Search results for: error compensation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2192

Search results for: error compensation

1532 The Per Capita Income, Energy production and Environmental Degradation: A Comprehensive Assessment of the existence of the Environmental Kuznets Curve Hypothesis in Bangladesh

Authors: Ashique Mahmud, MD. Ataul Gani Osmani, Shoria Sharmin

Abstract:

In the first quarter of the twenty-first century, the most substantial global concern is environmental contamination, and it has gained the prioritization of both the national and international community. Keeping in mind this crucial fact, this study conducted different statistical and econometrical methods to identify whether the gross national income of the country has a significant impact on electricity production from nonrenewable sources and different air pollutants like carbon dioxide, nitrous oxide, and methane emissions. Besides, the primary objective of this research was to analyze whether the environmental Kuznets curve hypothesis holds for the examined variables. After analyzing different statistical properties of the variables, this study came to the conclusion that the environmental Kuznets curve hypothesis holds for gross national income and carbon dioxide emission in Bangladesh in the short run as well as the long run. This study comes to this conclusion based on the findings of ordinary least square estimations, ARDL bound tests, short-run causality analysis, the Error Correction Model, and other pre-diagnostic and post-diagnostic tests that have been employed in the structural model. Moreover, this study wants to demonstrate that the outline of gross national income and carbon dioxide emissions is in its initial stage of development and will increase up to the optimal peak. The compositional effect will then force the emission to decrease, and the environmental quality will be restored in the long run.

Keywords: environmental Kuznets curve hypothesis, carbon dioxide emission in Bangladesh, gross national income in Bangladesh, autoregressive distributed lag model, granger causality, error correction model

Procedia PDF Downloads 150
1531 Lamb Waves Wireless Communication in Healthy Plates Using Coherent Demodulation

Authors: Rudy Bahouth, Farouk Benmeddour, Emmanuel Moulin, Jamal Assaad

Abstract:

Guided ultrasonic waves are used in Non-Destructive Testing (NDT) and Structural Health Monitoring (SHM) for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average Bit Error Rate. Results have shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques.

Keywords: lamb waves communication, wireless communication, coherent demodulation, bit error rate

Procedia PDF Downloads 263
1530 A Pilot Study to Investigate the Use of Machine Translation Post-Editing Training for Foreign Language Learning

Authors: Hong Zhang

Abstract:

The main purpose of this study is to show that machine translation (MT) post-editing (PE) training can help our Chinese students learn Spanish as a second language. Our hypothesis is that they might make better use of it by learning PE skills specific for foreign language learning. We have developed PE training materials based on the data collected in a previous study. Training material included the special error types of the output of MT and the error types that our Chinese students studying Spanish could not detect in the experiment last year. This year we performed a pilot study in order to evaluate the PE training materials effectiveness and to what extent PE training helps Chinese students who study the Spanish language. We used screen recording to record these moments and made note of every action done by the students. Participants were speakers of Chinese with intermediate knowledge of Spanish. They were divided into two groups: Group A performed PE training and Group B did not. We prepared a Chinese text for both groups, and participants translated it by themselves (human translation), and then used Google Translate to translate the text and asked them to post-edit the raw MT output. Comparing the results of PE test, Group A could identify and correct the errors faster than Group B students, Group A did especially better in omission, word order, part of speech, terminology, mistranslation, official names, and formal register. From the results of this study, we can see that PE training can help Chinese students learn Spanish as a second language. In the future, we could focus on the students’ struggles during their Spanish studies and complete the PE training materials to teach Chinese students learning Spanish with machine translation.

Keywords: machine translation, post-editing, post-editing training, Chinese, Spanish, foreign language learning

Procedia PDF Downloads 144
1529 Modeling Search-And-Rescue Operations by Autonomous Mobile Robots at Sea

Authors: B. Kriheli, E. Levner, T. C. E. Cheng, C. T. Ng

Abstract:

During the last decades, research interest in planning, scheduling, and control of emergency response operations, especially people rescue and evacuation from the dangerous zone of marine accidents, has increased dramatically. Until the survivors (called ‘targets’) are found and saved, it may cause loss or damage whose extent depends on the location of the targets and the search duration. The problem is to efficiently search for and detect/rescue the targets as soon as possible with the help of intelligent mobile robots so as to maximize the number of saved people and/or minimize the search cost under restrictions on the amount of saved people within the allowable response time. We consider a special situation when the autonomous mobile robots (AMR), e.g., unmanned aerial vehicles and remote-controlled robo-ships have no operator on board as they are guided and completely controlled by on-board sensors and computer programs. We construct a mathematical model for the search process in an uncertain environment and provide a new fast algorithm for scheduling the activities of the autonomous robots during the search-and rescue missions after an accident at sea. We presume that in the unknown environments, the AMR’s search-and-rescue activity is subject to two types of error: (i) a 'false-negative' detection error where a target object is not discovered (‘overlooked') by the AMR’s sensors in spite that the AMR is in a close neighborhood of the latter and (ii) a 'false-positive' detection error, also known as ‘a false alarm’, in which a clean place or area is wrongly classified by the AMR’s sensors as a correct target. As the general resource-constrained discrete search problem is NP-hard, we restrict our study to finding local-optimal strategies. A specificity of the considered operational research problem in comparison with the traditional Kadane-De Groot-Stone search models is that in our model the probability of the successful search outcome depends not only on cost/time/probability parameters assigned to each individual location but, as well, on parameters characterizing the entire history of (unsuccessful) search before selecting any next location. We provide a fast approximation algorithm for finding the AMR route adopting a greedy search strategy in which, in each step, the on-board computer computes a current search effectiveness value for each location in the zone and sequentially searches for a location with the highest search effectiveness value. Extensive experiments with random and real-life data provide strong evidence in favor of the suggested operations research model and corresponding algorithm.

Keywords: disaster management, intelligent robots, scheduling algorithm, search-and-rescue at sea

Procedia PDF Downloads 173
1528 Design of the Compliant Mechanism of a Biomechanical Assistive Device for the Knee

Authors: Kevin Giraldo, Juan A. Gallego, Uriel Zapata, Fanny L. Casado

Abstract:

Compliant mechanisms are designed to deform in a controlled manner in response to external forces, utilizing the flexibility of their components to store potential elastic energy during deformation, gradually releasing it upon returning to its original form. This article explores the design of a knee orthosis intended to assist users during stand-up motion. The orthosis makes use of a compliant mechanism to balance the user’s weight, thereby minimizing the strain on leg muscles during standup motion. The primary function of the compliant mechanism is to store and exchange potential energy, so when coupled with the gravitational potential of the user, the total potential energy variation is minimized. The design process for the semi-rigid knee orthosis involved material selection and the development of a numerical model for the compliant mechanism seen as a spring. Geometric properties are obtained through the numerical modeling of the spring once the desired stiffness and safety factor values have been attained. Subsequently, a 3D finite element analysis was conducted. The study demonstrates a strong correlation between the maximum stress in the mathematical model (250.22 MPa) and the simulation (239.8 MPa), with a 4.16% error. Both analyses safety factors: 1.02 for the mathematical approach and 1.1 for the simulation, with a consistent 7.84% margin of error. The spring’s stiffness, calculated at 90.82 Nm/rad analytically and 85.71 Nm/rad in the simulation, exhibits a 5.62% difference. These results suggest significant potential for the proposed device in assisting patients with knee orthopedic restrictions, contributing to ongoing efforts in advancing the understanding and treatment of knee osteoarthritis.

Keywords: biomechanics, complaint mechanisms, gonarthrosis, orthoses

Procedia PDF Downloads 39
1527 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes

Authors: Angela U. Makolo

Abstract:

Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.

Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation

Procedia PDF Downloads 68
1526 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.

Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer

Procedia PDF Downloads 151
1525 The Usefulness of Financial Certification in Taiwan

Authors: Chih-Mei Wang, Jon-Chao Hong, Jian-Hong Ye, Jing-Yun Fan, Chiao-Fei Lin

Abstract:

The value of a certificate is to implement the criteria for evaluating work ability. Some professional certificates may make people feel good, but they are not useful in the workplace. To address this issue, this study is based on the expectancy-value model to take financial certificates as an example to explore how participants perceived the value of obtaining certification related to their usage perception of career promotion and salary increase. A total of 339 valid samples were subjected to confirmatory factor analysis and structural equation modeling; the results showed that the number of professional certificates was not significantly correlated with career promotion, but the number of professional certificates is negatively related to salary and benefits (S&B), while career promotion and S&B were positively related to job performance. The results show that the number of professional certificates does not play a significant role in the expectancy-value model. Therefore, professional certifications related to a basic level of finance was not expected to obtain in Taiwan's financial industry, and it is important to study the usefulness of some other certificates in other competitive industry.

Keywords: career promotion, certificate, compensation and benefits, goal-directed behaviors, Job performance

Procedia PDF Downloads 193
1524 Hydraulic Resources Management under Imperfect Competition with Thermal Plants in the Wholesale Electricity Market

Authors: Abdessalem Abbassi, Ahlem Dakhlaoui, Lota D. Tamini

Abstract:

In this paper, we analyze infinite discrete-time games between hydraulic and thermal power operators in the wholesale electricity market under Cournot competition. We consider a deregulated electrical industry where certain demand is satisfied by hydraulic and thermal technologies. The hydraulic operator decides the production in each season of each period that maximizes the sum of expected profits from power generation with respect to the stochastic dynamic constraint on the water stored in the dam, the environmental constraint and the non-negative output constraint. In contrast, the thermal plant is operated with quadratic cost function, with respect to the capacity production constraint and the non-negativity output constraint. We show that under imperfect competition, the hydraulic operator has a strategic storage of water in the peak season. Then, we quantify the strategic inter-annual and intra-annual water transfer and compare the numerical results. Finally, we show that the thermal operator can restrict the hydraulic output without compensation.

Keywords: asymmetric risk aversion, electricity wholesale market, hydropower dams, imperfect competition

Procedia PDF Downloads 359
1523 Research of Possibilities to Influence the Metal Cross-Section Deformation during Cold Rolling with the Help of Local Deformation Zone Creation

Authors: A. Pesin, D. Pustovoytov, A. Kolesnik, M. Sverdlik

Abstract:

Rolling disturbances often arise which might lead to defects such as nonflatness, warpage, corrugation, etc. Numerous methods of compensation for such disturbances are well known. However, most of them preserve the initial form of transverse flow of the strip, such as convex, concave or asymmetric (for example, sphenoid). Sometimes, the form inherited (especially asymmetric) is undesirable. Technical solutions have been developed which include providing conditions for transverse metal flow in deformation zone. It should be noted that greater reduction is followed by transverse flow increase, while less reduction causes a corresponding decrease in metal flow for differently deformed metal lengths to remain approximately the same and in order to avoid the defects mentioned above. One of the solutions suggests sequential strip deforming from rectangular cross-section profile with periodical rectangular grooves back into rectangular profile again. The work was carried out in DEFORM 3D program complex. Experimental rolling was performed on laboratory mill 150. Comparison of experimental and theoretical results demonstrated good correlation.

Keywords: FEM, cross-section deformation, mechanical engineering, applied mechanics

Procedia PDF Downloads 348
1522 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization

Procedia PDF Downloads 145
1521 Regulation of the Commercial Credits in the Foreign Exchange Operations

Authors: Marija Vicic

Abstract:

The purpose of commercial credit regulation in an unified way under Law on Foreign Exchange Operations in Republic of Serbia allows an easier state monitoring of credit operations performed by non-professionals on foreign exchange market. By broadly defining the term “commercial credits“, the state (i.e. National Bank of Serbia) is given the authority to monitor the performance of all obligations under commercial contracts in which the obligations are not performed simultaneously. In the first part of the paper, the author analyses the economic gist of commercial credits with the purpose of giving an insight into their special treatment. The author examines the term „commercial credits“ given in Law on foreign exchange operations and the difference between financial credits and irregular commercial credits (exports and imports of goods and services deemed to be commercial credits) is particularly highlighted. In the second part, the author emphasizes the specifics of commercial credit contracts, especially the effects of special requests for the parties to these contracts to notify National Bank of Serbia and specific regulations regarding maturity of obligations under these commercial credits and the assignment and compensation of the said contracts.

Keywords: commercial credit, foreign exchange operations, commercial transactions, deferred payment, advance payment, (non) resident

Procedia PDF Downloads 421
1520 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid

Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang

Abstract:

Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.

Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid

Procedia PDF Downloads 433
1519 An Adaptive Oversampling Technique for Imbalanced Datasets

Authors: Shaukat Ali Shahee, Usha Ananthakumar

Abstract:

A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.

Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling

Procedia PDF Downloads 418
1518 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture

Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko

Abstract:

Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.

Keywords: classification, feature selection, texture analysis, tree algorithms

Procedia PDF Downloads 180
1517 On the Question of Ideology: Criticism of the Enlightenment Approach and Theory of Ideology as Objective Force in Gramsci and Althusser

Authors: Edoardo Schinco

Abstract:

Studying the Marxist intellectual tradition, it is possible to verify that there were numerous cases of philosophical regression, in which the important achievements of detailed studies have been replaced by naïve ideas and previous misunderstandings: one of most important example of this tendency is related to the question of ideology. According to a common Enlightenment approach, the ideology is essentially not a reality, i.e., a factor capable of having an effect on the reality itself; in other words, the ideology is a mere error without specific historical meaning, which is only due to ignorance or inability of subjects to understand the truth. From this point of view, the consequent and immediate practice against every form of ideology are the rational dialogue, the reasoning based on common sense, in order to dispel the obscurity of ignorance through the light of pure reason. The limits of this philosophical orientation are however both theoretical and practical: on the one hand, the Enlightenment criticism of ideology is not an historicistic thought, since it cannot grasp the inner connection that ties an historical context and its peculiar ideology together; moreover, on the other hand, when the Enlightenment approach fails to release people from their illusions (e.g., when the ideology persists, despite the explanation of its illusoriness), it usually becomes a racist or elitarian thought. Unlike this first conception of ideology, Gramsci attempts to recover Marx’s original thought and to valorize its dialectical methodology with respect to the reality of ideology. As Marx suggests, the ideology – in negative meaning – is surely an error, a misleading knowledge, which aims to defense the current state of things and to conceal social, political or moral contradictions; but, that is precisely why the ideological error is not casual: every ideology mediately roots in a particular material context, from which it takes its reason being. Gramsci avoids, however, any mechanistic interpretation of Marx and, for this reason; he underlines the dialectic relation that exists between material base and ideological superstructure; in this way, a specific ideology is not only a passive product of base but also an active factor that reacts on the base itself and modifies it. Therefore, there is a considerable revaluation of ideology’s role in maintenance of status quo and the consequent thematization of both ideology as objective force, active in history, and ideology as cultural hegemony of ruling class on subordinate groups. Among the Marxists, the French philosopher Louis Althusser also gives his contribution to this crucial question; as follower of Gramsci’s thought, he develops the idea of ideology as an objective force through the notions of Repressive State Apparatus (RSA) and Ideological State Apparatuses (ISA). In addition to this, his philosophy is characterized by the presence of structuralist elements, which must be studied, since they deeply change the theoretical foundation of his Marxist thought.

Keywords: Althusser, enlightenment, Gramsci, ideology

Procedia PDF Downloads 202
1516 Using Equipment Telemetry Data for Condition-Based maintenance decisions

Authors: John Q. Todd

Abstract:

Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.

Keywords: condition based maintenance, equipment data, metrics, alerts

Procedia PDF Downloads 189
1515 Occupational Health: The Impact of Employee Work Schedules and Employee Morale

Authors: Melissa C. Monney

Abstract:

Employee morale is an area in which many companies invest millions of dollars, time and effort. Whether these are attributed in benefits or additional monetary compensation, each year, such companies understand that human capital is one of their greatest assets to driving production and revenue. However, with the ever-changing economy, such emphasis on work and production may be counterproductive to employee morale as employees attempt to achieve a healthy work-life balance. A flexible work schedule may be the solution to both companies’ attempt at increasing employee morale and productivity, while affording employees the opportunity to maintain a healthy work-life balance. The information presented in this review derives mostly from research articles, in which the research conducted by means of direct employee feedback through surveys, telephone or face-to-face interviews, or a collection of both, attempted to corroborate (in one way or another) previous research on the largely debated topic of schedule flexibility as the dynamics of economies and families have over the years. This review endeavors to provide a holistic view of schedule flexibility policies, implementation, and perceptions from research in various industries in different countries.

Keywords: flexible scheduling, perceived flexibility, employee morale, productivity

Procedia PDF Downloads 194
1514 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning

Authors: Shayla He

Abstract:

Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.

Keywords: homeless, prediction, model, RNN

Procedia PDF Downloads 121
1513 The Impact of Temporal Impairment on Quality of Experience (QoE) in Video Streaming: A No Reference (NR) Subjective and Objective Study

Authors: Muhammad Arslan Usman, Muhammad Rehan Usman, Soo Young Shin

Abstract:

Live video streaming is one of the most widely used service among end users, yet it is a big challenge for the network operators in terms of quality. The only way to provide excellent Quality of Experience (QoE) to the end users is continuous monitoring of live video streaming. For this purpose, there are several objective algorithms available that monitor the quality of the video in a live stream. Subjective tests play a very important role in fine tuning the results of objective algorithms. As human perception is considered to be the most reliable source for assessing the quality of a video stream, subjective tests are conducted in order to develop more reliable objective algorithms. Temporal impairments in a live video stream can have a negative impact on the end users. In this paper we have conducted subjective evaluation tests on a set of video sequences containing temporal impairment known as frame freezing. Frame Freezing is considered as a transmission error as well as a hardware error which can result in loss of video frames on the reception side of a transmission system. In our subjective tests, we have performed tests on videos that contain a single freezing event and also for videos that contain multiple freezing events. We have recorded our subjective test results for all the videos in order to give a comparison on the available No Reference (NR) objective algorithms. Finally, we have shown the performance of no reference algorithms used for objective evaluation of videos and suggested the algorithm that works better. The outcome of this study shows the importance of QoE and its effect on human perception. The results for the subjective evaluation can serve the purpose for validating objective algorithms.

Keywords: objective evaluation, subjective evaluation, quality of experience (QoE), video quality assessment (VQA)

Procedia PDF Downloads 602
1512 Correction Factors for Soil-Structure Interaction Predicted by Simplified Models: Axisymmetric 3D Model versus Fully 3D Model

Authors: Fu Jia

Abstract:

The effects of soil-structure interaction (SSI) are often studied using axial-symmetric three-dimensional (3D) models to avoid the high computational cost of the more realistic, fully 3D models, which require 2-3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed by axisymmetric models, embedded in uniform or layered half-space. The results are compared with those for fully 3D rectangular foundations of different aspect ratios. Correction factors are presented for a range of the model parameters, such as fixed-base frequency, structure mass, height and length-to-width ratio, foundation embedment, soil-layer stiffness and thickness. It is shown that the errors are larger for stiffer, taller and heavier structures, deeper foundations and deeper soil layer. For example, for a stiff structure like Millikan Library (NS response; length-to-width ratio 1), the error is 6.5% in system frequency, 49% in system damping and 180% in peak amplitude. Analysis of a case study shows that the NEHRP-2015 provisions for reduction of base shear force due to SSI effects may be unsafe for some structures and need revision. The presented correction factor diagrams can be used in practical design and other applications.

Keywords: 3D soil-structure interaction, correction factors for axisymmetric models, length-to-width ratio, NEHRP-2015 provisions for reduction of base shear force, rectangular embedded foundations, SSI system frequency, SSI system damping

Procedia PDF Downloads 267
1511 One vs. Rest and Error Correcting Output Codes Principled Rebalancing Schemes for Solving Imbalanced Multiclass Problems

Authors: Alvaro Callejas-Ramos, Lorena Alvarez-Perez, Alexander Benitez-Buenache, Anibal R. Figueiras-Vidal

Abstract:

This contribution presents a promising formulation which allows to extend the principled binary rebalancing procedures, also known as neutral re-balancing mechanisms in the sense that they do not alter the likelihood ratio

Keywords: Bregman divergences, imbalanced multiclass classifi-cation, informed re-balancing, invariant likelihood ratio

Procedia PDF Downloads 218
1510 Predicting Stem Borer Density in Maize Using RapidEye Data and Generalized Linear Models

Authors: Elfatih M. Abdel-Rahman, Tobias Landmann, Richard Kyalo, George Ong’amo, Bruno Le Ru

Abstract:

Maize (Zea mays L.) is a major staple food crop in Africa, particularly in the eastern region of the continent. The maize growing area in Africa spans over 25 million ha and 84% of rural households in Africa cultivate maize mainly as a means to generate food and income. Average maize yields in Sub Saharan Africa are 1.4 t/ha as compared to global average of 2.5–3.9 t/ha due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In East Africa, yield losses due to stem borers are currently estimated between 12% to 40% of the total production. The objective of the present study was therefore to predict stem borer larvae density in maize fields using RapidEye reflectance data and generalized linear models (GLMs). RapidEye images were captured for a test site in Kenya (Machakos) in January and in February 2015. Stem borer larva numbers were modeled using GLMs assuming Poisson (Po) and negative binomial (NB) distributions with error with log arithmetic link. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were employed to assess the models performance using a leave one-out cross-validation approach. Results showed that NB models outperformed Po ones in all study sites. RMSE and RPD ranged between 0.95 and 2.70, and between 2.39 and 6.81, respectively. Overall, all models performed similar when used the January and the February image data. We conclude that reflectance data from RapidEye data can be used to estimate stem borer larvae density. The developed models could to improve decision making regarding controlling maize stem borers using various integrated pest management (IPM) protocols.

Keywords: maize, stem borers, density, RapidEye, GLM

Procedia PDF Downloads 497
1509 Maximum Likelihood Estimation Methods on a Two-Parameter Rayleigh Distribution under Progressive Type-Ii Censoring

Authors: Daniel Fundi Murithi

Abstract:

Data from economic, social, clinical, and industrial studies are in some way incomplete or incorrect due to censoring. Such data may have adverse effects if used in the estimation problem. We propose the use of Maximum Likelihood Estimation (MLE) under a progressive type-II censoring scheme to remedy this problem. In particular, maximum likelihood estimates (MLEs) for the location (µ) and scale (λ) parameters of two Parameter Rayleigh distribution are realized under a progressive type-II censoring scheme using the Expectation-Maximization (EM) and the Newton-Raphson (NR) algorithms. These algorithms are used comparatively because they iteratively produce satisfactory results in the estimation problem. The progressively type-II censoring scheme is used because it allows the removal of test units before the termination of the experiment. Approximate asymptotic variances and confidence intervals for the location and scale parameters are derived/constructed. The efficiency of EM and the NR algorithms is compared given root mean squared error (RMSE), bias, and the coverage rate. The simulation study showed that in most sets of simulation cases, the estimates obtained using the Expectation-maximization algorithm had small biases, small variances, narrower/small confidence intervals width, and small root of mean squared error compared to those generated via the Newton-Raphson (NR) algorithm. Further, the analysis of a real-life data set (data from simple experimental trials) showed that the Expectation-Maximization (EM) algorithm performs better compared to Newton-Raphson (NR) algorithm in all simulation cases under the progressive type-II censoring scheme.

Keywords: expectation-maximization algorithm, maximum likelihood estimation, Newton-Raphson method, two-parameter Rayleigh distribution, progressive type-II censoring

Procedia PDF Downloads 163
1508 Implementation of Human Resource Management in Greek Law Enforcement Agencies

Authors: Konstantinos G. Papaioannou, Panagiotis K. Serdaris

Abstract:

This study, examines the level of implementation of Human Resource Management (HRM) activities in law enforcement agencies in Greece. Recognizing that HRM is crucial for maximizing organizational performance, the study aims to evaluate its application within Greek law enforcement. A quantitative-descriptive survey was conducted, involving 996 executives from Greek Law Enforcement Agencies (477 from the Hellenic Police and 519 from the Hellenic Coast Guard), through random sampling. The survey, revealed significant concerns regarding the minimal implementation of HRM practices, in both agencies. The findings indicate that HRM practices, such as HR planning, recruitment, job position, selection, training and development, personnel management, compensation, labor relations and health and safety, are minimally applied. Neither the Hellenic Police nor the Hellenic Coast Guard appears to follow a comprehensive HRM plan. The study, contributes both theoretically and practically by highlighting the lack of HRM implementation in these agencies. The data suggest that by adopting strategic HRM practices, these organizations can enhance personnel performance and better fulfill their societal roles. Future research should extend to law enforcement agencies in other countries to draw more representative conclusion.

Keywords: coastguard, human resources management, law enforcement agencies, performance management, police

Procedia PDF Downloads 46
1507 Modified Lot Quality Assurance Sampling (LQAS) Model for Quality Assessment of Malaria Parasite Microscopy and Rapid Diagnostic Tests in Kano, Nigeria

Authors: F. Sarkinfada, Dabo N. Tukur, Abbas A. Muaz, Adamu A. Yahuza

Abstract:

Appropriate Quality Assurance (QA) of parasite-based diagnosis of malaria to justify Artemisinin-based Combination Therapy (ACT) is essential for Malaria Programmes. In Low and Middle Income Countries (LMIC), resource constrain appears to be a major challenge in implementing the conventional QA system. We designed and implemented a modified LQAS model for QA of malaria parasite (MP) microscopy and RDT in a State Specialist Hospital (SSH) and a University Health Clinic (UHC) in Kano, Nigeria. The capacities of both facilities for MP microscopy and RDT were assessed before implementing a modified LQAS over a period of 3 months. Quality indicators comprising the qualities of blood film and staining, MP positivity rates, concordance rates, error rates (in terms of false positives and false negatives), sensitivity and specificity were monitored and evaluated. Seventy one percent (71%) of the basic requirements for malaria microscopy was available in both facilities, with the absence of certifies microscopists, SOPs and Quality Assurance mechanisms. A daily average of 16 to 32 blood samples were tested with a blood film staining quality of >70% recorded in both facilities. Using microscopy, the MP positivity rates were 50.46% and 19.44% in SSH and UHS respectively, while the MP positivity rates were 45.83% and 22.78% in SSH and UHS when RDT was used. Higher concordance rates of 88.90% and 93.98% were recorded in SSH and UHC respectively using microscopy, while lower rates of 74.07% and 80.58% in SSH and UHC were recorded when RDT was used. In both facilities, error rates were higher when RDT was used than with microscopy. Sensitivity and specificity were higher when microscopy was used (95% and 84% in SSH; 94% in UHC) than when RDT was used (72% and 76% in SSH; 78% and 81% in UHC). It could be feasible to implement an integrated QA model for MP microscopy and RDT using modified LQAS in Malaria Control Programmes in Low and Middle Income Countries that might have resource constrain for parasite-base diagnosis of malaria to justify ACT treatment.

Keywords: malaria, microscopy, quality assurance, RDT

Procedia PDF Downloads 226
1506 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm

Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan

Abstract:

Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.

Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power

Procedia PDF Downloads 86
1505 The Analysis of Gizmos Online Program as Mathematics Diagnostic Program: A Story from an Indonesian Private School

Authors: Shofiayuningtyas Luftiani

Abstract:

Some private schools in Indonesia started integrating the online program Gizmos in the teaching-learning process. Gizmos was developed to supplement the existing curriculum by integrating it into the instructional programs. The program has some features using an inquiry-based simulation, in which students conduct exploration by using a worksheet while teachers use the teacher guidelines to direct and assess students’ performance In this study, the discussion about Gizmos highlights its features as the assessment media of mathematics learning for secondary school students. The discussion is based on the case study and literature review from the Indonesian context. The purpose of applying Gizmos as an assessment media refers to the diagnostic assessment. As a part of the diagnostic assessment, the teachers review the student exploration sheet, analyze particularly in the students’ difficulties and consider findings in planning future learning process. This assessment becomes important since the teacher needs the data about students’ persistent weaknesses. Additionally, this program also helps to build student’ understanding by its interactive simulation. Currently, the assessment over-emphasizes the students’ answers in the worksheet based on the provided answer keys while students perform their skill in translating the question, doing the simulation and answering the question. Whereas, the assessment should involve the multiple perspectives and sources of students’ performance since teacher should adjust the instructional programs with the complexity of students’ learning needs and styles. Consequently, the approach to improving the assessment components is selected to challenge the current assessment. The purpose of this challenge is to involve not only the cognitive diagnosis but also the analysis of skills and error. Concerning the selected setting for this diagnostic assessment that develops the combination of cognitive diagnosis, skills analysis and error analysis, the teachers should create an assessment rubric. The rubric plays the important role as the guide to provide a set of criteria for the assessment. Without the precise rubric, the teacher potentially ineffectively documents and follows up the data about students at risk of failure. Furthermore, the teachers who employ the program of Gizmos as the diagnostic assessment might encounter some obstacles. Based on the condition of assessment in the selected setting, the obstacles involve the time constrain, the reluctance of higher teaching burden and the students’ behavior. Consequently, the teacher who chooses the Gizmos with those approaches has to plan, implement and evaluate the assessment. The main point of this assessment is not in the result of students’ worksheet. However, the diagnostic assessment has the two-stage process; the process to prompt and effectively follow-up both individual weaknesses and those of the learning process. Ultimately, the discussion of Gizmos as the media of the diagnostic assessment refers to the effort to improve the mathematical learning process.

Keywords: diagnostic assessment, error analysis, Gizmos online program, skills analysis

Procedia PDF Downloads 183
1504 Design and Simulation of an Inter-Satellite Optical Wireless Communication System Using Diversity Techniques

Authors: Sridhar Rapuru, D. Mallikarjunreddy, Rajanarendra Sai

Abstract:

In this reign of the internet, the access of any multimedia file to the users at any time with a superior quality is needed. To achieve this goal, it is very important to have a good network without any interruptions between the satellites along with various earth stations. For that purpose, a high speed inter-satellite optical wireless communication system (IsOWC) is designed with space and polarization diversity techniques. IsOWC offers a high bandwidth, small size, less power requirement and affordable when compared with the present microwave satellite systems. To improve the efficiency and to reduce the propagation delay, inter-satellite link is established between the satellites. High accurate tracking systems are required to establish the reliable connection between the satellites as they have their own orbits. The only disadvantage of this IsOWC system is laser beam width is narrower than the RF because of this highly accurate tracking system to meet this requirement. The satellite uses the 'ephemerides data' for rough pointing and tracking system for fine pointing to the other satellite. In this proposed IsOWC system, laser light is used as a wireless connectedness between the source and destination and free space acts as the channel to carry the message. The proposed system will be designed, simulated and analyzed for 6000km with an improvement of data rate over previously existing systems. The performance parameters of the system are Q-factor, eye opening, bit error rate, etc., The proposed system for Inter-satellite Optical Wireless Communication System Design Using Diversity Techniques finds huge scope of applications in future generation communication purposes.

Keywords: inter-satellite optical wireless system, space and polarization diversity techniques, line of sight, bit error rate, Q-factor

Procedia PDF Downloads 270
1503 Improving the Accuracy of Stress Intensity Factors Obtained by Scaled Boundary Finite Element Method on Hybrid Quadtree Meshes

Authors: Adrian W. Egger, Savvas P. Triantafyllou, Eleni N. Chatzi

Abstract:

The scaled boundary finite element method (SBFEM) is a semi-analytical numerical method, which introduces a scaling center in each element’s domain, thus transitioning from a Cartesian reference frame to one resembling polar coordinates. Consequently, an analytical solution is achieved in radial direction, implying that only the boundary need be discretized. The only limitation imposed on the resulting polygonal elements is that they remain star-convex. Further arbitrary p- or h-refinement may be applied locally in a mesh. The polygonal nature of SBFEM elements has been exploited in quadtree meshes to alleviate all issues conventionally associated with hanging nodes. Furthermore, since in 2D this results in only 16 possible cell configurations, these are precomputed in order to accelerate the forward analysis significantly. Any cells, which are clipped to accommodate the domain geometry, must be computed conventionally. However, since SBFEM permits polygonal elements, significantly coarser meshes at comparable accuracy levels are obtained when compared with conventional quadtree analysis, further increasing the computational efficiency of this scheme. The generalized stress intensity factors (gSIFs) are computed by exploiting the semi-analytical solution in radial direction. This is initiated by placing the scaling center of the element containing the crack at the crack tip. Taking an analytical limit of this element’s stress field as it approaches the crack tip, delivers an expression for the singular stress field. By applying the problem specific boundary conditions, the geometry correction factor is obtained, and the gSIFs are then evaluated based on their formal definition. Since the SBFEM solution is constructed as a power series, not unlike mode superposition in FEM, the two modes contributing to the singular response of the element can be easily identified in post-processing. Compared to the extended finite element method (XFEM) this approach is highly convenient, since neither enrichment terms nor a priori knowledge of the singularity is required. Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when combined with hybrid quadtrees employing linear elements, this does not always hold. Nevertheless, it has been shown that crack propagation schemes are highly effective even given very coarse discretization since they only rely on the ratio of mode one to mode two gSIFs. The absolute values of the gSIFs may still be subject to large errors. Hence, we propose a post-processing scheme, which minimizes the error resulting from the approximation space of the cracked element, thus limiting the error in the gSIFs to the discretization error of the quadtree mesh. This is achieved by h- and/or p-refinement of the cracked element, which elevates the amount of modes present in the solution. The resulting numerical description of the element is highly accurate, with the main error source now stemming from its boundary displacement solution. Numerical examples show that this post-processing procedure can significantly improve the accuracy of the computed gSIFs with negligible computational cost even on coarse meshes resulting from hybrid quadtrees.

Keywords: linear elastic fracture mechanics, generalized stress intensity factors, scaled finite element method, hybrid quadtrees

Procedia PDF Downloads 146