Search results for: cloud computing (MCC)
730 An Integrated Lightweight Naïve Bayes Based Webpage Classification Service for Smartphone Browsers
Authors: Mayank Gupta, Siba Prasad Samal, Vasu Kakkirala
Abstract:
The internet world and its priorities have changed considerably in the last decade. Browsing on smart phones has increased manifold and is set to explode much more. Users spent considerable time browsing different websites, that gives a great deal of insight into user’s preferences. Instead of plain information classifying different aspects of browsing like Bookmarks, History, and Download Manager into useful categories would improve and enhance the user’s experience. Most of the classification solutions are server side that involves maintaining server and other heavy resources. It has security constraints and maybe misses on contextual data during classification. On device, classification solves many such problems, but the challenge is to achieve accuracy on classification with resource constraints. This on device classification can be much more useful in personalization, reducing dependency on cloud connectivity and better privacy/security. This approach provides more relevant results as compared to current standalone solutions because it uses content rendered by browser which is customized by the content provider based on user’s profile. This paper proposes a Naive Bayes based lightweight classification engine targeted for a resource constraint devices. Our solution integrates with Web Browser that in turn triggers classification algorithm. Whenever a user browses a webpage, this solution extracts DOM Tree data from the browser’s rendering engine. This DOM data is a dynamic, contextual and secure data that can’t be replicated. This proposal extracts different features of the webpage that runs on an algorithm to classify into multiple categories. Naive Bayes based engine is chosen in this solution for its inherent advantages in using limited resources compared to other classification algorithms like Support Vector Machine, Neural Networks, etc. Naive Bayes classification requires small memory footprint and less computation suitable for smartphone environment. This solution has a feature to partition the model into multiple chunks that in turn will facilitate less usage of memory instead of loading a complete model. Classification of the webpages done through integrated engine is faster, more relevant and energy efficient than other standalone on device solution. This classification engine has been tested on Samsung Z3 Tizen hardware. The Engine is integrated into Tizen Browser that uses Chromium Rendering Engine. For this solution, extensive dataset is sourced from dmoztools.net and cleaned. This cleaned dataset has 227.5K webpages which are divided into 8 generic categories ('education', 'games', 'health', 'entertainment', 'news', 'shopping', 'sports', 'travel'). Our browser integrated solution has resulted in 15% less memory usage (due to partition method) and 24% less power consumption in comparison with standalone solution. This solution considered 70% of the dataset for training the data model and the rest 30% dataset for testing. An average accuracy of ~96.3% is achieved across the above mentioned 8 categories. This engine can be further extended for suggesting Dynamic tags and using the classification for differential uses cases to enhance browsing experience.Keywords: chromium, lightweight engine, mobile computing, Naive Bayes, Tizen, web browser, webpage classification
Procedia PDF Downloads 168729 Understanding Student Engagement through Sentiment Analytics of Response Times to Electronically Shared Feedback
Authors: Yaxin Bi, Peter Nicholl
Abstract:
The rapid advancement of Information and communication technologies (ICT) is extremely influencing every aspect of Higher Education. It has transformed traditional teaching, learning, assessment and feedback into a new era of Digital Education. This also introduces many challenges in capturing and understanding student engagement with their studies in Higher Education. The School of Computing at Ulster University has developed a Feedback And Notification (FAN) Online tool that has been used to send students links to personalized feedback on their submitted assessments and record students’ frequency of review of the shared feedback as well as the speed of collection. The feedback that the students initially receive is via a personal email directing them through to the feedback via a URL link that maps to the feedback created by the academic marker. This feedback is typically a Word or PDF report including comments and the final mark for the work submitted approximately three weeks before. When the student clicks on the link, the student’s personal feedback is viewable in the browser and they can view the contents. The FAN tool provides the academic marker with a report that includes when and how often a student viewed the feedback via the link. This paper presents an investigation into student engagement through analyzing the interaction timestamps and frequency of review by the student. We have proposed an approach to modeling interaction timestamps and use sentiment classification techniques to analyze the data collected over the last five years for a set of modules. The data studied is across a number of final years and second-year modules in the School of Computing. The paper presents the details of quantitative analysis methods and describes further their interactions with the feedback overtime on each module studied. We have projected the students into different groups of engagement based on sentiment analysis results and then provide a suggestion of early targeted intervention for the set of students seen to be under-performing via our proposed model.Keywords: feedback, engagement, interaction modelling, sentiment analysis
Procedia PDF Downloads 107728 Increasing Employee Productivity and Work Well-Being by Employing Affective Decision Support and a Knowledge-Based System
Authors: Loreta Kaklauskiene, Arturas Kaklauskas
Abstract:
This employee productivity and work well-being effective system aims to maximise the work performance of personnel and boost well-being in offices. Affective computing, decision support, and knowledge-based systems were used in our research. The basis of this effective system is our European Patent application (No: EP 4 020 134 A1) and two Lithuanian patents (LT 6841, LT 6866). Our study examines ways to support efficient employee productivity and well-being by employing mass-customised, personalised office environment. Efficient employee performance and well-being are managed by changing mass-customised office environment factors such as air pollution levels, humidity, temperature, data, information, knowledge, activities, lighting colours and intensity, scents, media, games, videos, music, and vibrations. These aspects of management generate a customised, adaptive environment for users taking into account their emotional, affective, and physiological (MAP) states measured and fed into the system. This research aims to develop an innovative method and system which would analyse, customise and manage a personalised office environment according to a specific user’s MAP states in a cohesive manner. Various values of work spaces (e.g., employee utilitarian, hedonic, perceived values) are also established throughout this process, based on the measurements that describe MAP states and other aspects related to the office environment. The main contribution of our research is the development of a real-time mass-customised office environment to boost employee performance and well-being. Acknowledgment: This work was supported by Project No. 2020-1-LT01-KA203-078100 “Minimizing the influence of coronavirus in a built environment” (MICROBE) from the European Union’s Erasmus + program.Keywords: effective decision support and a knowledge-based system, human resource management, employee productivity and work well-being, affective computing
Procedia PDF Downloads 115727 Extending Smart City Infrastructure to Cover Natural Disasters
Authors: Nina Dasari, Satvik Dasari
Abstract:
Smart city solutions are being developed across the globe to transform urban areas. However, the infrastructure enablement for alerting natural disasters such as floods and wildfires is deficient. This paper discusses an innovative device that could be used as part of the smart city initiative to detect and provide alerts in case of floods at road crossings and wildfires. An Internet of Things (IoT) smart city node was designed, tested, and deployed with collaboration from the City of Austin. The end to end solution includes a 3G enabled IoT device, flood and fire sensors, cloud, a mobile app, and IoT analytics. The real-time data was collected and analyzed using IoT analytics to refine the solution for the past year. The results demonstrate that the proposed solution is reliable and provides accurate results. This low-cost solution is viable, and it can replace the current solution which costs tens of thousands of dollars.Keywords: analytics, internet of things, natural disasters, smart city
Procedia PDF Downloads 227726 Using Inertial Measurement Unit to Evaluate the Balance Ability of Hikers
Authors: Po-Chen Chen, Tsung-Han Yang, Zhi-Wei Zheng, Shih-Tsang Tang
Abstract:
Falls are the most common accidents during mountain hiking, especially in high-altitude environments with unstable terrain or adverse weather. Balance ability is a crucial factor in hiking, effectively ensuring hiking safety and reducing the risk of injuries. If balance ability can be assessed simply and effectively, hikers can identify their weaknesses and conduct targeted training to improve their balance ability, thereby reducing injury risks. With the widespread use of smartphones and their built-in inertial sensors, this project aims to develop a simple Inertial Measurement Unit (IMU) balance measurement technique based on smartphones. This will provide hikers with an easy-to-use, low-cost tool for assessing balance ability, monitoring training effects in real-time, and continuously tracking balance ability through uploading cloud data uploads, facilitating personal athletic performance.Keywords: balance, IMU, smartphone, wearable devices
Procedia PDF Downloads 45725 Bilateral Thalamic Hypodense Lesions in Computing Tomography
Authors: Angelis P. Barlampas
Abstract:
Purpose of Learning Objective: This case depicts the need for cooperation between the emergency department and the radiologist to achieve the best diagnostic result for the patient. The clinical picture must correlate well with the radiology report and when it does not, this is not necessarily someone’s fault. Careful interpretation and good knowledge of the limitations, advantages and disadvantages of each imaging procedure are essential for the final diagnostic goal. Methods or Background: A patient was brought to the emergency department by their relatives. He was suddenly confused and his mental status was altered. He hadn't any history of mental illness and was otherwise healthy. A computing tomography scan without contrast was done, but it was unremarkable. Because of high clinical suspicion of probable neurologic disease, he was admitted to the hospital. Results or Findings: Another T was done after 48 hours. It showed a hypodense region in both thalamic areas. Taking into account that the first CT was normal, but the initial clinical picture of the patient was alerting of something wrong, the repetitive CT exam is highly suggestive of a probable diagnosis of bilateral thalamic infractions. Differential diagnosis: Primary bilateral thalamic glioma, Wernicke encephalopathy, osmotic myelinolysis, Fabry disease, Wilson disease, Leigh disease, West Nile encephalitis, Greutzfeldt Jacob disease, top of the basilar syndrome, deep venous thrombosis, mild to moderate cerebral hypotension, posterior reversible encephalopathy syndrome, Neurofibromatosis type 1. Conclusion: As is the case of limitations for any imaging procedure, the same applies to CT. The acute ischemic attack can not depict on CT. A period of 24 to 48 hours has to elapse before any abnormality can be seen. So, despite the fact that there are no obvious findings of an ischemic episode, like paresis or imiparesis, one must be careful not to attribute the patient’s clinical signs to other conditions, such as toxic effects, metabolic disorders, psychiatric symptoms, etc. Further investigation with MRI or at least a repeated CT must be done.Keywords: CNS, CT, thalamus, emergency department
Procedia PDF Downloads 125724 Active Learning Based on Science Experiments to Improve Scientific Literacy
Authors: Kunihiro Kamataki
Abstract:
In this study, active learning based on simple science experiments was developed in a university class of the freshman, in order to improve their scientific literacy. Through the active learning based on simple experiments of generation of cloud in a plastic bottle, students increased the interest in the global atmospheric problem and were able to discuss and find solutions about this problem positively from various viewpoints of the science technology, the politics, the economy, the diplomacy and the relations among nations. The results of their questionnaires and free descriptions of this class indicate that they improve the scientific literacy and motivations of other classroom lectures to acquire knowledge. It is thus suggested that the science experiment is strong tool to improve their intellectual curiosity rapidly and the connections that link the impression of science experiment and their interest of the social problem is very important to enhance their learning effect in this education.Keywords: active learning, scientific literacy, simple scientific experiment, university education
Procedia PDF Downloads 263723 Estimating Tree Height and Forest Classification from Multi Temporal Risat-1 HH and HV Polarized Satellite Aperture Radar Interferometric Phase Data
Authors: Saurav Kumar Suman, P. Karthigayani
Abstract:
In this paper the height of the tree is estimated and forest types is classified from the multi temporal RISAT-1 Horizontal-Horizontal (HH) and Horizontal-Vertical (HV) Polarised Satellite Aperture Radar (SAR) data. The novelty of the proposed project is combined use of the Back-scattering Coefficients (Sigma Naught) and the Coherence. It uses Water Cloud Model (WCM). The approaches use two main steps. (a) Extraction of the different forest parameter data from the Product.xml, BAND-META file and from Grid-xxx.txt file come with the HH & HV polarized data from the ISRO (Indian Space Research Centre). These file contains the required parameter during height estimation. (b) Calculation of the Vegetation and Ground Backscattering, Coherence and other Forest Parameters. (c) Classification of Forest Types using the ENVI 5.0 Tool and ROI (Region of Interest) calculation.Keywords: RISAT-1, classification, forest, SAR data
Procedia PDF Downloads 408722 Neuronal Networks for the Study of the Effects of Cosmic Rays on Climate Variations
Authors: Jossitt Williams Vargas Cruz, Aura Jazmín Pérez Ríos
Abstract:
The variations of solar dynamics have become a relevant topic of study due to the effects of climate changes generated on the earth. One of the most disconcerting aspects is the variability that the sun has on the climate is the role played by sunspots (extra-atmospheric variable) in the modulation of the Cosmic Rays CR (extra-atmospheric variable). CRs influence the earth's climate by affecting cloud formation (atmospheric variable), and solar cycle influence is associated with the presence of solar storms, and the magnetic activity is greater, resulting in less CR entering the earth's atmosphere. The different methods of climate prediction in Colombia do not take into account the extra-atmospheric variables. Therefore, correlations between atmospheric and extra-atmospheric variables were studied in order to implement a Python code based on neural networks to make the prediction of the extra-atmospheric variable with the highest correlation.Keywords: correlations, cosmic rays, sun, sunspots and variations.
Procedia PDF Downloads 80721 Detection of Adulterants in Milk Using IoT
Authors: Shaik Mohammad Samiullah Shariff, Siva Sreenath, Sai Haripriya, Prathyusha, M. Padma Lalitha
Abstract:
The Internet of Things (IoT) is the emerging technology that has been utilized to extend the possibilities for smart dairy farming (SDF). Milk consumption is continually increasing due to the world's growing population. As a result, some providers are prone to using dishonest measures to close the supply-demand imbalance, such as adding adulterants to milk. To identify the presence of adulterants in milk, traditional testing methods necessitate the use of particular chemicals and equipment. While efficient, this method has the disadvantage of yielding difficult and time-consuming qualitative results. Furthermore, same milk sample cannot be tested for other adulterants later. As a result, this study proposes an IoT-based approach for identifying adulterants in milk by measuring electrical conductivity (EC) or Total Dissolved Solids (TDS) and PH. In order to achieve this, an Arduino UNO microcontroller is used to assess the contaminants. When there is no adulteration, the pH and TDS values of milk range from 6.45 to 6.67 and 750 to 780ppm, respectively, according to this study. Finally, the data is uploaded to the cloud via an IoT device attached to the Ubidot web platform.Keywords: internet of things (IoT), pH sensor, TDS sensor, EC sensor, industry 4.0
Procedia PDF Downloads 82720 Big Data Applications for the Transport Sector
Authors: Antonella Falanga, Armando Cartenì
Abstract:
Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, cloud computing, decision-making, mobility demand, transportation
Procedia PDF Downloads 68719 Off-Line Text-Independent Arabic Writer Identification Using Optimum Codebooks
Authors: Ahmed Abdullah Ahmed
Abstract:
The task of recognizing the writer of a handwritten text has been an attractive research problem in the document analysis and recognition community with applications in handwriting forensics, paleography, document examination and handwriting recognition. This research presents an automatic method for writer recognition from digitized images of unconstrained writings. Although a great effort has been made by previous studies to come out with various methods, their performances, especially in terms of accuracy, are fallen short, and room for improvements is still wide open. The proposed technique employs optimal codebook based writer characterization where each writing sample is represented by a set of features computed from two codebooks, beginning and ending. Unlike most of the classical codebook based approaches which segment the writing into graphemes, this study is based on fragmenting a particular area of writing which are beginning and ending strokes. The proposed method starting with contour detection to extract significant information from the handwriting and the curve fragmentation is then employed to categorize the handwriting into Beginning and Ending zones into small fragments. The similar fragments of beginning strokes are grouped together to create Beginning cluster, and similarly, the ending strokes are grouped to create the ending cluster. These two clusters lead to the development of two codebooks (beginning and ending) by choosing the center of every similar fragments group. Writings under study are then represented by computing the probability of occurrence of codebook patterns. The probability distribution is used to characterize each writer. Two writings are then compared by computing distances between their respective probability distribution. The evaluations carried out on ICFHR standard dataset of 206 writers using Beginning and Ending codebooks separately. Finally, the Ending codebook achieved the highest identification rate of 98.23%, which is the best result so far on ICFHR dataset.Keywords: off-line text-independent writer identification, feature extraction, codebook, fragments
Procedia PDF Downloads 514718 Big Data Applications for Transportation Planning
Authors: Antonella Falanga, Armando Cartenì
Abstract:
"Big data" refers to extremely vast and complex sets of data, encompassing extraordinarily large and intricate datasets that require specific tools for meaningful analysis and processing. These datasets can stem from diverse origins like sensors, mobile devices, online transactions, social media platforms, and more. The utilization of big data is pivotal, offering the chance to leverage vast information for substantial advantages across diverse fields, thereby enhancing comprehension, decision-making, efficiency, and fostering innovation in various domains. Big data, distinguished by its remarkable attributes of enormous volume, high velocity, diverse variety, and significant value, represent a transformative force reshaping the industry worldwide. Their pervasive impact continues to unlock new possibilities, driving innovation and advancements in technology, decision-making processes, and societal progress in an increasingly data-centric world. The use of these technologies is becoming more widespread, facilitating and accelerating operations that were once much more complicated. In particular, big data impacts across multiple sectors such as business and commerce, healthcare and science, finance, education, geography, agriculture, media and entertainment and also mobility and logistics. Within the transportation sector, which is the focus of this study, big data applications encompass a wide variety, spanning across optimization in vehicle routing, real-time traffic management and monitoring, logistics efficiency, reduction of travel times and congestion, enhancement of the overall transportation systems, but also mitigation of pollutant emissions contributing to environmental sustainability. Meanwhile, in public administration and the development of smart cities, big data aids in improving public services, urban planning, and decision-making processes, leading to more efficient and sustainable urban environments. Access to vast data reservoirs enables deeper insights, revealing hidden patterns and facilitating more precise and timely decision-making. Additionally, advancements in cloud computing and artificial intelligence (AI) have further amplified the potential of big data, enabling more sophisticated and comprehensive analyses. Certainly, utilizing big data presents various advantages but also entails several challenges regarding data privacy and security, ensuring data quality, managing and storing large volumes of data effectively, integrating data from diverse sources, the need for specialized skills to interpret analysis results, ethical considerations in data use, and evaluating costs against benefits. Addressing these difficulties requires well-structured strategies and policies to balance the benefits of big data with privacy, security, and efficient data management concerns. Building upon these premises, the current research investigates the efficacy and influence of big data by conducting an overview of the primary and recent implementations of big data in transportation systems. Overall, this research allows us to conclude that big data better provide to enhance rational decision-making for mobility choices and is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, public transport, sustainable mobility, transport demand, transportation planning
Procedia PDF Downloads 63717 On Adaptive and Auto-Configurable Apps
Authors: Prisa Damrongsiri, Kittinan Pongpianskul, Mario Kubek, Herwig Unger
Abstract:
Apps are today the most important possibility to adapt mobile phones and computers to fulfill the special needs of their users. Location- and context-sensitive programs are hereby the key to support the interaction of the user with his/her environment and also to avoid an overload with a plenty of dispensable information. The contribution shows, how a trusted, secure and really bi-directional communication and interaction among users and their environment can be established and used, e.g. in the field of home automation.Keywords: apps, context-sensitive, location-sensitive, self-configuration, mobile computing, smart home
Procedia PDF Downloads 399716 Fueling Efficient Reporting And Decision-Making In Public Health With Large Data Automation In Remote Areas, Neno Malawi
Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Julia Huggins, Fabien Munyaneza
Abstract:
Background: Partners In Health – Malawi introduced one of Operational Researches called Primary Health Care (PHC) Surveys in 2020, which seeks to assess progress of delivery of care in the district. The study consists of 5 long surveys, namely; Facility assessment, General Patient, Provider, Sick Child, Antenatal Care (ANC), primarily conducted in 4 health facilities in Neno district. These facilities include Neno district hospital, Dambe health centre, Chifunga and Matope. Usually, these annual surveys are conducted from January, and the target is to present final report by June. Once data is collected and analyzed, there are a series of reviews that take place before reaching final report. In the first place, the manual process took over 9 months to present final report. Initial findings reported about 76.9% of the data that added up when cross-checked with paper-based sources. Purpose: The aim of this approach is to run away from manually pulling the data, do fresh analysis, and reporting often associated not only with delays in reporting inconsistencies but also with poor quality of data if not done carefully. This automation approach was meant to utilize features of new technologies to create visualizations, reports, and dashboards in Power BI that are directly fished from the data source – CommCare hence only require a single click of a ‘refresh’ button to have the updated information populated in visualizations, reports, and dashboards at once. Methodology: We transformed paper-based questionnaires into electronic using CommCare mobile application. We further connected CommCare Mobile App directly to Power BI using Application Program Interface (API) connection as data pipeline. This provided chance to create visualizations, reports, and dashboards in Power BI. Contrary to the process of manually collecting data in paper-based questionnaires, entering them in ordinary spreadsheets, and conducting analysis every time when preparing for reporting, the team utilized CommCare and Microsoft Power BI technologies. We utilized validations and logics in CommCare to capture data with less errors. We utilized Power BI features to host the reports online by publishing them as cloud-computing process. We switched from sharing ordinary report files to sharing the link to potential recipients hence giving them freedom to dig deep into extra findings within Power BI dashboards and also freedom to export to any formats of their choice. Results: This data automation approach reduced research timelines from the initial 9 months’ duration to 5. It also improved the quality of the data findings from the original 76.9% to 98.9%. This brought confidence to draw conclusions from the findings that help in decision-making and gave opportunities for further researches. Conclusion: These results suggest that automating the research data process has the potential of reducing overall amount of time spent and improving the quality of the data. On this basis, the concept of data automation should be taken into serious consideration when conducting operational research for efficiency and decision-making.Keywords: reporting, decision-making, power BI, commcare, data automation, visualizations, dashboards
Procedia PDF Downloads 122715 Classification of IoT Traffic Security Attacks Using Deep Learning
Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem
Abstract:
The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.Keywords: IoT, traffic security, deep learning, classification
Procedia PDF Downloads 157714 Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis
Authors: Adriano Araujo Carvalho, Arturo Alatrista Corrales
Abstract:
This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001.Keywords: energy and production data analysis, energy management, ISO 50001, wastewater treatment plant energy analysis
Procedia PDF Downloads 201713 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems
Authors: Nikolaos Georgoulopoulos, Alkis Hatzopoulos, Konstantinos Karamitsios, Konstantinos Kotrotsios, Alexandros I. Metsai
Abstract:
In modern server systems, business critical applications run in different types of infrastructure, such as cloud systems, physical machines and virtualization. Often, due to high load and over time, various hardware faults occur in servers that translate to errors, resulting to malfunction or even server breakdown. CPU, RAM and hard drive (HDD) are the hardware parts that concern server administrators the most regarding errors. In this work, selected RAM, HDD and CPU errors, that have been observed or can be simulated in kernel ring buffer log files from two groups of Linux servers, are investigated. Moreover, a severity characterization is given for each error type. Better understanding of such errors can lead to more efficient analysis of kernel logs that are usually exploited for fault diagnosis and prediction. In addition, this work summarizes ways of simulating hardware errors in RAM and HDD, in order to test the error detection and correction mechanisms of a Linux server.Keywords: hardware errors, Kernel logs, Linux servers, RAM, hard disk, CPU
Procedia PDF Downloads 161712 Political Views and ICT in Tertiary Institutions in Achieving the Millennium Development Goals (MDGs)
Authors: Ibe Perpetual Nwakaego
Abstract:
The Millennium Development Goals (MDGs), were an integrated project formed to eradicate many unnatural situations the citizens of the third world country may found themselves in. The MDGs, to be a sustainable project for the future depends 100% on the actions of governments, multilateral institutions and civil society. This paper first looks at the political views on the MDGs and relates it to the current electoral situations around the country by underlining the drastic changes over the few months. The second part of the paper presents ICT in tertiary institutions as one of the solutions in terms of the success of the MDGs. ICT is vital in all phases of the educational process and development of the cloud connectivity is an added advantage of Information and Communication Technology (ICT) for sharing a common data bank for research purposes among UNICEF, RED CROSS, NPS, INEC, NMIC, and WHO. Finally, the paper concludes with areas that need twigging and recommendations for the tertiary institutions committed to delivering an ambitious set of goals. A combination of observation and document materials for data gathering was employed as the methodology for carrying out this research.Keywords: MDGs, ICT, database, politics
Procedia PDF Downloads 201711 Particle Jetting Induced by the Explosive Dispersal
Authors: Kun Xue, Lvlan Miu, Jiarui Li
Abstract:
Jetting structures are widely found in particle rings or shells dispersed by the central explosion. In contrast, some explosive dispersal of particles only results in a dispersed cloud without distinctive structures. Employing the coupling method of the compressible computational fluid mechanics and discrete element method (CCFD-DEM), we reveal the underlying physics governing the formation of the jetting structure, which is related to the competition between the shock compaction and gas infiltration, two major processes during the shock interaction with the granular media. If the shock compaction exceeds the gas infiltration, the discernable jetting structures are expected, precipitated by the agglomerates of fast-moving particles induced by the heterogenous network of force chains. Otherwise, particles are uniformly accelerated by the interstitial flows, and no distinguishable jetting structures are formed. We proceed to devise the phase map of the jetting formation in the space defined by two dimensionless parameters which characterize the timescales of the shock compaction and the gas infiltration, respectively.Keywords: compressible multiphase flows, DEM, granular jetting, pattern formation
Procedia PDF Downloads 81710 An Efficient Mitigation Plan to Encounter Various Vulnerabilities in Internet of Things Enterprises
Authors: Umesh Kumar Singh, Abhishek Raghuvanshi, Suyash Kumar Singh
Abstract:
As IoT networks gain popularity, they are more susceptible to security breaches. As a result, it is crucial to analyze the IoT platform as a whole from the standpoint of core security concepts. The Internet of Things relies heavily on wireless networks, which are well-known for being susceptible to a wide variety of attacks. This article provides an analysis of many techniques that may be used to identify vulnerabilities in the software and hardware associated with the Internet of Things (IoT). In the current investigation, an experimental setup is built with the assistance of server computers, client PCs, Internet of Things development boards, sensors, and cloud subscriptions. Through the use of network host scanning methods and vulnerability scanning tools, raw data relating to IoT-based applications and devices may be collected. Shodan is a tool that is used for scanning, and it is also used for effective vulnerability discovery in IoT devices as well as penetration testing. This article presents an efficient mitigation plan for encountering vulnerabilities in the Internet of Things.Keywords: internet of things, security, privacy, vulnerability identification, mitigation plan
Procedia PDF Downloads 47709 A Survey on Constraint Solving Approaches Using Parallel Architectures
Authors: Nebras Gharbi, Itebeddine Ghorbel
Abstract:
In the latest years and with the advancements of the multicore computing world, the constraint programming community tried to benefit from the capacity of new machines and make the best use of them through several parallel schemes for constraint solving. In this paper, we propose a survey of the different proposed approaches to solve Constraint Satisfaction Problems using parallel architectures. These approaches use in a different way a parallel architecture: the problem itself could be solved differently by several solvers or could be split over solvers.Keywords: constraint programming, parallel programming, constraint satisfaction problem, speed-up
Procedia PDF Downloads 324708 Parkinson’s Disease Hand-Eye Coordination and Dexterity Evaluation System
Authors: Wann-Yun Shieh, Chin-Man Wang, Ya-Cheng Shieh
Abstract:
This study aims to develop an objective scoring system to evaluate hand-eye coordination and hand dexterity for Parkinson’s disease. This system contains three boards, and each of them is implemented with the sensors to sense a user’s finger operations. The operations include the peg test, the block test, and the blind block test. A user has to use the vision, hearing, and tactile abilities to finish these operations, and the board will record the results automatically. These results can help the physicians to evaluate a user’s reaction, coordination, dexterity function. The results will be collected to a cloud database for further analysis and statistics. A researcher can use this system to obtain systematic, graphic reports for an individual or a group of users. Particularly, a deep learning model is developed to learn the features of the data from different users. This model will help the physicians to assess the Parkinson’s disease symptoms by a more intellective algorithm.Keywords: deep learning, hand-eye coordination, reaction, hand dexterity
Procedia PDF Downloads 70707 Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing
Authors: Mehdi Behbahani, Sebastian Rible, Charles Moulinec, Yvan Fournier, Mike Nicolai, Paolo Crosetto
Abstract:
Computational Fluid Dynamics blood-flow simulations are increasingly used to develop and validate blood-contacting medical devices. This study shows that numerical simulations can provide additional and accurate estimates of relevant hemodynamic indicators (e.g., recirculation zones or wall shear stresses), which may be difficult and expensive to obtain from in-vivo or in-vitro experiments. The most recent FDA (Food and Drug Administration) benchmark consisted of a simplified centrifugal blood pump model that contains fluid flow features as they are commonly found in these devices with a clear focus on highly turbulent phenomena. The FDA centrifugal blood pump study is composed of six test cases with different volumetric flow rates ranging from 2.5 to 7.0 liters per minute, pump speeds, and Reynolds numbers ranging from 210,000 to 293,000. Within the frame of this study different turbulence models were tested including RANS models, e.g. k-omega, k-epsilon and a Reynolds Stress Model (RSM) and, LES. The partitioners Hilbert, METIS, ParMETIS and SCOTCH were used to create an unstructured mesh of 76 million elements and compared in their efficiency. Computations were performed on the JUQUEEN BG/Q architecture applying the highly parallel flow solver Code SATURNE and typically using 32768 or more processors in parallel. Visualisations were performed by means of PARAVIEW. Different turbulence models including all six flow situations could be successfully analysed and validated against analytical considerations and from comparison to other data-bases. It showed that an RSM represents an appropriate choice with respect to modeling high-Reynolds number flow cases. Especially, the Rij-SSG (Speziale, Sarkar, Gatzki) variant turned out to be a good approach. Visualisation of complex flow features could be obtained and the flow situation inside the pump could be characterized.Keywords: blood flow, centrifugal blood pump, high performance computing, scalability, turbulence
Procedia PDF Downloads 384706 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint
Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar
Abstract:
Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine
Procedia PDF Downloads 88705 Risk Tolerance and Individual Worthiness Based on Simultaneous Analysis of the Cognitive Performance and Emotional Response to a Multivariate Situational Risk Assessment
Authors: Frederic Jumelle, Kelvin So, Didan Deng
Abstract:
A method and system for neuropsychological performance test, comprising a mobile terminal, used to interact with a cloud server which stores user information and is logged into by the user through the terminal device; the user information is directly accessed through the terminal device and is processed by artificial neural network, and the user information comprises user facial emotions information, performance test answers information and user chronometrics. This assessment is used to evaluate the cognitive performance and emotional response of the subject to a series of dichotomous questions describing various situations of daily life and challenging the users' knowledge, values, ethics, and principles. In industrial applications, the timing of this assessment will depend on the users' need to obtain a service from a provider, such as opening a bank account, getting a mortgage or an insurance policy, authenticating clearance at work, or securing online payments.Keywords: artificial intelligence, neurofinance, neuropsychology, risk management
Procedia PDF Downloads 141704 Growth Performance and Critical Supersaturation of Heterogeneous Condensation for High Concentration of Insoluble Sub-Micron Particles
Abstract:
Measuring the growth performance and critical supersaturation of particle group have a high reference value for constructing a supersaturated water vapor environment that can improve the removal efficiency of the high-concentration particle group. The critical supersaturation and the variation of the growth performance with supersaturation for high-concentration particles were measured by a flow cloud chamber. Findings suggest that the influence of particle concentration on the growth performance will reduce with the increase of supersaturation. Reducing residence time and increasing particle concentration have similar effects on the growth performance of the high-concentration particle group. Increasing particle concentration and shortening residence time will increase the critical supersaturation of the particle group. The critical supersaturation required to activate a high-concentration particle group is lower than that of the single-particle when the minimum particle size in the particle group is the same as that of a single particle.Keywords: sub-micron particles, heterogeneous condensation, critical supersaturation, nucleation
Procedia PDF Downloads 163703 Information Technologies in Human Resources Management - Selected Examples
Authors: A. Karasek
Abstract:
Rapid growth of Information Technologies (IT) has had huge influence on enterprises, and it has contributed to its promotion and increasingly extensive use in enterprises. Information Technologies have to a large extent determined the processes taking place in a enterprise; what is more, IT development has brought the need to adopt a brand new approach to human resources management in an enterprise. The use of IT in Human Resource Management (HRM) is of high importance due to the growing role of information and information technologies. The aim of this paper is to evaluate the use of information technologies in human resources management in enterprises. These practices will be presented in the following areas: Recruitment and selection, development and training, employee assessment, motivation, talent management, personnel service. Results of conducted survey show diversity of solutions applied in particular areas of human resource management. In the future, further development in this area should be expected, as well as integration of individual HRM areas, growing mobile-enabled HR processes and their transfer into the cloud. Presented IT solutions applied in HRM are highly innovative, which is of great significance due to their possible implementation in other enterprises.Keywords: e-HR, human resources management, HRM practices, HRMS, information technologies
Procedia PDF Downloads 355702 Use of Thermosonication to Obtain Minimally Processed Mosambi Juice
Authors: Ruby Siwach, Manish Kumar, Raman Seth
Abstract:
Extent of inactivation of pectin methylesterase (PME) in mosambi juice during thermal and thermosonication treatments was studied to obtain a minimally processed product. Effect of both treatments on cloud value, pH, titratable acidity, oBrix, and sensory attributes (flavour and taste) was studied. Thermal treatments (HT) were carried out at three temperatures 60, 70, and 80°C in a serological water bath for 5, 10, 15, and 20 min at each temperature. Thermosonication treatments (TS) were also given for same time-temperature combinations in water bath of a thermosonicator. Treated samples were stored in a deep freezer at 18°C for PME assay. PME activity of untreated sample was also assayed and residual PME activity and % loss in PME activity was calculated at each time-temperature combination. The extent of inactivation of PME increased with increase in treatment temperature and duration. Thermosonication treatments were found far more effective than thermal treatments of same time temperature combination in PME inactivation and retention of sensory attributes.Keywords: pectin methylesterase, heat inactivation kinetics, thermosonication, thermal treatment
Procedia PDF Downloads 433701 Creating Smart and Healthy Cities by Exploring the Potentials of Emerging Technologies and Social Innovation for Urban Efficiency: Lessons from the Innovative City of Boston
Authors: Mohammed Agbali, Claudia Trillo, Yusuf Arayici, Terrence Fernando
Abstract:
The wide-spread adoption of the Smart City concept has introduced a new era of computing paradigm with opportunities for city administrators and stakeholders in various sectors to re-think the concept of urbanization and development of healthy cities. With the world population rapidly becoming urban-centric especially amongst the emerging economies, social innovation will assist greatly in deploying emerging technologies to address the development challenges in core sectors of the future cities. In this context, sustainable health-care delivery and improved quality of life of the people is considered at the heart of the healthy city agenda. This paper examines the Boston innovation landscape from the perspective of smart services and innovation ecosystem for sustainable development, especially in transportation and healthcare. It investigates the policy implementation process of the Healthy City agenda and eHealth economy innovation based on the experience of Massachusetts’s City of Boston initiatives. For this purpose, three emerging areas are emphasized, namely the eHealth concept, the innovation hubs, and the emerging technologies that drive innovation. This was carried out through empirical analysis on results of public sector and industry-wide interviews/survey about Boston’s current initiatives and the enabling environment. The paper highlights few potential research directions for service integration and social innovation for deploying emerging technologies in the healthy city agenda. The study therefore suggests the need to prioritize social innovation as an overarching strategy to build sustainable Smart Cities in order to avoid technology lock-in. Finally, it concludes that the Boston example of innovation economy is unique in view of the existing platforms for innovation and proper understanding of its dynamics, which is imperative in building smart and healthy cities where quality of life of the citizenry can be improved.Keywords: computing paradigm, emerging technologies, equitable healthcare, healthy cities, open data, smart city, social innovation
Procedia PDF Downloads 338