking of Linarin from the Ethyl Acetate Fraction of Melinjo (Gnetum gnemon L.) Seeds Using Preparative High Performance Liquid Chromatography
Authors: Asep Sukohar, Ramadhan Triyandi, Muhammad Iqbal, Sahidin, Suharyani
Abstract:
Introduction: Resveratrol is a class of bioactive chemicals found in melinjo, which has a wide range of biological actions. The purpose of this study is to determine the linarin content of the melinjo fraksi by using preparative-high-performance liquid chromatography (prep-HPLC). Method: Extraction used the soxhletation method with 96% ethanol solvent. Fractionation used ethyl acetate and ethanol in a ratio of 1:1. Tracing of linarin compound used prep-HPLC with a mobile phase ratio of distilled water: methanol (55: 45, v/v). The presence of linarin was detected using a wavelength of 215 nm. Fourier Transform Infrared (FTIR) was used to identify the functional groups of compound. Result: The retention time required to elute the ethyl acetate fraction was 2.601 minutes. Compound separation identification using Fourier Transform Infrared Spectroscopy - Quest Attenuated Total Reflectance (FTIR - QATR) has a similarity value range with standards from 0 to 1000. The elution results of the ethyl acetate fraction have similar values with the standard compounds linarin (668), resveratrol (578), and catechin (455). Conclusion: Tracing for active compound in the ethyl acetate fraction of Gnetum Gnemon L. using prep-HPLC showed a strong suspicion of the presence of linarin compound.Keywords: Gnetum gnemon L., linarin, prep-HPLC, fraction ethyl acetate
Procedia PDF Downloads 1163413 Scientific Linux Cluster for BIG-DATA Analysis (SLBD): A Case of Fayoum University
Authors: Hassan S. Hussein, Rania A. Abul Seoud, Amr M. Refaat
Abstract:
Scientific researchers face in the analysis of very large data sets that is increasing noticeable rate in today’s and tomorrow’s technologies. Hadoop and Spark are types of software that developed frameworks. Hadoop framework is suitable for many Different hardware platforms. In this research, a scientific Linux cluster for Big Data analysis (SLBD) is presented. SLBD runs open source software with large computational capacity and high performance cluster infrastructure. SLBD composed of one cluster contains identical, commodity-grade computers interconnected via a small LAN. SLBD consists of a fast switch and Gigabit-Ethernet card which connect four (nodes). Cloudera Manager is used to configure and manage an Apache Hadoop stack. Hadoop is a framework allows storing and processing big data across the cluster by using MapReduce algorithm. MapReduce algorithm divides the task into smaller tasks which to be assigned to the network nodes. Algorithm then collects the results and form the final result dataset. SLBD clustering system allows fast and efficient processing of large amount of data resulting from different applications. SLBD also provides high performance, high throughput, high availability, expandability and cluster scalability.Keywords: big data platforms, cloudera manager, Hadoop, MapReduce
Procedia PDF Downloads 3583412 Transformation of Health Communication Literacy in Information Technology during Pandemic in 2019-2022
Authors: K. Y. S. Putri, Heri Fathurahman, Yuki Surisita, Widi Sagita, Kiki Dwi Arviani
Abstract:
Society needs the assistance of academics in understanding and being skilled in health communication literacy. Information technology runs very fast while health communication literacy skills in getting health communication information during the pandemic are not as fast as the development of information technology. The research question is whether there is an influence of health communication on information technology in health information during the pandemic in Indonesia. The purpose of the study is to find out the influence of health communication on information technology in health information during the pandemic in Indonesia. The concepts of health communication literacy and information technology are used this study. Previous research is in support of this study. Quantitative research methods by disseminating questionnaires in this study. The validity and reliability test of this study is positive, so it can proceed to the next statistical analysis. Descriptive results of variable health communication literacy are of positive value in all dimensions. All dimensions of information technology are of positive value. Statistical tests of the influence of health communication literacy on information technology are of great value. Discussion of both variables in the influence of health communication literacy and high-value information technology because health communication literacy has a high effect in information technology. Respondents to this study have high information technology skills. So that health communication literacy in obtaining health information during the 2019-2022 pandemic is needed. Research advice is that academics are still very much needed by the community in the development of society during the pandemic.Keywords: health information, health information needs, literacy health communication, information technology
Procedia PDF Downloads 1393411 Miniature Fast Steering Mirrors for Space Optical Communication on NanoSats and CubeSats
Authors: Sylvain Chardon, Timotéo Payre, Hugo Grardel, Yann Quentel, Mathieu Thomachot, Gérald Aigouy, Frank Claeyssen
Abstract:
With the increasing digitalization of society, access to data has become vital and strategic for individuals and nations. In this context, the number of satellite constellation projects is growing drastically worldwide and is a next-generation challenge of the New Space industry. So far, existing satellite constellations have been using radio frequencies (RF) for satellite-to-ground communications, inter-satellite communications, and feeder link communication. However, RF has several limitations, such as limited bandwidth and low protection level. To address these limitations, space optical communication will be the new trend, addressing both very high-speed and secured encrypted communication. Fast Steering Mirrors (FSM) are key components used in optical communication as well as space imagery and for a large field of functions such as Point Ahead Mechanisms (PAM), Raster Scanning, Beam Steering Mirrors (BSM), Fine Pointing Mechanisms (FPM) and Line of Sight stabilization (LOS). The main challenges of space FSM development for optical communication are to propose both a technology and a supply chain relevant for high quantities New Space approach, which requires secured connectivity for high-speed internet, Earth planet observation and monitoring, and mobility applications. CTEC proposes a mini-FSM technology offering a stroke of +/-6 mrad and a resonant frequency of 1700 Hz, with a mass of 50 gr. This FSM mechanism is a good candidate for giant constellations and all applications on board NanoSats and CubeSats, featuring a very high level of miniaturization and optimized for New Space high quantities cost efficiency. The use of piezo actuators offers a high resonance frequency for optimal control, with almost zero power consumption in step and stay pointing, and with very high-reliability figures > 0,995 demonstrated over years of recurrent manufacturing for Optronics applications at CTEC.Keywords: fast steering mirror, feeder link, line of sight stabilization, optical communication, pointing ahead mechanism, raster scan
Procedia PDF Downloads 803410 A Framework for Automating Software Testing: A Practical Approach
Authors: Ana Paula Cavalcanti Furtado, Silvio Meira
Abstract:
Context: The quality of a software product can be directly influenced by the quality of its development process. Therefore, immature or ad-hoc test processes are means that are unsuited for introducing systematic test automation, and should not be used to support improving the quality of software. Objective: In order to conduct this research, the benefits and limitations of and gaps in automating software testing had to be assessed in order to identify the best practices and to propose a strategy for systematically introducing test automation into software development processes. Method: To conduct this research, an exploratory bibliographical survey was undertaken so as to underpin the search by theory and the recent literature. After defining the proposal, two case studies were conducted so as to analyze the proposal in a real-world environment. In addition, the proposal was also assessed through a focus group with specialists in the field. Results: The proposal of a Framework for Automating Software Testing (FAST), which is a theoretical framework consisting of a hierarchical structure to introduce test automation. Conclusion: The findings of this research showed that the absence of systematic processes is one of the factors that hinder the introduction of test automation. Based on the results of the case studies, FAST can be considered as a satisfactory alternative that lies within the scope of introducing and maintaining test automation in software development.Keywords: software process improvement, software quality, software testing, test automation
Procedia PDF Downloads 1443409 Evidence of Half-Metallicity in Cubic PrMnO3 Perovskite
Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Abbad
Abstract:
The electronic and magnetic properties of the cubic praseodymium oxides perovskites PrMnO3 were calculated using the density functional theory (DFT) with both generalized gradient approximation (GGA) and GGA+U approaches, where U is on-site Coulomb interaction correction. The results show a half-metallic ferromagnetic ground state for PrMnO3 in GGA+U approached, while semi-metallic ferromagnetic character is observed in GGA. The results obtained, make the cubic PrMnO3 a promising candidate for application in spintronics.Keywords: first-principles, electronic properties, transition metal, materials science
Procedia PDF Downloads 4663408 The Mechanism Study of Degradative Solvent Extraction of Biomass by Liquid Membrane-Fourier Transform Infrared Spectroscopy
Authors: W. Ketren, J. Wannapeera, Z. Heishun, A. Ryuichi, K. Toshiteru, M. Kouichi, O. Hideaki
Abstract:
Degradative solvent extraction is the method developed for biomass upgrading by dewatering and fractionation of biomass under the mild condition. However, the conversion mechanism of the degradative solvent extraction method has not been fully understood so far. The rice straw was treated in 1-methylnaphthalene (1-MN) at a different solvent-treatment temperature varied from 250 to 350 oC with the residence time for 60 min. The liquid membrane-Fourier Transform Infrared Spectroscopy (FTIR) technique is applied to study the processing mechanism in-depth without separation of the solvent. It has been found that the strength of the oxygen-hydrogen stretching (3600-3100 cm-1) decreased slightly with increasing temperature in the range of 300-350 oC. The decrease of the hydroxyl group in the solvent soluble suggested dehydration reaction taking place between 300 and 350 oC. FTIR spectra in the carbonyl stretching region (1800-1600 cm-1) revealed the presence of esters groups, carboxylic acid and ketonic groups in the solvent-soluble of biomass. The carboxylic acid increased in the range of 200 to 250 oC and then decreased. The prevailing of aromatic groups showed that the aromatization took place during extraction at above 250 oC. From 300 to 350 oC, the carbonyl functional groups in the solvent-soluble noticeably decreased. The removal of the carboxylic acid and the decrease of esters into the form of carbon dioxide indicated that the decarboxylation reaction occurred during the extraction process.Keywords: biomass waste, degradative solvent extraction, mechanism, upgrading
Procedia PDF Downloads 2853407 Diagnosis of Induction Machine Faults by DWT
Authors: Hamidreza Akbari
Abstract:
In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.Keywords: induction machine, fault, DWT, electric
Procedia PDF Downloads 3503406 Estimating the Timing Interval for Malarial Indoor Residual Spraying: A Modelling Approach
Authors: Levicatus Mugenyi, Joaniter Nankabirwa, Emmanuel Arinaitwe, John Rek, Niel Hens, Moses Kamya, Grant Dorsey
Abstract:
Background: Indoor residual spraying (IRS) reduces vector densities and malaria transmission, however, the most effective spraying intervals for IRS have not been well established. We aim to estimate the optimal timing interval for IRS using a modeling approach. Methods: We use a generalized additive model to estimate the optimal timing interval for IRS using the predicted malaria incidence. The model is applied to post IRS cohort clinical data from children aged 0.5–10 years in selected households in Tororo, historically a high malaria transmission setting in Uganda. Six rounds of IRS were implemented in Tororo during the study period (3 rounds with bendiocarb: December 2014 to December 2015, and 3 rounds with actellic: June 2016 to July 2018). Results: Monthly incidence of malaria from October 2014 to February 2019 decreased from 3.25 to 0.0 per person-years in the children under 5 years, and 1.57 to 0.0 for 5-10 year-olds. The optimal time interval for IRS differed between bendiocarb and actellic and by IRS round. It was estimated to be 17 and 40 weeks after the first round of bendiocarb and actellic, respectively. After the third round of actellic, 36 weeks was estimated to be optimal. However, we could not estimate from the data the optimal time after the second and third rounds of bendiocarb and after the second round of actellic. Conclusion: We conclude that to sustain the effect of IRS in a high-medium transmission setting, the second rounds of bendiocarb need to be applied roughly 17 weeks and actellic 40 weeks after the first round, and the timing differs for subsequent rounds. The amount of rainfall did not influence the trend in malaria incidence after IRS, as well as the IRS timing intervals. Our results suggest that shorter intervals for the IRS application can be more effective compared to the current practice, which is about 24 weeks for bendiocarb and 48 weeks for actellic. However, when considering our findings, one should account for the cost and drug resistance associated with IRS. We also recommend that the timing and incidence should be monitored in the future to improve these estimates.Keywords: incidence, indoor residual spraying, generalized additive model, malaria
Procedia PDF Downloads 1213405 Voice Liveness Detection Using Kolmogorov Arnold Networks
Authors: Arth J. Shah, Madhu R. Kamble
Abstract:
Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection
Procedia PDF Downloads 393404 Soil Macronutrients Sensing for Precision Agriculture Purpose Using Fourier Transform Infrared Spectroscopy
Authors: Hossein Navid, Maryam Adeli Khadem, Shahin Oustan, Mahmoud Zareie
Abstract:
Among the nutrients needed by the plants, three elements containing nitrate, phosphorus and potassium are more important. The objective of this research was measuring these nutrient amounts in soil using Fourier transform infrared spectroscopy in range of 400- 4000 cm-1. Soil samples for different soil types (sandy, clay and loam) were collected from different areas of East Azerbaijan. Three types of fertilizers in conventional farming (urea, triple superphosphate, potassium sulphate) were used for soil treatment. Each specimen was divided into two categories: The first group was used in the laboratory (direct measurement) to extract nitrate, phosphorus and potassium uptake by colorimetric method of Olsen and ammonium acetate. The second group was used to measure drug absorption spectrometry. In spectrometry, the small amount of soil samples mixed with KBr and was taken in a small pill form. For the tests, the pills were put in the center of infrared spectrometer and graphs were obtained. Analysis of data was done using MINITAB and PLSR software. The data obtained from spectrometry method were compared with amount of soil nutrients obtained from direct drug absorption using EXCEL software. There were good fitting between these two data series. For nitrate, phosphorus and potassium R2 was 79.5%, 92.0% and 81.9%, respectively. Also, results showed that the range of MIR (mid-infrared) is appropriate for determine the amount of soil nitrate and potassium and can be used in future research to obtain detailed maps of land in agricultural use.Keywords: nitrate, phosphorus, potassium, soil nutrients, spectroscopy
Procedia PDF Downloads 4033403 Zinc Oxide Nanoparticle-Doped Poly (8-Anilino-1-Napthalene Sulphonic Acid/Nat Nanobiosensors for TB Drugs
Authors: Rachel Fanelwa Ajayi, Anovuyo Jonnas, Emmanuel I. Iwuoha
Abstract:
Tuberculosis (TB) is an infectious disease caused by the bacterium (Mycobacterium tuberculosis) which has a predilection for lung tissue due to its rich oxygen supply. The mycobacterial cell has a unique innate characteristic which allows it to resist human immune systems and drug treatments; hence, it is one of the most difficult of all bacterial infections to treat, let alone to cure. At the same time, multi-drug resistance TB (MDR-TB) caused by poorly managed TB treatment, is a growing problem and requires the administration of expensive and less effective second line drugs which take much longer treatment duration than fist line drugs. Therefore, to acknowledge the issues of patients falling ill as a result of inappropriate dosing of treatment and inadequate treatment administration, a device with a fast response time coupled with enhanced performance and increased sensitivity is essential. This study involved the synthesis of electroactive platforms for application in the development of nano-biosensors suitable for the appropriate dosing of clinically diagnosed patients by promptly quantifying the levels of the TB drug; Isonaizid. These nano-biosensors systems were developed on gold surfaces using the enzyme N-acetyletransferase 2 coupled to the cysteamine modified poly(8-anilino-1-napthalene sulphonic acid)/zinc oxide nanocomposites. The morphology of ZnO nanoparticles, PANSA/ZnO nano-composite and nano-biosensors platforms were characterized using High-Resolution Transmission Electron Microscopy (HRTEM) and High-Resolution Scanning Electron Microscopy (HRSEM). On the other hand, the elemental composition of the developed nanocomposites and nano-biosensors were studied using Fourier Transform Infra-Red Spectroscopy (FTIR) and Energy Dispersive X-Ray (EDX). The electrochemical studies showed an increase in electron conductivity for the PANSA/ZnO nanocomposite which was an indication that it was suitable as a platform towards biosensor development.Keywords: N-acetyletransferase 2, isonaizid, tuberculosis, zinc oxide
Procedia PDF Downloads 3733402 Study on the Thermal Conductivity about Porous Materials in Wet State
Authors: Han Yan, Jieren Luo, Qiuhui Yan, Xiaoqing Li
Abstract:
The thermal conductivity of porous materials is closely related to the thermal and moisture environment and the overall energy consumption of the building. The study of thermal conductivity of porous materials has great significance for the realization of low energy consumption building and economic construction building. Based on the study of effective thermal conductivity of porous materials at home and abroad, the thermal conductivity under a variety of different density of polystyrene board (EPS), plastic extruded board (XPS) and polyurethane (PU) and phenolic resin (PF) in wet state through theoretical analysis and experimental research has been studied. Initially, the moisture absorption and desorption properties of specimens had been discussed under different density, which led a result indicates the moisture absorption of four porous materials all have three stages, fast, stable and gentle. For the moisture desorption, there are two types. One is the existence of the rapid phase of the stage, such as XPS board, PU board. The other one does not have the fast desorption, instead, it is more stabilized, such as XPS board, PF board. Furthermore, the relationship between water content and thermal conductivity of porous materials had been studied and fitted, which figured out that in the wake of the increasing water content, the thermal conductivity of porous material is continually improving. At the same time, this result also shows, in different density, when the same kind of materials decreases, the saturated moisture content increases. Finally, the moisture absorption and desorption properties of the four kinds of materials are compared comprehensively, and it turned out that the heat preservation performance of PU board is the best, followed by EPS board, XPS board, PF board.Keywords: porous materials, thermal conductivity, moisture content, transient hot-wire method
Procedia PDF Downloads 1863401 Permanent Reduction of Arc Flash Energy to Safe Limit on Line Side of 480 Volt Switchgear Incomer Breaker
Authors: Abid Khan
Abstract:
A recognized engineering challenge is related to personnel protection from fatal arc flash incident energy in the line side of the 480-volt switchgear incomer breakers during maintenance activities. The incident energy is typically high due to slow fault clearance, and it can be higher than the available personnel protective equipment (PPE) ratings. A fault in this section of the switchgear is cleared by breakers or fuses in the upstream higher voltage system (4160 Volt or higher). The current reflection in the higher voltage upstream system for a fault in the 480-volt switchgear is low, the clearance time is slower, and the inversely proportional incident energy is hence higher. The installation of overcurrent protection at a 480-volt system upstream of the incomer breaker will operate fast enough and trips the upstream higher voltage breaker when a fault develops at the incomer breaker. Therefore, fault current reduction as reflected in the upstream higher voltage system is eliminated. Since the fast overcurrent protection is permanently installed, it is always functional, does not require human interventions, and eliminates exposure to human errors. It is installed at the maintenance activities location, and its operations can be locally monitored by craftsmen during maintenance activities.Keywords: arc flash, mitigation, maintenance switch, energy level
Procedia PDF Downloads 1943400 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier
Authors: Saurabh Farkya, Govinda Surampudi
Abstract:
Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)
Procedia PDF Downloads 4993399 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 4203398 Knowledge Graph Development to Connect Earth Metadata and Standard English Queries
Authors: Gabriel Montague, Max Vilgalys, Catherine H. Crawford, Jorge Ortiz, Dava Newman
Abstract:
There has never been so much publicly accessible atmospheric and environmental data. The possibilities of these data are exciting, but the sheer volume of available datasets represents a new challenge for researchers. The task of identifying and working with a new dataset has become more difficult with the amount and variety of available data. Datasets are often documented in ways that differ substantially from the common English used to describe the same topics. This presents a barrier not only for new scientists, but for researchers looking to find comparisons across multiple datasets or specialists from other disciplines hoping to collaborate. This paper proposes a method for addressing this obstacle: creating a knowledge graph to bridge the gap between everyday English language and the technical language surrounding these datasets. Knowledge graph generation is already a well-established field, although there are some unique challenges posed by working with Earth data. One is the sheer size of the databases – it would be infeasible to replicate or analyze all the data stored by an organization like The National Aeronautics and Space Administration (NASA) or the European Space Agency. Instead, this approach identifies topics from metadata available for datasets in NASA’s Earthdata database, which can then be used to directly request and access the raw data from NASA. By starting with a single metadata standard, this paper establishes an approach that can be generalized to different databases, but leaves the challenge of metadata harmonization for future work. Topics generated from the metadata are then linked to topics from a collection of English queries through a variety of standard and custom natural language processing (NLP) methods. The results from this method are then compared to a baseline of elastic search applied to the metadata. This comparison shows the benefits of the proposed knowledge graph system over existing methods, particularly in interpreting natural language queries and interpreting topics in metadata. For the research community, this work introduces an application of NLP to the ecological and environmental sciences, expanding the possibilities of how machine learning can be applied in this discipline. But perhaps more importantly, it establishes the foundation for a platform that can enable common English to access knowledge that previously required considerable effort and experience. By making this public data accessible to the full public, this work has the potential to transform environmental understanding, engagement, and action.Keywords: earth metadata, knowledge graphs, natural language processing, question-answer systems
Procedia PDF Downloads 1483397 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases
Authors: Mohammad A. Bani-Khaled
Abstract:
In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams
Procedia PDF Downloads 4183396 Investigating the Need to Align with and Adapt Sustainability of Cotton
Authors: Girija Jha
Abstract:
This paper investigates the need of cotton to integrate sustainability. The methodology used in the paper is to do secondary research to find out the various environmental implications of cotton as textile material across its life cycle and try to look at ways and possibilities of minimizing its ecological footprint. Cotton is called ‘The Fabric of Our Lives’. History is replete with examples where this fabric used to be more than a fabric of lives. It used to be a miracle fabric, a symbol India’s pride and social Movement of Swaraj, Gandhijee’s clarion call to self reliance. Cotton is grown in more than 90 countries across the globe on 2.5 percent of the world's arable land in countries like China, India, United States, etc. accounting for almost three fourth of global production. But cotton as a raw material has come under the scanner of sustainability experts because of myriad reasons a few have been discussed here. It may take more than 20,000 liters of water to produce 1kg of cotton. Cotton harvest is primarily done from irrigated land which leads to Salinization and depletion of local water reservoirs, e.g., Drying up of Aral Sea. Cotton is cultivated on 2.4% of total world’s crop land but accounts for 24% usage of insecticide and shares the blame of 11% usage of pesticides leading to health hazards and having an alarmingly dangerous impact on the ecosystem. One of the possible solutions to these problems as proposed was GM, Genetically Modified cotton crop. However, use of GM cotton is still debatable and has many ethical issues. The practice of mass production and increasing consumerism and especially fast fashion has been major culprits to disrupt this delicate balance. Disposable fashion or fast fashion is on the rise and cotton being one of the major choices adds on to the problem. Denims – made of cotton and have a strong fashion statement and the washes being an integral part of their creation they share a lot of blame. These are just a few problems listed. Today Sustainability is the need of the hour and it is inevitable to incorporate have major changes in the way we cultivate and process cotton to make it a sustainable choice. The answer lies in adopting minimalism and boycotting fast fashion, in using Khadi, in saying no to washed denims and using selvedge denims or using better methods of finishing the washed out fabric so that the environment does not bleed blue. Truly, the answer lies in integrating state of art technology with age old sustainable practices so that the synergy of the two may help us come out of the vicious circle.Keywords: cotton, sustainability, denim, Khadi
Procedia PDF Downloads 1563395 Application of MoM-GEC Method for Electromagnetic Study of Planar Microwave Structures: Shielding Application
Authors: Ahmed Nouainia, Mohamed Hajji, Taoufik Aguili
Abstract:
In this paper, an electromagnetic analysis is presented for describing the influence of shielding in a rectangular waveguide. A hybridization based on the method of moments combined to the generalized equivalent circuit MoM-GEC is used to model the problem. This is validated by applying the MoM-GEC hybridization to investigate a diffraction structure. It consists of electromagnetic diffraction by an iris in a rectangular waveguide. Numerical results are shown and discussed and a comparison with FEM and Marcuvitz methods is achieved.Keywords: method MoM-GEC, waveguide, shielding, equivalent circuit
Procedia PDF Downloads 374