Search results for: backtracking search algorithm
4528 An Exponential Field Path Planning Method for Mobile Robots Integrated with Visual Perception
Authors: Magdy Roman, Mostafa Shoeib, Mostafa Rostom
Abstract:
Global vision, whether provided by overhead fixed cameras, on-board aerial vehicle cameras, or satellite images can always provide detailed information on the environment around mobile robots. In this paper, an intelligent vision-based method of path planning and obstacle avoidance for mobile robots is presented. The method integrates visual perception with a new proposed field-based path-planning method to overcome common path-planning problems such as local minima, unreachable destination and unnecessary lengthy paths around obstacles. The method proposes an exponential angle deviation field around each obstacle that affects the orientation of a close robot. As the robot directs toward, the goal point obstacles are classified into right and left groups, and a deviation angle is exponentially added or subtracted to the orientation of the robot. Exponential field parameters are chosen based on Lyapunov stability criterion to guarantee robot convergence to the destination. The proposed method uses obstacles' shape and location, extracted from global vision system, through a collision prediction mechanism to decide whether to activate or deactivate obstacles field. In addition, a search mechanism is developed in case of robot or goal point is trapped among obstacles to find suitable exit or entrance. The proposed algorithm is validated both in simulation and through experiments. The algorithm shows effectiveness in obstacles' avoidance and destination convergence, overcoming common path planning problems found in classical methods.Keywords: path planning, collision avoidance, convergence, computer vision, mobile robots
Procedia PDF Downloads 1944527 Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area
Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom
Abstract:
Nowadays the promotion of the public transportation system in the Bangkok Metropolitan Area is increased such as the “Free Bus for Thai Citizen” Campaign and the prospect of the several MRT routes to increase the convenient and comfortable to the Bangkok Metropolitan area citizens. But citizens do not make full use of them it because the citizens are lack of the data and information and also the confident to the public transportation system of Thailand especially in the time and safety aspects. This research is the Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area by focusing on buses, BTS and MRT schedules/routes to give the most information to passengers. They can choose the way and the routes easily by using Dijkstra STAR Algorithm of Graph Theory which also shows the fare of the trip. This Application was evaluated by 30 normal users to find the mean and standard deviation of the developed system. Results of the evaluation showed that system is at a good level of satisfaction (4.20 and 0.40). From these results we can conclude that the system can be used properly and effectively according to the objective.Keywords: Dijkstra algorithm, graph theory, public transport, Bangkok metropolitan area
Procedia PDF Downloads 2474526 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain
Authors: M. Pushparani, A. Sagaya
Abstract:
Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.Keywords: embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems
Procedia PDF Downloads 2854525 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection
Authors: Leah Ning
Abstract:
This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.Keywords: breast cancer detection, AI, machine learning, algorithm
Procedia PDF Downloads 914524 An Analysis System for Integrating High-Throughput Transcript Abundance Data with Metabolic Pathways in Green Algae
Authors: Han-Qin Zheng, Yi-Fan Chiang-Hsieh, Chia-Hung Chien, Wen-Chi Chang
Abstract:
As the most important non-vascular plants, algae have many research applications, including high species diversity, biofuel sources, adsorption of heavy metals and, following processing, health supplements. With the increasing availability of next-generation sequencing (NGS) data for algae genomes and transcriptomes, an integrated resource for retrieving gene expression data and metabolic pathway is essential for functional analysis and systems biology in algae. However, gene expression profiles and biological pathways are displayed separately in current resources, and making it impossible to search current databases directly to identify the cellular response mechanisms. Therefore, this work develops a novel AlgaePath database to retrieve gene expression profiles efficiently under various conditions in numerous metabolic pathways. AlgaePath, a web-based database, integrates gene information, biological pathways, and next-generation sequencing (NGS) datasets in Chlamydomonasreinhardtii and Neodesmus sp. UTEX 2219-4. Users can identify gene expression profiles and pathway information by using five query pages (i.e. Gene Search, Pathway Search, Differentially Expressed Genes (DEGs) Search, Gene Group Analysis, and Co-Expression Analysis). The gene expression data of 45 and 4 samples can be obtained directly on pathway maps in C. reinhardtii and Neodesmus sp. UTEX 2219-4, respectively. Genes that are differentially expressed between two conditions can be identified in Folds Search. Furthermore, the Gene Group Analysis of AlgaePath includes pathway enrichment analysis, and can easily compare the gene expression profiles of functionally related genes in a map. Finally, Co-Expression Analysis provides co-expressed transcripts of a target gene. The analysis results provide a valuable reference for designing further experiments and elucidating critical mechanisms from high-throughput data. More than an effective interface to clarify the transcript response mechanisms in different metabolic pathways under various conditions, AlgaePath is also a data mining system to identify critical mechanisms based on high-throughput sequencing.Keywords: next-generation sequencing (NGS), algae, transcriptome, metabolic pathway, co-expression
Procedia PDF Downloads 4074523 Low-Complexity Multiplication Using Complement and Signed-Digit Recoding Methods
Authors: Te-Jen Chang, I-Hui Pan, Ping-Sheng Huang, Shan-Jen Cheng
Abstract:
In this paper, a fast multiplication computing method utilizing the complement representation method and canonical recoding technique is proposed. By performing complements and canonical recoding technique, the number of partial products can be reduced. Based on these techniques, we propose an algorithm that provides an efficient multiplication method. On average, our proposed algorithm is to reduce the number of k-bit additions from (0.25k+logk/k+2.5) to (k/6 +logk/k+2.5), where k is the bit-length of the multiplicand A and multiplier B. We can therefore efficiently speed up the overall performance of the multiplication. Moreover, if we use the new proposes to compute common-multiplicand multiplication, the computational complexity can be reduced from (0.5 k+2 logk/k+5) to (k/3+2 logk/k+5) k-bit additions.Keywords: algorithm design, complexity analysis, canonical recoding, public key cryptography, common-multiplicand multiplication
Procedia PDF Downloads 4354522 Collision Detection Algorithm Based on Data Parallelism
Authors: Zhen Peng, Baifeng Wu
Abstract:
Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability
Procedia PDF Downloads 2894521 Improved Color-Based K-Mean Algorithm for Clustering of Satellite Image
Authors: Sangeeta Yadav, Mantosh Biswas
Abstract:
In this paper, we proposed an improved color based K-mean algorithm for clustering of satellite Image (SAR). Our method comprises of two stages. The first step is an interactive selection process where users are required to input the number of colors (ncolor), number of clusters, and then they are prompted to select the points in each color cluster. In the second step these points are given as input to K-mean clustering algorithm that clusters the image based on color and Minimum Square Euclidean distance. The proposed method reduces the mixed pixel problem to a great extent.Keywords: cluster, ncolor method, K-mean method, interactive selection process
Procedia PDF Downloads 2974520 Literature Review on the Antibacterial Effects of Salvia officinalis L.
Authors: Benguerine Zohra, Merzak Siham, Pr. Chelghoum
Abstract:
Introduction: The widespread production and consumption of antibiotics have raised significant concerns due to various adverse effects and the development of bacterial resistance. This increasing resistance to currently available antibiotics necessitates the search for new antibacterial agents. One alternative strategy to combat antibiotic-resistant bacteria is the use of natural antimicrobial substances such as plant extracts. This study aims to provide an overview of the antibacterial effects of Salvia officinalis (sage), a plant native to the Middle East and Mediterranean regions. Materials and Methods: This review was conducted by searching studies in databases such as PubMed, Scopus, JSTOR, and SpringerLink. The search terms were “Salvia officinalis L.” and “antibacterial effects.” Only studies that met our inclusion criteria (in English, focusing on the antibacterial effects of Salvia officinalis L., and primarily dated from 2012 to 2023) were considered for further review. Results and Discussion: The initial search strategy identified approximately 78 references, of which only 13 articles were included in this review. The synthesis of these articles revealed that multiple data sources confirm the antimicrobial effects of S. officinalis. Its essential oil and alcoholic extract exhibit strong bactericidal and bacteriostatic effects against both Gram-positive and Gram-negative bacteria. Conclusion: The significant value of the extract, oil, and leaves of S. officinalis demands further studies on other useful and unknown properties of this multipurpose plant.Keywords: salvia officinalis, literature review, antibacterial., botany
Procedia PDF Downloads 304519 Vibration Control of a Flexible Structure Using MFC Actuator
Authors: Jinsiang Shaw, Jeng-Jie Huang
Abstract:
Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper employs a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to reject the disturbance. A notch filter with an adaptive tuning algorithm, the leaky filtered-X least mean square algorithm (leaky FXLMS algorithm), is developed and applied to the system. Experimental results show that the controller and MFC actuator was very effective in attenuating the structural vibration. Furthermore, this notch filter controller was compared with the traditional skyhook controller. It was found that its performance was better, with over 88% vibration suppression near the first resonant frequency of the structure.Keywords: macro-fiber composite, notch filter, skyhook controller, vibration suppression
Procedia PDF Downloads 4624518 Research on Straightening Process Model Based on Iteration and Self-Learning
Authors: Hong Lu, Xiong Xiao
Abstract:
Shaft parts are widely used in machinery industry, however, bending deformation often occurred when this kind of parts is being heat treated. This parts needs to be straightened to meet the requirement of straightness. As for the pressure straightening process, a good straightening stroke algorithm is related to the precision and efficiency of straightening process. In this paper, the relationship between straightening load and deflection during the straightening process is analyzed, and the mathematical model of the straightening process has been established. By the mathematical model, the iterative method is used to solve the straightening stroke. Compared to the traditional straightening stroke algorithm, straightening stroke calculated by this method is much more precise; because it can adapt to the change of material performance parameters. Considering that the straightening method is widely used in the mass production of the shaft parts, knowledge base is used to store the data of the straightening process, and a straightening stroke algorithm based on empirical data is set up. In this paper, the straightening process control model which combine the straightening stroke method based on iteration and straightening stroke algorithm based on empirical data has been set up. Finally, an experiment has been designed to verify the straightening process control model.Keywords: straightness, straightening stroke, deflection, shaft parts
Procedia PDF Downloads 3284517 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model
Authors: Donatella Giuliani
Abstract:
In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation
Procedia PDF Downloads 2174516 Examination Scheduling System with Proposed Algorithm
Authors: Tabrej Khan
Abstract:
Examination Scheduling System (ESS) is a scheduling system that targets as an exam committee in any academic institute to help them in managing the exams automatically. We present an algorithm for Examination Scheduling System. Nowadays, many universities have challenges with creating examination schedule fast with less confliction compared to hand works. Our aims are to develop a computerized system that can be used in examination scheduling in an academic institute versus available resources (Time, Hall, Invigilator and instructor) with no contradiction and achieve fairness among students. ESS was developed using HTML, C# language, Crystal Report and ASP.NET through Microsoft Visual Studio 2010 as developing tools with integrated SQL server database. This application can produce some benefits such as reducing the time spent in creating an exam schedule and achieving fairness among studentsKeywords: examination scheduling system (ESS), algorithm, ASP.NET, crystal report
Procedia PDF Downloads 4044515 Improving Search Engine Performance by Removing Indexes to Malicious URLs
Authors: Durga Toshniwal, Lokesh Agrawal
Abstract:
As the web continues to play an increasing role in information exchange, and conducting daily activities, computer users have become the target of miscreants which infects hosts with malware or adware for financial gains. Unfortunately, even a single visit to compromised web site enables the attacker to detect vulnerabilities in the user’s applications and force the downloading of multitude of malware binaries. We provide an approach to effectively scan the so-called drive-by downloads on the Internet. Drive-by downloads are result of URLs that attempt to exploit their visitors and cause malware to be installed and run automatically. To scan the web for malicious pages, the first step is to use a crawler to collect URLs that live on the Internet, and then to apply fast prefiltering techniques to reduce the amount of pages that are needed to be examined by precise, but slower, analysis tools (such as honey clients or antivirus programs). Although the technique is effective, it requires a substantial amount of resources. A main reason is that the crawler encounters many pages on the web that are legitimate and needs to be filtered. In this paper, to characterize the nature of this rising threat, we present implementation of a web crawler on Python, an approach to search the web more efficiently for pages that are likely to be malicious, filtering benign pages and passing remaining pages to antivirus program for detection of malwares. Our approaches starts from an initial seed of known, malicious web pages. Using these seeds, our system generates search engines queries to identify other malicious pages that are similar to the ones in the initial seed. By doing so, it leverages the crawling infrastructure of search engines to retrieve URLs that are much more likely to be malicious than a random page on the web. The results shows that this guided approach is able to identify malicious web pages more efficiently when compared to random crawling-based approaches.Keywords: web crawler, malwares, seeds, drive-by-downloads, security
Procedia PDF Downloads 2294514 A Comparative Analysis of Asymmetric Encryption Schemes on Android Messaging Service
Authors: Mabrouka Algherinai, Fatma Karkouri
Abstract:
Today, Short Message Service (SMS) is an important means of communication. SMS is not only used in informal environment for communication and transaction, but it is also used in formal environments such as institutions, organizations, companies, and business world as a tool for communication and transactions. Therefore, there is a need to secure the information that is being transmitted through this medium to ensure security of information both in transit and at rest. But, encryption has been identified as a means to provide security to SMS messages in transit and at rest. Several past researches have proposed and developed several encryption algorithms for SMS and Information Security. This research aims at comparing the performance of common Asymmetric encryption algorithms on SMS security. The research employs the use of three algorithms, namely RSA, McEliece, and RABIN. Several experiments were performed on SMS of various sizes on android mobile device. The experimental results show that each of the three techniques has different key generation, encryption, and decryption times. The efficiency of an algorithm is determined by the time that it takes for encryption, decryption, and key generation. The best algorithm can be chosen based on the least time required for encryption. The obtained results show the least time when McEliece size 4096 is used. RABIN size 4096 gives most time for encryption and so it is the least effective algorithm when considering encryption. Also, the research shows that McEliece size 2048 has the least time for key generation, and hence, it is the best algorithm as relating to key generation. The result of the algorithms also shows that RSA size 1024 is the most preferable algorithm in terms of decryption as it gives the least time for decryption.Keywords: SMS, RSA, McEliece, RABIN
Procedia PDF Downloads 1634513 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping
Authors: Delowar Hossain, Genci Capi
Abstract:
This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.Keywords: deep learning, genetic algorithm, object recognition, robot grasping
Procedia PDF Downloads 3534512 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm
Procedia PDF Downloads 4264511 A Method for Compression of Short Unicode Strings
Authors: Masoud Abedi, Abbas Malekpour, Peter Luksch, Mohammad Reza Mojtabaei
Abstract:
The use of short texts in communication has been greatly increasing in recent years. Applying different languages in short texts has led to compulsory use of Unicode strings. These strings need twice the space of common strings, hence, applying algorithms of compression for the purpose of accelerating transmission and reducing cost is worthwhile. Nevertheless, other compression methods like gzip, bzip2 or PAQ due to high overhead data size are not appropriate. The Huffman algorithm is one of the rare algorithms effective in reducing the size of short Unicode strings. In this paper, an algorithm is proposed for compression of very short Unicode strings. At first, every new character to be sent to a destination is inserted in the proposed mapping table. At the beginning, every character is new. In case the character is repeated for the same destination, it is not considered as a new character. Next, the new characters together with the mapping value of repeated characters are arranged through a specific technique and specially formatted to be transmitted. The results obtained from an assessment made on a set of short Persian and Arabic strings indicate that this proposed algorithm outperforms the Huffman algorithm in size reduction.Keywords: Algorithms, Data Compression, Decoding, Encoding, Huffman Codes, Text Communication
Procedia PDF Downloads 3484510 Non-Dominated Sorting Genetic Algorithm (NSGA-II) for the Redistricting Problem in Mexico
Authors: Antonin Ponsich, Eric Alfredo Rincon Garcia, Roman Anselmo Mora Gutierrez, Miguel Angel Gutierrez Andrade, Sergio Gerardo De Los Cobos Silva, Pedro Lara Velzquez
Abstract:
The electoral zone design problem consists in redrawing the boundaries of legislative districts for electoral purposes in such a way that federal or state requirements are fulfilled. In Mexico, this process has been historically carried out by the National Electoral Institute (INE), by optimizing an integer nonlinear programming model, in which population equality and compactness of the designed districts are considered as two conflicting objective functions, while contiguity is included as a hard constraint. The solution technique used by the INE is a Simulated Annealing (SA) based algorithm, which handles the multi-objective nature of the problem through an aggregation function. The present work represents the first intent to apply a classical Multi-Objective Evolutionary Algorithm (MOEA), the second version of the Non-dominated Sorting Genetic Algorithm (NSGA-II), to this hard combinatorial problem. First results show that, when compared with the SA algorithm, the NSGA-II obtains promising results. The MOEA manages to produce well-distributed solutions over a wide-spread front, even though some convergence troubles for some instances constitute an issue, which should be corrected in future adaptations of MOEAs to the redistricting problem.Keywords: multi-objective optimization, NSGA-II, redistricting, zone design problem
Procedia PDF Downloads 3674509 Application of Hybrid Honey Bees Mating Optimization Algorithm in Multiuser Detection of Wireless Communication Systems
Abstract:
Wireless communication systems have changed dramatically and shown spectacular evolution over the past two decades. These radio technologies are engaged in a quest endless high-speed transmission coupled to a constant need to improve transmission quality. Various radio communication systems being developed use code division multiple access (CDMA) technique. This work analyses a hybrid honey bees mating optimization algorithm (HBMO) applied to multiuser detection (MuD) in CDMA communication systems. The HBMO is a swarm-based optimization algorithm, which simulates the mating process of real honey bees. We apply a hybridization of HBMO with simulated annealing (SA) in order to improve the solution generated by the HBMO. Simulation results show that the detection based on Hybrid HBMO, in term of bit error rate (BER), is viable option when compared with the classic detectors from literature under Rayleigh flat fading channel.Keywords: BER, DS-CDMA multiuser detection, genetic algorithm, hybrid HBMO, simulated annealing
Procedia PDF Downloads 4354508 Use of Improved Genetic Algorithm in Cloud Computing to Reduce Energy Consumption in Migration of Virtual Machines
Authors: Marziyeh Bahrami, Hamed Pahlevan Hsseini, Behnam Ghamami, Arman Alvanpour, Hamed Ezzati, Amir Salar Sadeghi
Abstract:
One of the ways to increase the efficiency of services in the system of agents and, of course, in the world of cloud computing, is to use virtualization techniques. The aim of this research is to create changes in cloud computing services that will reduce as much as possible the energy consumption related to the migration of virtual machines and, in some way, the energy related to the allocation of resources and reduce the amount of pollution. So far, several methods have been proposed to increase the efficiency of cloud computing services in order to save energy in the cloud environment. The method presented in this article tries to prevent energy consumption by data centers and the subsequent production of carbon and biological pollutants as much as possible by increasing the efficiency of cloud computing services. The results show that the proposed algorithm, using the improvement in virtualization techniques and with the help of a genetic algorithm, improves the efficiency of cloud services in the matter of migrating virtual machines and finally saves consumption. becomes energy.Keywords: consumption reduction, cloud computing, genetic algorithm, live migration, virtual Machine
Procedia PDF Downloads 604507 Fruit Identification System in Sweet Orange Citrus (L.) Osbeck Using Thermal Imaging and Fuzzy
Authors: Ingrid Argote, John Archila, Marcelo Becker
Abstract:
In agriculture, intelligent systems applications have generated great advances in automating some of the processes in the production chain. In order to improve the efficiency of those systems is proposed a vision system to estimate the amount of fruits in sweet orange trees. This work presents a system proposal using capture of thermal images and fuzzy logic. A bibliographical review has been done to analyze the state-of-the-art of the different systems used in fruit recognition, and also the different applications of thermography in agricultural systems. The algorithm developed for this project uses the metrics of the fuzzines parameter to the contrast improvement and segmentation of the image, for the counting algorith m was used the Hough transform. In order to validate the proposed algorithm was created a bank of images of sweet orange Citrus (L.) Osbeck acquired in the Maringá Farm. The tests with the algorithm Indicated that the variation of the tree branch temperature and the fruit is not very high, Which makes the process of image segmentation using this differentiates, This Increases the amount of false positives in the fruit counting algorithm. Recognition of fruits isolated with the proposed algorithm present an overall accuracy of 90.5 % and grouped fruits. The accuracy was 81.3 %. The experiments show the need for a more suitable hardware to have a better recognition of small temperature changes in the image.Keywords: Agricultural systems, Citrus, Fuzzy logic, Thermal images.
Procedia PDF Downloads 2294506 Optimization of Flexible Job Shop Scheduling Problem with Sequence-Dependent Setup Times Using Genetic Algorithm Approach
Authors: Sanjay Kumar Parjapati, Ajai Jain
Abstract:
This paper presents optimization of makespan for ‘n’ jobs and ‘m’ machines flexible job shop scheduling problem with sequence dependent setup time using genetic algorithm (GA) approach. A restart scheme has also been applied to prevent the premature convergence. Two case studies are taken into consideration. Results are obtained by considering crossover probability (pc = 0.85) and mutation probability (pm = 0.15). Five simulation runs for each case study are taken and minimum value among them is taken as optimal makespan. Results indicate that optimal makespan can be achieved with more than one sequence of jobs in a production order.Keywords: flexible job shop, genetic algorithm, makespan, sequence dependent setup times
Procedia PDF Downloads 3324505 Unseen Classes: The Paradigm Shift in Machine Learning
Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan
Abstract:
Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery
Procedia PDF Downloads 1724504 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm
Authors: Haozhe Xiang
Abstract:
With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.Keywords: deep learning, graph convolutional network, attention mechanism, LSTM
Procedia PDF Downloads 704503 Secure Hashing Algorithm and Advance Encryption Algorithm in Cloud Computing
Authors: Jaimin Patel
Abstract:
Cloud computing is one of the most sharp and important movement in various computing technologies. It provides flexibility to users, cost effectiveness, location independence, easy maintenance, enables multitenancy, drastic performance improvements, and increased productivity. On the other hand, there are also major issues like security. Being a common server, security for a cloud is a major issue; it is important to provide security to protect user’s private data, and it is especially important in e-commerce and social networks. In this paper, encryption algorithms such as Advanced Encryption Standard algorithms, their vulnerabilities, risk of attacks, optimal time and complexity management and comparison with other algorithms based on software implementation is proposed. Encryption techniques to improve the performance of AES algorithms and to reduce risk management are given. Secure Hash Algorithms, their vulnerabilities, software implementations, risk of attacks and comparison with other hashing algorithms as well as the advantages and disadvantages between hashing techniques and encryption are given.Keywords: Cloud computing, encryption algorithm, secure hashing algorithm, brute force attack, birthday attack, plaintext attack, man in middle attack
Procedia PDF Downloads 2804502 Optimal Design of Substation Grounding Grid Based on Genetic Algorithm Technique
Authors: Ahmed Z. Gabr, Ahmed A. Helal, Hussein E. Said
Abstract:
With the incessant increase of power systems capacity and voltage grade, the safety of grounding grid becomes more and more prominent. In this paper, the designing substation grounding grid is presented by means of genetic algorithm (GA). This approach purposes to control the grounding cost of the power system with the aid of controlling grounding rod number and conductor lengths under the same safety limitations. The proposed technique is used for the design of the substation grounding grid in Khalda Petroleum Company “El-Qasr” power plant and the design was simulated by using CYMGRD software for results verification. The result of the design is highly complying with IEEE 80-2000 standard requirements.Keywords: genetic algorithm, optimum grounding grid design, power system analysis, power system protection, single layer model, substation
Procedia PDF Downloads 5344501 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion
Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang
Abstract:
Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.Keywords: roads, defect detection, visualization, deep learning
Procedia PDF Downloads 64500 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm
Authors: Abdullah A. AlShaher
Abstract:
In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.Keywords: character recognition, regression curves, handwritten Arabic letters, expectation maximization algorithm
Procedia PDF Downloads 1454499 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration
Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich
Abstract:
Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.Keywords: optimization, zero-coupon curve, Nelson-Siegel-Svensson, particle swarm optimization, Nelder-Mead algorithm
Procedia PDF Downloads 430