Search results for: evaluated statistically
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7070

Search results for: evaluated statistically

290 Evaluation in Vitro and in Silico of Pleurotus ostreatus Capacity to Decrease the Amount of Low-Density Polyethylene Microplastics Present in Water Sample from the Middle Basin of the Magdalena River, Colombia

Authors: Loren S. Bernal., Catalina Castillo, Carel E. Carvajal, José F. Ibla

Abstract:

Plastic pollution, specifically microplastics, has become a significant issue in aquatic ecosystems worldwide. The large amount of plastic waste carried by water tributaries has resulted in the accumulation of microplastics in water bodies. The polymer aging process caused by environmental influences such as photodegradation and chemical degradation of additives leads to polymer embrittlement and properties change that require degradation or reduction procedures in rivers. However, there is a lack of such procedures for freshwater entities that develop over extended periods. The aim of this study is evaluate the potential of Pleurotus ostreatus a fungus, in reducing lowdensity polyethylene microplastics present in freshwater samples collected from the middle basin of the Magdalena River in Colombia. The study aims to evaluate this process both in vitro and in silico by identifying the growth capacity of Pleurotus ostreatus in the presence of microplastics and identifying the most likely interactions of Pleurotus ostreatus enzymes and their affinity energies. The study follows an engineering development methodology applied on an experimental basis. The in vitro evaluation protocol applied in this study focused on the growth capacity of Pleurotus ostreatus on microplastics using enzymatic inducers. In terms of in silico evaluation, molecular simulations were conducted using the Autodock 1.5.7 program to calculate interaction energies. The molecular dynamics were evaluated by using the myPresto Portal and GROMACS program to calculate radius of gyration and Energies.The results of the study showed that Pleurotus ostreatus has the potential to degrade low-density polyethylene microplastics. The in vitro evaluation revealed the adherence of Pleurotus ostreatus to LDPE using scanning electron microscopy. The best results were obtained with enzymatic inducers as a MnSO4 generating the activation of laccase or manganese peroxidase enzymes in the degradation process. The in silico modelling demonstrated that Pleurotus ostreatus was able to interact with the microplastics present in LDPE, showing affinity energies in molecular docking and molecular dynamics shown a minimum energy and the representative radius of gyration between each enzyme and its substract. The study contributes to the development of bioremediation processes for the removal of microplastics from freshwater sources using the fungus Pleurotus ostreatus. The in silico study provides insights into the affinity energies of Pleurotus ostreatus microplastic degrading enzymes and their interaction with low-density polyethylene. The study demonstrated that Pleurotus ostreatus can interact with LDPE microplastics, making it a good agent for the development of bioremediation processes that aid in the recovery of freshwater sources. The results of the study suggested that bioremediation could be a promising approach to reduce microplastics in freshwater systems.

Keywords: bioremediation, in silico modelling, microplastics, Pleurotus ostreatus

Procedia PDF Downloads 88
289 Natural Fibers Design Attributes

Authors: Brayan S. Pabón, R. Ricardo Moreno, Edith Gonzalez

Abstract:

Inside the wide Colombian natural fiber set is the banana stem leaf, known as Calceta de Plátano, which is a material present in several regions of the country and is a fiber extracted from the pseudo stem of the banana plant (Musa paradisiaca) as a regular maintenance process. Colombia had a production of 2.8 million tons in 2007 and 2008 corresponding to 8.2% of the international production, number that is growing. This material was selected to be studied because it is not being used by farmers due to it being perceived as a waste from the banana harvest and a propagation pest agent inside the planting. In addition, the Calceta does not have industrial applications in Colombia since there is not enough concrete knowledge that informs us about the properties of the material and the possible applications it could have. Based on this situation the industrial design is used as a link between the properties of the material and the need to transform it into industrial products for the market. Therefore, the project identifies potential design attributes that the banana stem leaf can have for product development. The methodology was divided into 2 main chapters: Methodology for the material recognition: -Data Collection, inquiring the craftsmen experience and bibliography. -Knowledge in practice, with controlled experiments and validation tests. -Creation of design attributes and material profile according to the knowledge developed. Moreover, the Design methodology: -Application fields selection, exploring the use of the attributes and the relation with product functions. -Evaluating the possible fields and selection of the optimum application. -Design Process with sketching, ideation, and product development. Different protocols were elaborated to qualitatively determine some material properties of the Calceta, and if they could be designated as design attributes. Once defined, performed and analyzed the validation protocols, 25 design attributes were identified and classified into 4 attribute categories (Environmental, Functional, Aesthetics and Technical) forming the material profile. Then, 15 application fields were defined based on the relation between functions of product and the use of the Calceta attributes. Those fields were evaluated to measure how much are being used the functional attributes. After fields evaluation, a final field was defined , influenced by traditional use of the fiber for packing food. As final result, two products were designed for this application field. The first one is the Multiple Container, which works to contain small or large-thin pieces of food, like potatoes chips or small sausages; it allows the consumption of food with sauces or dressings. The second is the Chorizo container, specifically designed for this food due to the long shape and the consumption mode. Natural fiber research allows the generation of a solider and a more complete knowledge about natural fibers. In addition, the research is a way to strengthen the identity through the investigation of the proper and autochthonous, allowing the use of national resources in a sustainable and creative way. Using divergent thinking and the design as a tool, this investigation can achieve advances in the natural fiber handling.

Keywords: banana stem leaf, Calceta de Plátano, design attributes, natural fibers, product design

Procedia PDF Downloads 229
288 Single Cell Rna Sequencing Operating from Benchside to Bedside: An Interesting Entry into Translational Genomics

Authors: Leo Nnamdi Ozurumba-Dwight

Abstract:

Single-cell genomic analytical systems have proved to be a platform to isolate bulk cells into selected single cells for genomic, proteomic, and related metabolomic studies. This is enabling systematic investigations of the level of heterogeneity in a diverse and wide pool of cell populations. Single cell technologies, embracing techniques such as high parameter flow cytometry, single-cell sequencing, and high-resolution images are playing vital roles in these investigations on messenger ribonucleic acid (mRNA) molecules and related gene expressions in tracking the nature and course of disease conditions. This entails targeted molecular investigations on unit cells that help us understand cell behavoiur and expressions, which can be examined for their health implications on the health state of patients. One of the vital good sides of single-cell RNA sequencing (scRNA seq) is its probing capacity to detect deranged or abnormal cell populations present within homogenously perceived pooled cells, which would have evaded cursory screening on the pooled cell populations of biological samples obtained as part of diagnostic procedures. Despite conduction of just single-cell transcriptome analysis, scRNAseq now permits comparison of the transcriptome of the individual cells, which can be evaluated for gene expressional patterns that depict areas of heterogeneity with pharmaceutical drug discovery and clinical treatment applications. It is vital to strictly work through the tools of investigations from wet lab to bioinformatics and computational tooled analyses. In the precise steps for scRNAseq, it is critical to do thorough and effective isolation of viable single cells from the tissues of interest using dependable techniques (such as FACS) before proceeding to lysis, as this enhances the appropriate picking of quality mRNA molecules for subsequent sequencing (such as by the use of Polymerase Chain Reaction machine). Interestingly, scRNAseq can be deployed to analyze various types of biological samples such as embryos, nervous systems, tumour cells, stem cells, lymphocytes, and haematopoietic cells. In haematopoietic cells, it can be used to stratify acute myeloid leukemia patterns in patients, sorting them out into cohorts that enable re-modeling of treatment regimens based on stratified presentations. In immunotherapy, it can furnish specialist clinician-immunologist with tools to re-model treatment for each patient, an attribute of precision medicine. Finally, the good predictive attribute of scRNAseq can help reduce the cost of treatment for patients, thus attracting more patients who would have otherwise been discouraged from seeking quality clinical consultation help due to perceived high cost. This is a positive paradigm shift for patients’ attitudes primed towards seeking treatment.

Keywords: immunotherapy, transcriptome, re-modeling, mRNA, scRNA-seq

Procedia PDF Downloads 146
287 Evaluating an Educational Intervention to Reduce Pesticide Exposure Among Farmers in Nigeria

Authors: Gift Udoh, Diane S. Rohlman, Benjamin Sindt

Abstract:

BACKGROUND: There is concern regarding the widespread use of pesticides and impacts on public health. Farmers in Nigeria frequently apply pesticides, including organophosphate pesticides which are known neurotoxicants. They receive little guidance on how much to apply or information about safe handling practices. Pesticide poisoning is one of the major hazards that farmers face in Nigeria. Farmers continue to use highly neurotoxic pesticides for agricultural activities. Because farmers receive little or no information on safe handling and how much to apply, they continue to develop severe and mild illnesses caused by high exposures to pesticides. The project aimed to reduce pesticide exposure among rural farmers in Nigeria by identifying hazards associated with pesticide use and developing and pilot testing training to reduce exposures to pesticides utilizing the hierarchy of controls system. METHODS: Information on pesticide knowledge, behaviors, barriers to safety, and prevention methods was collected from farmers in Nigeria through workplace observations, questionnaires, and interviews. Pre and post-surveys were used to measure farmer’s knowledge before and after the delivery of pesticide safety training. Training topics included the benefits and risks of using pesticides, routes of exposure and health effects, pesticide label activity, use and selection of PPE, ways to prevent exposure and information on local resources. The training was evaluated among farmers and changes in knowledge, attitudes and behaviors were collected prior to and following the training. RESULTS: The training was administered to 60 farmers, a mean age of 35, with a range of farming experience (<1 year to > 50 years). There was an overall increase in knowledge after the training. In addition, farmers perceived a greater immediate risk from exposure to pesticides and their perception of their personal risk increased. For example, farmers believed that pesticide risk is greater to children than to adults, recognized that just because a pesticide is put on the market doesn’t mean it is safe, and they were more confident that they could get advice about handling pesticides. Also, there was greater awareness about behaviors that can increase their exposure (mixing pesticides with bare hands, eating food in the field, not washing hands before eating after applying pesticides, walking in fields recently sprayed, splashing pesticides on their clothes, pesticide storage). CONCLUSION: These results build on existing evidence from a 2022 article highlighting the need for pesticide safety training in Nigeria which suggested that pesticide safety educational programs should focus on community-based, grassroots-style, and involve a family-oriented approach. Educating farmers on agricultural safety while letting them share their experiences with their peers is an effective way of creating awareness on the dangers associated with handling pesticides. Also, for rural communities, especially in Nigeria, pesticide safety pieces of training may not be able to reach some locations, so intentional scouting of rural farming communities and delivering pesticide safety training will improve knowledge of pesticide hazards. There is a need for pesticide information centers to be situated in rural farming communities or agro supply stores, which gives rural farmers information.

Keywords: pesticide exposure, pesticide safety, nigeria, rural farming, pesticide education

Procedia PDF Downloads 145
286 Electromagnetic Modeling of a MESFET Transistor Using the Moments Method Combined with Generalised Equivalent Circuit Method

Authors: Takoua Soltani, Imen Soltani, Taoufik Aguili

Abstract:

The communications' and radar systems' demands give rise to new developments in the domain of active integrated antennas (AIA) and arrays. The main advantages of AIA arrays are the simplicity of fabrication, low cost of manufacturing, and the combination between free space power and the scanner without a phase shifter. The integrated active antenna modeling is the coupling between the electromagnetic model and the transport model that will be affected in the high frequencies. Global modeling of active circuits is important for simulating EM coupling, interaction between active devices and the EM waves, and the effects of EM radiation on active and passive components. The current review focuses on the modeling of the active element which is a MESFET transistor immersed in a rectangular waveguide. The proposed EM analysis is based on the Method of Moments combined with the Generalised Equivalent Circuit method (MOM-GEC). The Method of Moments which is the most common and powerful software as numerical techniques have been used in resolving the electromagnetic problems. In the class of numerical techniques, MOM is the dominant technique in solving of Maxwell and Transport’s integral equations for an active integrated antenna. In this situation, the equivalent circuit is introduced to the development of an integral method formulation based on the transposition of field problems in a Generalised equivalent circuit that is simpler to treat. The method of Generalised Equivalent Circuit (MGEC) was suggested in order to represent integral equations circuits that describe the unknown electromagnetic boundary conditions. The equivalent circuit presents a true electric image of the studied structures for describing the discontinuity and its environment. The aim of our developed method is to investigate the antenna parameters such as the input impedance and the current density distribution and the electric field distribution. In this work, we propose a global EM modeling of the MESFET AsGa transistor using an integral method. We will begin by describing the modeling structure that allows defining an equivalent EM scheme translating the electromagnetic equations considered. Secondly, the projection of these equations on common-type test functions leads to a linear matrix equation where the unknown variable represents the amplitudes of the current density. Solving this equation resulted in providing the input impedance, the distribution of the current density and the electric field distribution. From electromagnetic calculations, we were able to present the convergence of input impedance for different test function number as a function of the guide mode numbers. This paper presents a pilot study to find the answer to map out the variation of the existing current evaluated by the MOM-GEC. The essential improvement of our method is reducing computing time and memory requirements in order to provide a sufficient global model of the MESFET transistor.

Keywords: active integrated antenna, current density, input impedance, MESFET transistor, MOM-GEC method

Procedia PDF Downloads 174
285 Relationships of Plasma Lipids, Lipoproteins and Cardiovascular Outcomes with Climatic Variations: A Large 8-Year Period Brazilian Study

Authors: Vanessa H. S. Zago, Ana Maria H. de Avila, Paula P. Costa, Welington Corozolla, Liriam S. Teixeira, Eliana C. de Faria

Abstract:

Objectives: The outcome of cardiovascular disease is affected by environment and climate. This study evaluated the possible relationships between climatic and environmental changes and the occurrence of biological rhythms in serum lipids and lipoproteins in a large population sample in the city of Campinas, State of Sao Paulo, Brazil. In addition, it determined the temporal variations of death due to atherosclerotic events in Campinas during the time window examined. Methods: A large 8-year retrospective study was carried out to evaluate the lipid profiles of individuals attended at the University of Campinas (Unicamp). The study population comprised 27.543 individuals of both sexes and of all ages. Normolipidemic and dyslipidemic individuals classified according to Brazilian guidelines on dyslipidemias, participated in the study. For the same period, the temperature, relative humidity and daily brightness records were obtained from the Centro de Pesquisas Meteorologicas e Climaticas Aplicadas a Agricultura/Unicamp and frequencies of death due to atherosclerotic events in Campinas were acquired from the Brazilian official database DATASUS, according to the International Classification of Diseases. Statistical analyses were performed using both Cosinor and ARIMA temporal analysis methods. For cross-correlation analysis between climatic and lipid parameters, cross-correlation functions were used. Results: Preliminary results indicated that rhythmicity was significant for LDL-C and HDL-C in the cases of both normolipidemic and dyslipidemic subjects (n =respectively 11.892 and 15.651 both measures increasing in the winter and decreasing in the summer). On the other hand, for dyslipidemic subjects triglycerides increased in summer and decreased in winter, in contrast to normolipidemic ones, in which triglycerides did not show rhythmicity. The number of deaths due to atherosclerotic events showed significant rhythmicity, with maximum and minimum frequencies in winter and summer, respectively. Cross-correlation analyzes showed that low humidity and temperature, higher thermal amplitude and dark cycles are associated with increased levels of LDL-C and HDL-C during winter. In contrast, TG showed moderate cross-correlations with temperature and minimum humidity in an inverse way: maximum temperature and humidity increased TG during the summer. Conclusions: This study showed a coincident rhythmicity between low temperatures and high concentrations of LDL-C and HDL-C and the number of deaths due to atherosclerotic cardiovascular events in individuals from the city of Campinas. The opposite behavior of cholesterol and TG suggest different physiological mechanisms in their metabolic modulation by climate parameters change. Thus, new analyses are underway to better elucidate these mechanisms, as well as variations in lipid concentrations in relation to climatic variations and their associations with atherosclerotic disease and death outcomes in Campinas.

Keywords: atherosclerosis, climatic variations, lipids and lipoproteins, associations

Procedia PDF Downloads 101
284 Impact of Insect-Feeding and Fire-Heating Wounding on Wood Properties of Lodgepole Pine

Authors: Estelle Arbellay, Lori D. Daniels, Shawn D. Mansfield, Alice S. Chang

Abstract:

Mountain pine beetle (MPB) outbreaks are currently devastating lodgepole pine forests in western North America, which are also widely disturbed by frequent wildfires. Both MPB and fire can leave scars on lodgepole pine trees, thereby diminishing their commercial value and possibly compromising their utilization in solid wood products. In order to fully exploit the affected resource, it is crucial to understand how wounding from these two disturbance agents impact wood properties. Moreover, previous research on lodgepole pine has focused solely on sound wood and stained wood resulting from the MPB-transmitted blue fungi. By means of a quantitative multi-proxy approach, we tested the hypotheses that (i) wounding (of either MPB or fire origin) caused significant changes in wood properties of lodgepole pine and that (ii) MPB-induced wound effects could differ from those induced by fire in type and magnitude. Pith-to-bark strips were extracted from 30 MPB scars and 30 fire scars. Strips were cut immediately adjacent to the wound margin and encompassed 12 rings from normal wood formed prior to wounding and 12 rings from wound wood formed after wounding. Wood properties evaluated within this 24-year window included ring width, relative wood density, cellulose crystallinity, fibre dimensions, and carbon and nitrogen concentrations. Methods used to measure these proxies at a (sub-)annual resolution included X-ray densitometry, X-ray diffraction, fibre quality analysis, and elemental analysis. Results showed a substantial growth release in wound wood compared to normal wood, as both earlywood and latewood width increased over a decade following wounding. Wound wood was also shown to have a significantly different latewood density than normal wood 4 years after wounding. Latewood density decreased in MPB scars while the opposite was true in fire scars. By contrast, earlywood density was presented only minor variations following wounding. Cellulose crystallinity decreased in wound wood compared to normal wood, being especially diminished in MPB scars the first year after wounding. Fibre dimensions also decreased following wounding. However, carbon and nitrogen concentrations did not substantially differ between wound wood and normal wood. Nevertheless, insect-feeding and fire-heating wounding were shown to significantly alter most wood properties of lodgepole pine, as demonstrated by the existence of several morphological anomalies in wound wood. MPB and fire generally elicited similar anomalies, with the major exception of latewood density. In addition to providing quantitative criteria for differentiating between biotic (MPB) and abiotic (fire) disturbances, this study provides the wood industry with fundamental information on the physiological response of lodgepole pine to wounding in order to evaluate the utilization of scarred trees in solid wood products.

Keywords: elemental analysis, fibre quality analysis, lodgepole pine, wood properties, wounding, X-ray densitometry, X-ray diffraction

Procedia PDF Downloads 297
283 Development of Three-Dimensional Bio-Reactor Using Magnetic Field Stimulation to Enhance PC12 Cell Axonal Extension

Authors: Eiji Nakamachi, Ryota Sakiyama, Koji Yamamoto, Yusuke Morita, Hidetoshi Sakamoto

Abstract:

The regeneration of injured central nerve network caused by the cerebrovascular accidents is difficult, because of poor regeneration capability of central nerve system composed of the brain and the spinal cord. Recently, new regeneration methods such as transplant of nerve cells and supply of nerve nutritional factor were proposed and examined. However, there still remain many problems with the canceration of engrafted cells and so on and it is strongly required to establish an efficacious treating method of a central nerve system. Blackman proposed the electromagnetic stimulation method to enhance the axonal nerve extension. In this study, we try to design and fabricate a new three-dimensional (3D) bio-reactor, which can load a uniform AC magnetic field stimulation on PC12 cells in the extracellular environment for enhancement of an axonal nerve extension and 3D nerve network generation. Simultaneously, we measure the morphology of PC12 cell bodies, axons, and dendrites by the multiphoton excitation fluorescence microscope (MPM) and evaluate the effectiveness of the uniform AC magnetic stimulation to enhance the axonal nerve extension. Firstly, we designed and fabricated the uniform AC magnetic field stimulation bio-reactor. For the AC magnetic stimulation system, we used the laminated silicon steel sheets for a yoke structure of 3D chamber, which had a high magnetic permeability. Next, we adopted the pole piece structure and installed similar specification coils on both sides of the yoke. We searched an optimum pole piece structure using the magnetic field finite element (FE) analyses and the response surface methodology. We confirmed that the optimum 3D chamber structure showed a uniform magnetic flux density in the PC12 cell culture area by using FE analysis. Then, we fabricated the uniform AC magnetic field stimulation bio-reactor by adopting analytically determined specifications, such as the size of chamber and electromagnetic conditions. We confirmed that measurement results of magnetic field in the chamber showed a good agreement with FE results. Secondly, we fabricated a dish, which set inside the uniform AC magnetic field stimulation of bio-reactor. PC12 cells were disseminated with collagen gel and could be 3D cultured in the dish. The collagen gel were poured in the dish. The collagen gel, which had a disk shape of 6 mm diameter and 3mm height, was set on the membrane filter, which was located at 4 mm height from the bottom of dish. The disk was full filled with the culture medium inside the dish. Finally, we evaluated the effectiveness of the uniform AC magnetic field stimulation to enhance the nurve axonal extension. We confirmed that a 6.8 increase in the average axonal extension length of PC12 under the uniform AC magnetic field stimulation at 7 days culture in our bio-reactor, and a 24.7 increase in the maximum axonal extension length. Further, we confirmed that a 60 increase in the number of dendrites of PC12 under the uniform AC magnetic field stimulation. Finally, we confirm the availability of our uniform AC magnetic stimulation bio-reactor for the nerve axonal extension and the nerve network generation.

Keywords: nerve regeneration, axonal extension , PC12 cell, magnetic field, three-dimensional bio-reactor

Procedia PDF Downloads 150
282 Characterization of Alloyed Grey Cast Iron Quenched and Tempered for a Smooth Roll Application

Authors: Mohamed Habireche, Nacer E. Bacha, Mohamed Djeghdjough

Abstract:

In the brick industry, smooth double roll crusher is used for medium and fine crushing of soft to medium hard material. Due to opposite inward rotation of the rolls, the feed material is nipped between the rolls and crushed by compression. They are subject to intense wear, known as three-body abrasion, due to the action of abrasive products. The production downtime affecting productivity stems from two sources: the bi-monthly rectification of the roll crushers and their replacement when they are completely worn out. Choosing the right material for the roll crushers should result in longer machine cycles, and reduced repair and maintenance costs. All roll crushers are imported from outside Algeria. This results in sometimes very long delivery times which handicap the brickyards, in particular in respecting delivery times and honored the orders made by customers. The aim of this work is to investigate the effect of alloying additions on microstructure and wear behavior of grey lamellar cast iron for smooth roll crushers in brick industry. The base gray iron was melted in an induction furnace with low frequency at a temperature of 1500 °C, in which return cast iron scrap, new cast iron ingot, and steel scrap were added to the melt to generate the desired composition. The chemical analysis of the bar samples was carried out using Emission Spectrometer Systems PV 8050 Series (Philips) except for the carbon, for which a carbon/sulphur analyser Elementrac CS-i was used. Unetched microstructure was used to evaluate the graphite flake morphology using the image comparison measurement method. At least five different fields were selected for quantitative estimation of phase constituents. The samples were observed under X100 magnification with a Zeiss Axiover T40 MAT optical microscope equipped with a digital camera. SEM microscope equipped with EDS was used to characterize the phases present in the microstructure. The hardness (750 kg load, 5mm diameter ball) was measured with a Brinell testing machine for both treated and as-solidified condition test pieces. The test bars were used for tensile strength and metallographic evaluations. Mechanical properties were evaluated using tensile specimens made as per ASTM E8 standards. Two specimens were tested for each alloy. From each rod, a test piece was made for the tensile test. The results showed that the quenched and tempered alloys had best wear resistance at 400 °C for alloyed grey cast iron (containing 0.62%Mn, 0.68%Cr, and 1.09% Cu) due to fine carbides in the tempered matrix. In quenched and tempered condition, increasing Cu content in cast irons improved its wear resistance moderately. Combined addition of Cu and Cr increases hardness and wear resistance for a quenched and tempered hypoeutectic grey cast iron.

Keywords: casting, cast iron, microstructure, heat treating

Procedia PDF Downloads 82
281 A Sociological Study of the Potential Role of Retired Soldiers in the Post War Development and Reconstruction in Sri Lanka

Authors: Amunupura Kiriwandeiye Gedara, Asintha Saminda Gnanaratne

Abstract:

The security forces can be described as a workforce that goes beyond the role of ensuring the national security and contributes to the development process of the country. Soldiers are following combatant training courses during their tenure, they are equipped with a variety of vocational training courses to satisfy the needs of the army, to equip them with vocational training capabilities to achieve the development and reconstruction goals of the country as well as for the betterment of society in the event of emergencies. But with retirement, their relationship with the military is severed, and they are responsible for the future of their lives. The main purpose of this study was to examine how such professional capabilities can contribute to the development of the country, the current socio-economic status of the retired soldiers, and the current application of the vocational training skills they have mastered in the army to develop and rebuild the country in an effective manner. After analyzing the available research literature related to this field, a conceptual framework was developed and according to qualitative research methodology, and data obtained from Case studies and interviews are analyzed by using thematic analysis. Factors influencing early retirement include a lack of understanding of benefits, delays in promotions, not being properly evaluated for work, getting married on hasty decisions, and not having enough time to spend on family and household chores. Most of the soldiers are not aware about various programs and benefits available to retirees. They do not have a satisfactory attitude towards the retirement guidance they receive from the army at the time of retirement. Also, due to the lack of understanding about how to use their vocational capabilities successfully pursue their retirement life, the majority of people are employed in temporary jobs, and some are successful in post-retirement life due to their successful use of training received. Some live on pensions without engaging in any income-generating activities, and those who retire after 12 years of service are facing severe economic hardships as they do not get pensions. Although they have received training in various fields, they do not use them for their benefit due to lack of proper guidance. Although the government implements programs, they are not clearly aware of them. Barriers to utilization of training include an absence of a system to identify the professional skills of retired soldiers, interest in civil society affairs, exploration of opportunities in the civil and private sectors, and politicization of services. If they are given the opportunity, they will be able to contribute to the development and reconstruction process. The findings of the study further show that it has many social, economic, political, and psychological benefits not only for individuals but also for a country. Entrepreneurship training for all retired soldiers, improving officers' understanding, streamlining existing mechanisms, creating new mechanisms, setting up a separate unit for retirees, and adapting them to civil society, private and non-governmental contributions, and training courses can be identified as potential means to improve the current situation.

Keywords: development, reconstruction, retired soldiers, vocational capabilities

Procedia PDF Downloads 102
280 Meeting the Health Needs of Adolescents and Young Adults: Developing and Evaluating an Electronic Questionnaire and Health Report Form, for the Health Assessment at Youth Health Clinics – A Mixed Methods Project

Authors: P.V. Lostelius, M.Mattebo, E. Thors Adolfsson, A. Söderlund, Å. Revenäs

Abstract:

Adolescents are vulnerable in healthcare settings. Early detection of poor health in young people is important to support a good quality of life and adult social functioning. Youth Health Clinics (YHCs) in Sweden provide healthcare for young people ages 13-25 years old. Using an overall mixed methods approach, the project’s main objective was to develop and evaluate an electronic health system, including a health questionnaire, a case report form, and an evaluation questionnaire to assess young people’s health risks in early stages, increase health, and quality of life. In total, 72 young people, 16-23 years old, eleven healthcare professionals and eight researchers participated in the three project studies. Results from interviews with fifteen young people gave that an electronic health questionnaire should include questions about physical-, mental-, sexual health and social support. It should specifically include questions about self-harm and suicide risk. The young people said that the questionnaire should be appealing, based on young people’s needs and be user-friendly. It was important that young people felt safe when responding to the questions, both physically and electronically. Also, they found that it had the potential to support the face-to face-meeting between young people and healthcare professionals. The electronic health report system was developed by the researchers, performing a structured development of the electronic health questionnaire, construction of a case report form to present the results from the health questions, along with an electronic evaluation questionnaire. An Information Technology company finalized the development by digitalizing the electronic health system. Four young people, three healthcare professionals and seven researchers evaluated the usability using interviews and a usability questionnaire. The electronic health questionnaire was found usable for YHCs but needed some clarifications. Essentially, the system succeeded in capturing the overall health of young people; it should be able to keep the interest of young people and have the potential to contribute to health assessment planning and young people’s self-reflection, sharing vulnerable feelings with healthcare professionals. In advance of effect studies, a feasibility study was performed by collecting electronic questionnaire data from 54 young people and interview data from eight healthcare professionals to assess the feasibility of the use of the electronic evaluation questionnaire, the case report form, and the planned recruitment method. When merging the results, the research group found that the evaluation questionnaire and the health report were feasible for future research. However, the COVID-19 pandemic, commitment challenges and drop-outs affected the recruitment of young people. Also, some healthcare professionals felt insecure about using computers and electronic devices and worried that their workload would increase. This project contributes knowledge about the development and use of electronic health tools for young people. Before implementation, clinical routines need for using the health report system need to be considered.

Keywords: adolescent health, developmental studies, electronic health questionnaire, mixed methods research

Procedia PDF Downloads 72
279 Fischer Tropsch Synthesis in Compressed Carbon Dioxide with Integrated Recycle

Authors: Kanchan Mondal, Adam Sims, Madhav Soti, Jitendra Gautam, David Carron

Abstract:

Fischer-Tropsch (FT) synthesis is a complex series of heterogeneous reactions between CO and H2 molecules (present in the syngas) on the surface of an active catalyst (Co, Fe, Ru, Ni, etc.) to produce gaseous, liquid, and waxy hydrocarbons. This product is composed of paraffins, olefins, and oxygenated compounds. The key challenge in applying the Fischer-Tropsch process to produce transportation fuels is to make the capital and production costs economically feasible relative to the comparative cost of existing petroleum resources. To meet this challenge, it is imperative to enhance the CO conversion while maximizing carbon selectivity towards the desired liquid hydrocarbon ranges (i.e. reduction in CH4 and CO2 selectivities) at high throughputs. At the same time, it is equally essential to increase the catalyst robustness and longevity without sacrificing catalyst activity. This paper focuses on process development to achieve the above. The paper describes the influence of operating parameters on Fischer Tropsch synthesis (FTS) from coal derived syngas in supercritical carbon dioxide (ScCO2). In addition, the unreacted gas and solvent recycle was incorporated and the effect of unreacted feed recycle was evaluated. It was expected that with the recycle, the feed rate can be increased. The increase in conversion and liquid selectivity accompanied by the production of narrower carbon number distribution in the product suggest that higher flow rates can and should be used when incorporating exit gas recycle. It was observed that this process was capable of enhancing the hydrocarbon selectivity (nearly 98 % CO conversion), reducing improving the carbon efficiency from 17 % to 51 % in a once through process and further converting 16 % CO2 to liquid with integrated recycle of the product gas stream and increasing the life of the catalyst. Catalyst robustness enhancement has been attributed to the absorption of heat of reaction by the compressed CO2 which reduced the formation of hotspots and the dissolution of waxes by the CO2 solvent which reduced the blinding of active sites. In addition, the recycling the product gas stream reduced the reactor footprint to one-fourth of the once through size and product fractionation utilizing the solvent effects of supercritical CO2 were realized. In addition to the negative CO2 selectivities, methane production was also inhibited and was limited to less than 1.5%. The effect of the process conditions on the life of the catalysts will also be presented. Fe based catalysts are known to have a high proclivity for producing CO2 during FTS. The data of the product spectrum and selectivity on Co and Fe-Co based catalysts as well as those obtained from commercial sources will also be presented. The measurable decision criteria were the increase in CO conversion at H2:CO ratio of 1:1 (as commonly found in coal gasification product stream) in supercritical phase as compared to gas phase reaction, decrease in CO2 and CH4 selectivity, overall liquid product distribution, and finally an increase in the life of the catalysts.

Keywords: carbon efficiency, Fischer Tropsch synthesis, low GHG, pressure tunable fractionation

Procedia PDF Downloads 218
278 Synthesis and Characterization of Fibrin/Polyethylene Glycol-Based Interpenetrating Polymer Networks for Dermal Tissue Engineering

Authors: O. Gsib, U. Peirera, C. Egles, S. A. Bencherif

Abstract:

In skin regenerative medicine, one of the critical issues is to produce a three-dimensional scaffold with optimized porosity for dermal fibroblast infiltration and neovascularization, which exhibits high mechanical properties and displays sufficient wound healing characteristics. In this study, we report on the synthesis and characterization of macroporous sequential interpenetrating polymer networks (IPNs) combining skin wound healing properties of fibrin with the excellent physical properties of polyethylene glycol (PEG). Fibrin fibers serve as a provisional biologically active network to promote cell adhesion and proliferation while PEG provides the mechanical stability to maintain the entire 3D construct. After having modified both PEG and Serum Albumin (used for promoting enzymatic degradability) by adding methacrylate residues (PEGDM and SAM, respectively), Fibrin/PEGDM-SAM sequential IPNs were synthesized as follows: Macroporous sponges were first produced from PEGDM-SAM hydrogels by a freeze-drying technique and then rehydrated by adding the fibrin precursors. Environmental Scanning Electron Microscopy (ESEM) and Confocal Laser Scanning Microscopy (CLSM) were used to characterize their microstructure. Human dermal fibroblasts were cultivated during one week in the constructs and different cell culture parameters (viability, morphology, proliferation) were evaluated. Subcutaneous implantations of the scaffolds were conducted on five-week old male nude mice to investigate their biocompatibility in vivo. We successfully synthesized interconnected and macroporous Fibrin/PEGDM-SAM sequential IPNs. The viability of primary dermal fibroblasts was well maintained (above 90%) after 2 days of culture. Cells were able to adhere, spread and proliferate in the scaffolds suggesting the suitable porosity and intrinsic biologic properties of the constructs. The fibrin network adopted a spider web shape that covered partially the pores allowing easier cell infiltration into the macroporous structure. To further characterize the in vitro cell behavior, cell proliferation (EdU incorporation, MTS assay) is being studied. Preliminary histological analysis of animal studies indicated the persistence of hydrogels even after one-month post implantation and confirmed the absence of inflammation response, good biocompatibility and biointegration of our scaffolds within the surrounding tissues. These results suggest that our Fibrin/PEGDM-SAM IPNs could be considered as potential candidates for dermis regenerative medicine. Histological analysis will be completed to further assess scaffold remodeling including de novo extracellular matrix protein synthesis and early stage angiogenesis analysis. Compression measurements will be conducted to investigate the mechanical properties.

Keywords: fibrin, hydrogels for dermal reconstruction, polyethylene glycol, semi-interpenetrating polymer network

Procedia PDF Downloads 209
277 Fabrication of High Energy Hybrid Capacitors from Biomass Waste-Derived Activated Carbon

Authors: Makhan Maharjan, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Jing-Yuan Wang, Tuti Mariana Lim

Abstract:

There is great interest to exploit sustainable, low-cost, renewable resources as carbon precursors for energy storage applications. Research on development of energy storage devices has been growing rapidly due to mismatch in power supply and demand from renewable energy sources This paper reported the synthesis of porous activated carbon from biomass waste and evaluated its performance in supercapicators. In this work, we employed orange peel (waste material) as the starting material and synthesized activated carbon by pyrolysis of KOH impregnated orange peel char at 800 °C in argon atmosphere. The resultant orange peel-derived activated carbon (OP-AC) exhibited a high BET surface area of 1,901 m2 g-1, which is the highest surface area so far reported for the orange peel. The pore size distribution (PSD) curve exhibits the pores centered at 11.26 Å pore width, suggesting dominant microporosity. The OP-AC was studied as positive electrode in combination with different negative electrode materials, such as pre-lithiated graphite (LiC6) and Li4Ti5O12 for making different hybrid capacitors. The lithium ion capacitor (LIC) fabricated using OP-AC with pre-lithiated graphite delivered a high energy density of ~106 Wh kg–1. The energy density for OP-AC||Li4Ti5O12 capacitor was ~35 Wh kg–1. For comparison purpose, configuration of OP-AC||OP-AC capacitors were studied in both aqueous (1M H2SO4) and organic (1M LiPF6 in EC-DMC) electrolytes, which delivered the energy density of 6.6 Wh kg-1 and 16.3 Wh kg-1, respectively. The cycling retentions obtained at current density of 1 A g–1 were ~85.8, ~87.0 ~82.2 and ~58.8% after 2500 cycles for OP-AC||OP-AC (aqueous), OP-AC||OP-AC (organic), OP-AC||Li4Ti5O12 and OP-AC||LiC6 configurations, respectively. In addition, characterization studies were performed by elemental and proximate composition, thermogravimetry, field emission-scanning electron microscopy, Raman spectra, X-ray diffraction (XRD) pattern, Fourier transform-infrared, X-ray photoelectron spectroscopy (XPS) and N2 sorption isotherms. The morphological features from FE-SEM exhibited well-developed porous structures. Two typical broad peaks observed in the XRD framework of the synthesized carbon implies amorphous graphitic structure. The ratio of 0.86 for ID/IG in Raman spectra infers high degree of graphitization in the sample. The band spectra of C 1s in XPS display the well resolved peaks related to carbon atoms in various chemical environments; for instances, the characteristics binding energies appeared at ~283.83, ~284.83, ~286.13, ~288.56, and ~290.70 eV which correspond to sp2 -graphitic C, sp3 -graphitic C, C-O, C=O and π-π*, respectively. Characterization studies revealed the synthesized carbon to be promising electrode material towards the application for energy storage devices. The findings opened up the possibility of developing high energy LICs from abundant, low-cost, renewable biomass waste.

Keywords: lithium-ion capacitors, orange peel, pre-lithiated graphite, supercapacitors

Procedia PDF Downloads 209
276 Double Liposomes Based Dual Drug Delivery System for Effective Eradication of Helicobacter pylori

Authors: Yuvraj Singh Dangi, Brajesh Kumar Tiwari, Ashok Kumar Jain, Kamta Prasad Namdeo

Abstract:

The potential use of liposomes as drug carriers by i.v. injection is limited by their low stability in blood stream. Firstly, phospholipid exchange and transfer to lipoproteins, mainly HDL destabilizes and disintegrates liposomes with subsequent loss of content. To avoid the pain associated with injection and to obtain better patient compliance studies concerning various dosage forms, have been developed. Conventional liposomes (unilamellar and multilamellar) have certain drawbacks like low entrapment efficiency, stability and release of drug after single breach in external membrane, have led to the new type of liposomal systems. The challenge has been successfully met in the form of Double Liposomes (DL). DL is a recently developed type of liposome, consisting of smaller liposomes enveloped in lipid bilayers. The outer lipid layer of DL can protect inner liposomes against various enzymes, therefore DL was thought to be more effective than ordinary liposomes. This concept was also supported by in vitro release characteristics i.e. DL formation inhibited the release of drugs encapsulated in inner liposomes. DL consists of several small liposomes encapsulated in large liposomes, i.e., multivesicular vesicles (MVV), therefore, DL should be discriminated from ordinary classification of multilamellar vesicles (MLV), large unilamellar vesicles (LUV), small unilamellar vesicles (SUV). However, for these liposomes, the volume of inner phase is small and loading volume of water-soluble drugs is low. In the present study, the potential of phosphatidylethanolamine (PE) lipid anchored double liposomes (DL) to incorporate two drugs in a single system is exploited as a tool to augment the H. pylori eradication rate. Preparation of DL involves two steps, first formation of primary (inner) liposomes by thin film hydration method containing one drug, then addition of suspension of inner liposomes on thin film of lipid containing the other drug. The success of formation of DL was characterized by optical and transmission electron microscopy. Quantitation of DL-bacterial interaction was evaluated in terms of percent growth inhibition (%GI) on reference strain of H. pylori ATCC 26695. To confirm specific binding efficacy of DL to H. pylori PE surface receptor we performed an agglutination assay. Agglutination in DL treated H. pylori suspension suggested selectivity of DL towards the PE surface receptor of H. pylori. Monotherapy is generally not recommended for treatment of a H. pylori infection due to the danger of development of resistance and unacceptably low eradication rates. Therefore, combination therapy with amoxicillin trihydrate (AMOX) as anti-H. pylori agent and ranitidine bismuth citrate (RBC) as antisecretory agent were selected for the study with an expectation that this dual-drug delivery approach will exert acceptable anti-H. pylori activity.

Keywords: Helicobacter pylorI, amoxicillin trihydrate, Ranitidine Bismuth citrate, phosphatidylethanolamine, multi vesicular systems

Procedia PDF Downloads 179
275 Mesenchymal Stem Cells on Fibrin Assemblies with Growth Factors

Authors: Elena Filova, Ondrej Kaplan, Marie Markova, Helena Dragounova, Roman Matejka, Eduard Brynda, Lucie Bacakova

Abstract:

Decellularized vessels have been evaluated as small-diameter vascular prostheses. Reseeding autologous cells onto decellularized tissue prior implantation should prolong prostheses function and make them living tissues. Suitable cell types for reseeding are both endothelial cells and bone marrow-derived stem cells, with a capacity for differentiation into smooth muscle cells upon mechanical loading. Endothelial cells assure antithrombogenicity of the vessels and MSCs produce growth factors and, after their differentiation into smooth muscle cells, they are contractile and produce extracellular matrix proteins as well. Fibrin is a natural scaffold, which allows direct cell adhesion based on integrin receptors. It can be prepared autologous. Fibrin can be modified with bound growth factors, such as basic fibroblast growth factor (FGF-2) and vascular endothelial growth factor (VEGF). These modifications in turn make the scaffold more attractive for cells ingrowth into the biological scaffold. The aim of the study was to prepare thin surface-attached fibrin assemblies with bound FGF-2 and VEGF, and to evaluate growth and differentiation of bone marrow-derived mesenchymal stem cells on the fibrin (Fb) assemblies. Following thin surface-attached fibrin assemblies were prepared: Fb, Fb+VEGF, Fb+FGF2, Fb+heparin, Fb+heparin+VEGF, Fb+heparin+FGF2, Fb+heparin+FGF2+VEGF. Cell culture poly-styrene and glass coverslips were used as controls. Human MSCs (passage 3) were seeded at the density of 8800 cells/1.5 mL alpha-MEM medium with 2.5% FS and 200 U/mL aprotinin per well of a 24-well cell culture. The cells have been cultured on the samples for 6 days. Cell densities on day 1, 3, and 6 were analyzed after staining with LIVE/DEAD cytotoxicity/viability assay kit. The differentiation of MSCs is being analyzed using qPCR. On day 1, the highest density of MSCs was observed on Fb+VEGF and Fb+FGF2. On days 3 and 6, there were similar densities on all samples. On day 1, cell morphology was polygonal and spread on all sample. On day 3 and 6, MSCs growing on Fb assemblies with FGF2 became apparently elongated. The evaluation of expression of genes for von Willebrand factor and CD31 (endothelial cells), for alpha-actin (smooth muscle cells), and for alkaline phosphatase (osteoblasts) is in progress. We prepared fibrin assemblies with bound VEGF and FGF-2 that supported attachment and growth of mesenchymal stem cells. The layers are promising for improving the ingrowth of MSCs into the biological scaffold. Supported by the Technology Agency of the Czech Republic TA04011345, and Ministry of Health NT11270-4/2010, and BIOCEV – Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University” project (CZ.1.05/1.1.00/02.0109), funded by the European Regional Development Fund for their financial supports.

Keywords: fibrin assemblies, FGF-2, mesenchymal stem cells, VEGF

Procedia PDF Downloads 301
274 The Ethics of Physical Restraints in Geriatric Care

Authors: Bei Shan Lin, Chun Mei Lu, Ya Ping Chen, Li Chen Lu

Abstract:

This study explores the ethical issues concerning the use of physical restraint in geriatric care. Physical restraint use in a medical care setting is seen as a controversial form of treatment that has occurred over decades. There is no doubt that people nowadays are living longer than previous generations. The ageing process is inevitable. Common disease such as impaired comprehension, memory loss, and trouble expressing one’s self contribute to the difficulty that these older patients have in adapting to medical institution. For these reasons, physical restraint is often used in reducing the risk of falling, managing wandering behaviour, preventing agitation, and promoting patient compliance in geriatric care. It can mean that physical restraints are considered as a common practice that is used in the care of older patients. It is most commonly used for three specific purposes, including procedural restraint, restraint to prevent falls, and behavioural restraints. Although there have been well documented instances of morbidity and mortality recognised as being potential risks associated with physical restraint use, it continues to be permitted and used in healthcare, often in the name of safety. However, there is insufficient evidence supporting the effectiveness of physical restraint use reducing injuries from falls and controlling challenging behaviour in geriatric care settings. There is barely any empirical evidence of either a scientific basis or clinical trials have evaluated the improvement in patient safety following physical restraint. In difficult clinical situations, guidelines and practical suggestions for Healthcare professionals to comply requirements can help those making appropriate decisions and to facilitate better judgement regarding physical restraint use. The following recommendations are given for physical restraint use in long-term care settings: an interdisciplinary team approach to assess, evaluate, and treat underlying diseases to determine if treatment can ease issues precipitating physical restraint use; a clearly stated purpose of treatment plan should be made after weighing up the risk of physical restraint use against the risk of without physical restraint use; a care plan for physical restraint has to include individualised treatment planning, informed consent, identification and remedial action to avoid negative consequences, regular assessment and modification, reduction and removal of risks; patients and their families must have the opportunity to consider and give voluntary informed consent prior to physical restraint utilisation; patients, family members, and Healthcare professionals should be educated on use and adverse consequences of physical restraints in order to make raise awareness of potential risks and to take appropriate steps to prevent unnecessary harm; after physical restraint removal, Healthcare professionals should discuss with patients and family members about their experience, feelings, and any anxieties regarding the treatment. Physical restraint should always be considered a last resort as deprive patient’s freedom, control, and individuality. Healthcare professionals should emphasise on providing individualized care, interdisciplinary decision-making process, and creative and collaborative alternatives to promote older patient’s rights, dignity and overall well-being as much as possible.

Keywords: ethics healthcare, geriatric care, healthcare, physical restraint

Procedia PDF Downloads 117
273 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)

Authors: Eric Pla Erra, Mariana Jimenez Martinez

Abstract:

While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.

Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)

Procedia PDF Downloads 83
272 Traditional Rainwater Harvesting Systems: A Sustainable Solution for Non-Urban Populations in the Mediterranean

Authors: S. Fares, K. Mellakh, A. Hmouri

Abstract:

The StorMer project aims to set up a network of researchers to study traditional hydraulic rainwater harvesting systems in the Mediterranean basin, a region suffering from the major impacts of climate change and limited natural water resources. The arid and semi-arid Mediterranean basin has a long history of pioneering water management practices. The region has developed various ancient traditional water management systems, such as cisterns and qanats, to sustainably manage water resources under historical conditions of scarcity. Therefore, the StorMer project brings together Spain, France, Italy, Greece, Jordan and Morocco to explore traditional rainwater harvesting practices and systems in the Mediterranean region and to develop accurate modeling to simulate the performance and sustainability of these technologies under present-day climatic conditions. The ultimate goal of this project was to resuscitate and valorize these practices in the context of contemporary challenges. This project was intended to establish a Mediterranean network to serve as a basis for a more ambitious project. The ultimate objective was to analyze traditional hydraulic systems and create a prototype hydraulic ecosystem using a coupled environmental approach and traditional and ancient know-how, with the aim of reinterpreting them in the light of current techniques. The combination of ‘traditional’ and ‘modern knowledge/techniques’ is expected to lead to proposals for innovative hydraulic systems. The pandemic initially slowed our progress, but in the end it forced us to carry out the fieldwork in Morocco and Saudi Arabia, and so restart the project. With the participation of colleagues from chronologically distant fields (archaeology, sociology), we are now prepared to share our observations and propose the next steps. This interdisciplinary approach should give us a global vision of the project's objectives and challenges. A diachronic approach is needed to tackle the question of the long-term adaptation of societies in a Mediterranean context that has experienced several periods of water stress. The next stage of the StorMer project is the implementation of pilots in non-urbanized regions. These pilots will test the implementation of traditional systems and will be maintained and evaluated in terms of effectiveness, cost and acceptance. Based on these experiences, larger projects will be proposed and could provide information for regional water management policies. One of the most important lessons learned from this project is the highly social nature of managing traditional rainwater harvesting systems. Unlike modern, centralized water infrastructures, these systems often require the involvement of communities, which assume ownership and responsibility for them. This kind of community engagement leads to greater maintenance and, therefore, sustainability of the systems. Knowledge of the socio-cultural characteristics of these communities means that the systems can be adapted to the needs of each location, ensuring greater acceptance and efficiency.

Keywords: oasis, rainfall harvesting, arid regions, Mediterranean

Procedia PDF Downloads 8
271 Sugarcane Trash Biochar: Effect of the Temperature in the Porosity

Authors: Gabriela T. Nakashima, Elias R. D. Padilla, Joao L. Barros, Gabriela B. Belini, Hiroyuki Yamamoto, Fabio M. Yamaji

Abstract:

Biochar can be an alternative to use sugarcane trash. Biochar is a solid material obtained from pyrolysis, that is a biomass thermal degradation with low or no O₂ concentration. Pyrolysis transforms the carbon that is commonly found in other organic structures into a carbon with more stability that can resist microbial decomposition. Biochar has a versatility of uses such as soil fertility, carbon sequestration, energy generation, ecological restoration, and soil remediation. Biochar has a great ability to retain water and nutrients in the soil so that this material can improve the efficiency of irrigation and fertilization. The aim of this study was to characterize biochar produced from sugarcane trash in three different pyrolysis temperatures and determine the lowest temperature with the high yield and carbon content. Physical characterization of this biochar was performed to help the evaluation for the best production conditions. Sugarcane (Saccharum officinarum) trash was collected at Corredeira Farm, located in Ibaté, São Paulo State, Brazil. The farm has 800 hectares of planted area with an average yield of 87 t·ha⁻¹. The sugarcane varieties planted on the farm are: RB 855453, RB 867515, RB 855536, SP 803280, SP 813250. Sugarcane trash was dried and crushed into 50 mm pieces. Crucibles and lids were used to settle the sugarcane trash samples. The higher amount of sugarcane trash was added to the crucible to avoid the O₂ concentration. Biochar production was performed in three different pyrolysis temperatures (200°C, 325°C, 450°C) in 2 hours residence time in the muffle furnace. Gravimetric yield of biochar was obtained. Proximate analysis of biochar was done using ASTM E-872 and ABNT NBR 8112. Volatile matter and ash content were calculated by direct weight loss and fixed carbon content calculated by difference. Porosity measurement was evaluated using an automatic gas adsorption device, Autosorb-1, with CO₂ described by Nakatani. Approximately 0.5 g of biochar in 2 mm particle sizes were used for each measurement. Vacuum outgassing was performed as a pre-treatment in different conditions for each biochar temperature. The pore size distribution of micropores was determined using Horváth-Kawazoe method. Biochar presented different colors for each treatment. Biochar - 200°C presented a higher number of pieces with 10mm or more and did not present the dark black color like other treatments after 2 h residence time in muffle furnace. Also, this treatment had the higher content of volatiles and the lower amount of fixed carbon. In porosity analysis, while the temperature treatments increase, the amount of pores also increase. The increase in temperature resulted in a biochar with a better quality. The pores in biochar can help in the soil aeration, adsorption, water retention. Acknowledgment: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil – PROAP-CAPES, PDSE and CAPES - Finance Code 001.

Keywords: proximate analysis, pyrolysis, soil amendment, sugarcane straw

Procedia PDF Downloads 175
270 Clinical and Analytical Performance of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase L1 Biomarkers for Traumatic Brain Injury in the Alinity Traumatic Brain Injury Test

Authors: Raj Chandran, Saul Datwyler, Jaime Marino, Daniel West, Karla Grasso, Adam Buss, Hina Syed, Zina Al Sahouri, Jennifer Yen, Krista Caudle, Beth McQuiston

Abstract:

The Alinity i TBI test is Therapeutic Goods Administration (TGA) registered and is a panel of in vitro diagnostic chemiluminescent microparticle immunoassays for the measurement of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) in plasma and serum. The Alinity i TBI performance was evaluated in a multi-center pivotal study to demonstrate the capability to assist in determining the need for a CT scan of the head in adult subjects (age 18+) presenting with suspected mild TBI (traumatic brain injury) with a Glasgow Coma Scale score of 13 to 15. TBI has been recognized as an important cause of death and disability and is a growing public health problem. An estimated 69 million people globally experience a TBI annually1. Blood-based biomarkers such as glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) have shown utility to predict acute traumatic intracranial injury on head CT scans after TBI. A pivotal study using prospectively collected archived (frozen) plasma specimens was conducted to establish the clinical performance of the TBI test on the Alinity i system. The specimens were originally collected in a prospective, multi-center clinical study. Testing of the specimens was performed at three clinical sites in the United States. Performance characteristics such as detection limits, imprecision, linearity, measuring interval, expected values, and interferences were established following Clinical and Laboratory Standards Institute (CLSI) guidance. Of the 1899 mild TBI subjects, 120 had positive head CT scan results; 116 of the 120 specimens had a positive TBI interpretation (Sensitivity 96.7%; 95% CI: 91.7%, 98.7%). Of the 1779 subjects with negative CT scan results, 713 had a negative TBI interpretation (Specificity 40.1%; 95% CI: 37.8, 42.4). The negative predictive value (NPV) of the test was 99.4% (713/717, 95% CI: 98.6%, 99.8%). The analytical measuring interval (AMI) extends from the limit of quantitation (LoQ) to the upper LoQ and is determined by the range that demonstrates acceptable performance for linearity, imprecision, and bias. The AMI is 6.1 to 42,000 pg/mL for GFAP and 26.3 to 25,000 pg/mL for UCH-L1. Overall, within-laboratory imprecision (20 day) ranged from 3.7 to 5.9% CV for GFAP and 3.0 to 6.0% CV for UCH-L1, when including lot and instrument variances. The Alinity i TBI clinical performance results demonstrated high sensitivity and high NPV, supporting the utility to assist in determining the need for a head CT scan in subjects presenting to the emergency department with suspected mild TBI. The GFAP and UCH-L1 assays show robust analytical performance across a broad concentration range of GFAP and UCH-L1 and may serve as a valuable tool to help evaluate TBI patients across the spectrum of mild to severe injury.

Keywords: biomarker, diagnostic, neurology, TBI

Procedia PDF Downloads 38
269 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data

Authors: Kai Warsoenke, Maik Mackiewicz

Abstract:

To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.

Keywords: automotive production, machine learning, process optimization, smart tolerancing

Procedia PDF Downloads 91
268 Cryotopic Macroporous Polymeric Matrices for Regenerative Medicine and Tissue Engineering Applications

Authors: Archana Sharma, Vijayashree Nayak, Ashok Kumar

Abstract:

Three-dimensional matrices were fabricated from blend of natural-natural polymers like carrageenan-gelatin and synthetic -natural polymers such as PEG- gelatin (PEG of different molecular weights (2,000 and 6,000) using two different crosslinkers; glutaraldehyde and EDC-NHS by cryogelation technique. Blends represented a feasible approach to design 3-D scaffolds with controllable mechanical, physical and biochemical properties without compromising biocompatibility and biodegradability. These matrices possessed interconnected porous structure, good mechanical strength, biodegradable nature, constant swelling kinetics, ability to withstand high temperature and visco-elastic behavior. Hemocompatibility of cryogel matrices was determined by coagulation assays and hemolytic activity assay which demonstrated that these cryogels have negligible effects on coagulation time and have excellent blood compatibility. In vitro biocompatibility (cell-matrix interaction) inferred good cell adhesion, proliferation, and secretion of ECM on matrices. These matrices provide a microenvironment for the growth, proliferation, differentiation and secretion of ECM of different cell types such as IMR-32, C2C12, Cos-7, rat bone marrow derived MSCs and human bone marrow MSCs. Hoechst 33342 and PI staining also confirmed that the cells were uniformly distributed, adhered and proliferated properly on the cryogel matrix. An ideal scaffold used for tissue engineering application should allow the cells to adhere, proliferate and maintain their functionality. Neurotransmitter analysis has been done which indicated that IMR-32 cells adhered, proliferated and secreted neurotransmitters when they interacted with these matrices which showed restoration of their functionality. The cell-matrix interaction up to molecular level was also evaluated so to check genotoxicity and protein expression profile which indicated that these cryogel matrices are non-genotoxic and maintained biofunctionality of cells growing on these matrices. All these cryogels, when implanted subcutaneously in balb/c mice, showed no adverse systemic or local toxicity effects at implantation site. There was no significant increase in inflammatory cell count has otherwise been observed after scaffold implantation. These cryogels are supermacroporous and this porous structure allows cell infiltration and proliferation of host cells. This showed the integration and presence of infiltrated cells into the cryogel implants. Histological analysis confirmed that the implanted cryogels do not have any adverse effect in spite of host immune system recognition at the site of implantation, on its surrounding tissues and other vital host organs. In vivo biocompatibility study after in vitro biocompatibility analysis has also concluded that these synthesized cryogels act as important biological substitutes, more adaptable and appropriate for transplantation. Thus, these cryogels showed their potential for soft tissue engineering applications.

Keywords: cryogelation, hemocompatibility, in vitro biocompatibility, in vivo biocompatibility, soft tissue engineering applications

Procedia PDF Downloads 198
267 Training in Communicational Skills in Students of Medicine: Differences in Bilingualism

Authors: Naiara Ozamiz Etcebarria, Sonia Ruiz De Azua Garcia, Agurtzane Ortiz Jauregi, Virginia Guillen Cañas

Abstract:

Introduction: The most relevant competencies of a health professional are an adequate communication capacity, which will influence the satisfaction of professionals and patients, therapeutic compliance, conflict prevention, clinical outcomes´ improvement and efficiency of health services. The ability of Active listening , empathy, assertiveness and social skills, are important abilities to develop in all professions in which there is a relationship with other people. In the field of health, it is even more important to have adequate qualities so that the treatment with the patient will be adequate and satisfactory. We conducted a research with students of third year in the Degree of Medicine with the objectives: - to know how the active listening, empathy, assertiveness and social skills of students are. - to know if there are differences according to different demographic variables, such as sex, language, age, number of siblings and interest in the subject. Material and Methods: The students of the Third year in the Degree of Medicine (N = 212) participated voluntarily. Sociodemographic data were collected. Descriptive and comparative analysis of the averages of the students with respect to active listening, empathy, assertiveness and social skills were performed. Once the questionnaires were collected, they were entered into the SPSS 21 database. Four communicational aspects were evaluated: The active listening questionnaire, the TECA empathy questionnaire, the ACDA questionnaire and the EHS questionnaire Social Skills Scale. The active listening questionnaire assesses these factors: Listening without interruption and less contradiction, Listening with 100% attention, Listening beyond words, Listening encouraging the other to go deeper. The TECA questionnaire of cognitive and affective empathy evaluates: Adoption of perspectives, Emotional Comprehension, Emphasizing stress, Empathic joy. The EHS questionnaire Social Skills Scale: Self-expression in social situations, Defending one's own rights as a consumer, Expressing anger or dissatisfaction, Refusing to do and cutting interactions off, Making requests, Initiating positive interactions with the other sex. The ACDA questionnaire Assertiveness Assessment Scale evaluates self-assertiveness and heteroaservitivity. Applicability: To train these skills is so important for clinical practice of medical students and these capabilities that can be measured in a longitudinal way time. Ethical-legal aspects: The data were anonymous. The study was approved by the Ethics Committee. Results: The students of the Third year in the Degree of Medicine (34.4% Basque speakers and 65.6% Spanish speakers) with average age 20.93, (27.8% men and 72.2% women). There are no differences in social skills between men and women. The Basque speaker students of are more heteroactive (ACDA) than Spanish students. Active listening has a high correlation with social skills, especially with self-expression in social situations. Listening without interruption has a high correlation with self-expression in social situations and initiating positive interactions with the opposite sex. Adoption of perspectives presents a high correlation with auto- assertiveness. Emotional understanding presents a high correlation with positive interactions with the opposite sex. Empathic joy correlates with self-assertiveness, self-expression in social situations, and initiating positive interactions with the opposite sex.

Keywords: active listening, assertiveness, communicational skills, empathy, students of medicine

Procedia PDF Downloads 280
266 Development of an Instrument Assessing Participants’ Motivation on Assigning Monetary Value to Quality of Life

Authors: Afentoula Mavrodi, Andreas Georgiou, Georgios Tsiotras, Vassilis Aletras

Abstract:

Placing a monetary value on a quality-adjusted-life-year (QALY) is of utmost importance in economic evaluation. Identifying the population’s preferences is critical in order to understand some of the reasons driving variations in the assigned monetary value. Yet, evidence of the motives behind value assignment to a QALY by the general public is limited. Developing an instrument that would capture the population’s motives could be proven valuable to policy-makers, to guide them in allocating different values to a QALY based on users’ motivations. The aim of this study was to identify the most relevant motives and develop an appropriate instrument to assess them. To design the instrument, we employed: a) the EQ-5D-3L tool to assess participants’ current health status, and b) the Willingness-to-Pay (WTP) approach, within the Contingent Valuation (CV) Method framework, to elicit the monetary value. Advancing the open-ended approach adopted to assess solely protest bidders’ motives; a variety of follow-up item-specific statements were designed (deductive approach), aiming to evaluate motives of both protest bidders and participants willing to pay for the hypothetical treatment under consideration. The initial design of the survey instrument was the outcome of an extensive literature review. This instrument was revised based on 15 semi-structured interviews that took place in September 2018 and a pilot study held during two months (October-November) in 2018. Individuals with different educational, occupational and economical backgrounds and adequate verbal skills were recruited to complete the semi-structured interviews. The follow-up motivation statements of both protest bidders and those willing to pay were revised and rephrased after the semi-structured interviews. In total 4 statements for protest bidders and 3 statements for those willing to pay for the treatment were chosen to be included in the survey tool. Using the CATI (Computer Assisted Telephone Interview) method, a randomly selected sample of 97 persons living in Thessaloniki, Greece, completed the questionnaire on two occasions over a period of 4 weeks. Based on pilot study results, a test-retest reliability assessment was performed using the intra-class correlation coefficient (ICC). All statements formulated for protest bidders showed acceptable reliability (ICC values of 0.84 (95% CI: 0.67, 0.92) and above). Similarly, all statements for those willing to pay for the treatment showed high reliability (ICC values of 0.86 (95% CI: 0.78, 0.91) and above). Overall, the instrument designed in this study was reliable with regards to the item-specific statements assessing participants’ motivation. Validation of the instrument will take place in a future study. For a holistic WTP per QALY instrument, participants’ motivation must be addressed broadly. The instrument developed in this study captured a variety of motives and provided insight with regards to the method through which the latter are evaluated. Last but not least, it extended motive assessment to all study participants and not only protest bidders.

Keywords: contingent valuation method, instrument, motives, quality-adjusted life-year, willingness-to-pay

Procedia PDF Downloads 114
265 We Have Never Seen a Dermatologist. Reaching the Unreachable Through Teledermatology

Authors: Innocent Atuhe, Babra Nalwadda, Grace Mulyowa Kitunzi, Annabella Haninka Ejiri

Abstract:

Background: Atopic Dermatitis (AD) is one of the most prevalent and growing chronic inflammatory skin diseases in African prisons. AD care is limited in African due to lack of information about the disease amongst primary care workers, limited access to dermatologists, lack of proper training of healthcare workers, and shortage of appropriate treatments. We designed and implemented the Prisons Telederma project based on the recommendations of the International Society of Atopic Dermatitis. Our overall goal was to increase access to dermatologist-led care for prisoners with AD through teledermatology in Uganda. We aimed to; i) to increase awareness and understanding of teledermatology among prison health workers; and ii) to improve treatment outcomes of prisoners with atopic dermatitis through increased access to and utilization of consultant dermatologists through teledermatology in Uganda prisons: Approach: We used Store-and-forward Teledermatology (SAF-TD) to increase access to dermatologist-led care for prisoners and prisons staff with AD. We conducted a five days training for prison health workers using an adapted WHO training guide on recognizing neglected tropical diseases through changes on the skin together with an adapted American Academy of Dermatology (AAD) Childhood AD Basic Dermatology Curriculum designed to help trainees develop a clinical approach to the evaluation and initial management of patients with AD. This training was followed by blended e-learning, webinars facilitated by consultant Dermatologists with local knowledge of medication and local practices, apps adjusted for pigmented skin, WhatsApp group discussions, and sharing pigmented skin AD pictures and treatment via zoom meetings. We hired a team of Ugandan Senior Consultant dermatologists to draft an iconographic atlas of the main dermatoses in pigmented African skin and shared this atlas with prison health staff for use as a job aid. We had planned to use MySkinSelfie mobile phone application to take and share skin pictures of prisoners with AD with Consultant Dermatologists, who would review the pictures and prescribe appropriate treatment. Unfortunately, the National Health Service withdrew the app from the market due to technical issues. We monitored and evaluated treatment outcomes using the Patient Oriented Eczema Measure (POEM) tool. We held four advocacy meetings to persuade relevant stakeholders to increase supplies and availability of first-line AD treatments such as emollients in prison health facilities. Results: Draft iconographic atlas of the main dermatoses in pigmented African skin Increased proportion of prison health staff with adequate knowledge of AD and teledermatology from 20% to 80% Increased proportion of prisoners with AD reporting improvement in disease severity (POEM scores) from 25% to 35% in one year. Increased proportion of prisoners with AD seen by consultant dermatologist through teledermatology from 0% to 20% in one year. Increased the availability of AD recommended treatments in prisons health facilities from 5% to 10% in one year

Keywords: teledermatology, prisoners, reaching, un-reachable

Procedia PDF Downloads 93
264 Enabling Participation of Deaf People in the Co-Production of Services: An Example in Service Design, Commissioning and Delivery in a London Borough

Authors: Stephen Bahooshy

Abstract:

Co-producing services with the people that access them is considered best practice in the United Kingdom, with the Care Act 2014 arguing that people who access services and their carers should be involved in the design, commissioning and delivery of services. Co-production is a way of working with the community, breaking down barriers of access and providing meaningful opportunity for people to engage. Unfortunately, owing to a number of reported factors such as time constraints, practitioner experience and departmental budget restraints, this process is not always followed. In 2019, in a south London borough, d/Deaf people who access services were engaged in the design, commissioning and delivery of an information and advice service that would support their community to access local government services. To do this, sensory impairment social workers and commissioners collaborated to host a series of engagement events with the d/Deaf community. Interpreters were used to enable communication between the commissioners and d/Deaf participants. Initially, the community’s opinions, ideas and requirements were noted. This was then summarized and fed back to the community to ensure accuracy. Subsequently, a service specification was developed which included performance metrics, inclusive of qualitative and quantitative indicators, such as ‘I statements’, whereby participants respond on an adapted Likert scale how much they agree or disagree with a particular statement in relation to their experience of the service. The service specification was reviewed by a smaller group of d/Deaf residents and social workers, to ensure that it met the community’s requirements. The service was then tendered using the local authority’s e-tender process. Bids were evaluated and scored in two parts; part one was by commissioners and social workers and part two was a presentation by prospective providers to an evaluation panel formed of four d/Deaf residents. The internal evaluation panel formed 75% of the overall score, whilst the d/Deaf resident evaluation panel formed 25% of the overall tender score. Co-producing the evaluation panel with social workers and the d/Deaf community meant that commissioners were able to meet the requirements of this community by developing evaluation questions and tools that were easily understood and use by this community. For example, the wording of questions were reviewed and the scoring mechanism consisted of three faces to reflect the d/Deaf residents’ scores instead of traditional numbering. These faces were a happy face, a neutral face and a sad face. By making simple changes to the commissioning and tender evaluation process, d/Deaf people were able to have meaningful involvement in the design and commissioning process for a service that would benefit their community. Co-produced performance metrics means that it is incumbent on the successful provider to continue to engage with people accessing the service and ensure that the feedback is utilized. d/Deaf residents were grateful to have been involved in this process as this was not an opportunity that they had previously been afforded. In recognition of their time, each d/Deaf resident evaluator received a £40 gift voucher, bringing the total cost of this co-production to £160.

Keywords: co-production, community engagement, deaf and hearing impaired, service design

Procedia PDF Downloads 249
263 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters

Authors: Dylan Santos De Pinho, Nabil Ouerhani

Abstract:

Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.

Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization

Procedia PDF Downloads 128
262 Fuels and Platform Chemicals Production from Lignocellulosic Biomass: Current Status and Future Prospects

Authors: Chandan Kundu, Sankar Bhattacharya

Abstract:

A significant disadvantage of fossil fuel energy production is the considerable amount of carbon dioxide (CO₂) released, which is one of the contributors to climate change. Apart from environmental concerns, changing fossil fuel prices have pushed society gradually towards renewable energy sources in recent years. Biomass is a plentiful and renewable resource and a source of carbon. Recent years have seen increased research interest in generating fuels and chemicals from biomass. Unlike fossil-based resources, biomass is composed of lignocellulosic material, which does not contribute to the increase in atmospheric CO₂ over a longer term. These considerations contribute to the current move of the chemical industry from non-renewable feedstock to renewable biomass. This presentation focuses on generating bio-oil and two major platform chemicals that can potentially improve the environment. Thermochemical processes such as pyrolysis are considered viable methods for producing bio-oil and biomass-based platform chemicals. Fluidized bed reactors, on the other hand, are known to boost bio-oil yields during pyrolysis due to their superior mixing and heat transfer features, as well as their scalability. This review and the associated experimental work are focused on the thermochemical conversion of biomass to bio-oil and two high-value platform chemicals, Levoglucosenone (LGO) and 5-Chloromethyl furfural (5-CMF), in a fluidized bed reactor. These two active molecules with distinct features can potentially be useful monomers in the chemical and pharmaceutical industries since they are well adapted to the manufacture of biologically active products. This process took several meticulous steps. To begin, the biomass was delignified using a peracetic acid pretreatment to remove lignin. Because of its complicated structure, biomass must be pretreated to remove the lignin, increasing access to the carbohydrate components and converting them to platform chemicals. The biomass was then characterized by Thermogravimetric analysis, Synchrotron-based THz spectroscopy, and in-situ DRIFTS in the laboratory. Based on the results, a continuous-feeding fluidized bed reactor system was constructed to generate platform chemicals from pretreated biomass using hydrogen chloride acid-gas as a catalyst. The procedure also yields biochar, which has a number of potential applications, including soil remediation, wastewater treatment, electrode production, and energy resource utilization. Consequently, this research also includes a preliminary experimental evaluation of the biochar's prospective applications. The biochar obtained was evaluated for its CO₂ and steam reactivity. The outline of the presentation will comprise the following: Biomass pretreatment for effective delignification Mechanistic study of the thermal and thermochemical conversion of biomass Thermochemical conversion of untreated and pretreated biomass in the presence of an acid catalyst to produce LGO and CMF A thermo-catalytic process for the production of LGO and 5-CMF in a continuously-fed fluidized bed reactor and efficient separation of chemicals Use of biochar generated from the platform chemicals production through gasification

Keywords: biomass, pretreatment, pyrolysis, levoglucosenone

Procedia PDF Downloads 105
261 Evaluation of Different Inoculation Methods of Entomopathogenic Fungi on Their Endophytism and Pathogenicity against Chilo partellus (Swinhoe)

Authors: Mubashar Iqbal, Iqra Anjum, Muhammad Dildar Gogi, Muhammad Jalal Arif

Abstract:

The present study was carried to screen out the effective entomopathogenic fungi (EPF) inoculation method in maize and to evaluate pathogenicity and oviposition-choice in C. partellus. Three entomopathogenic fungi (EPF) formulations Pacer® (Metarhizium anisopliae), Racer® (Beauveria bassiana) and Meailkil® (Verticillium lecanii) were evaluated at three concentrations (5000, 10000 and 20000 ppm) for their endophytism in maize and pathogenicity in C. partellus. The stock solution of the highest concentration (20,000 ppm) was prepared and next lower from stock solution. In the first experiment, three EPF was inoculated in maize plant by four methods, i.e., leaf-inoculation (LI), whorl-inoculation (WI), shoot-inoculation (SI) and root-inoculation (RI). Leaf-discs and stem-cutting were sampled in all four inoculation methods and placed on fungus growth media in Petri dishes. In the second experiment, pathogenicity, pupal formation, adult emergence, sex ratio, oviposition-choice, and growth index of C. partellus were calculated. The leaves and stem of the inoculated plants were given to the counted number of larvae of C. Partellus. The mortality of larvae was recorded on daily basis till the pupation. The result shows that maximum percent mortality (86.67%) was recorded at high concentration (20000ppm) of Beauveria bassiana by leaf inoculation method. For oviposition choice bioassay, the newly emerged adults were fed on diet (water, honey and yeast in 9:1:1) for 48 hours. One pair of C. Partellus were aspirated from the rearing cages and were detained in large test tube plugged with diet soaked cotton. A set of four plants for each treatment were prepared and randomized inside the large oviposition chamber. The test tubes were opened and fitted in the hole made in the wall of oviposition chamber in front of each treatment. The oviposition chamber was placed in a completely dark laboratory to eliminate the effect of light on moth’s behavior. The plants were removed from the oviposition chamber after the death of adults. The number of eggs deposited on the plant was counted. The results of 2nd experiment revealed that in all EPF and inoculation methods, the fecundity, egg fertility and growth index of C. partellus decreased with the increase in concentration being significantly higher at low concentration (5000ppm) and lower at higher concentration (20000ppm). Application of B. bassiana demonstrated that minimum fecundity (126.83), egg fertility (119.52) and growth index (15%) in C. partellus followed by M. anisopliae with fecundity (135.93), egg fertility (132.29) and growth index (17.50%) while V. lecanii show higher values of fecundity (137.37), egg fertility (1135.42) and growth index (20%). Overall leaf inoculation method showed least fecundity (123.89) with egg fertility (115.36) and growth index (14%) followed by whorl, shoot inoculation method and root inoculation method show higher values of fecundity, egg fertility and growth index.

Keywords: Beauveria bassiana, Chilo partellus, entomopathoganic, Metarhizium anisopliae, Verticillium lecanii

Procedia PDF Downloads 108