Search results for: international teaching and learning
5155 Obesity and Cancer: Current Scientific Evidence and Policy Implications
Authors: Martin Wiseman, Rachel Thompson, Panagiota Mitrou, Kate Allen
Abstract:
Since 1997 World Cancer Research Fund (WCRF) International and the American Institute for Cancer Research (AICR) have been at the forefront of synthesising and interpreting the accumulated scientific literature on the link between diet, nutrition, physical activity and cancer, and deriving evidence-based Cancer Prevention Recommendations. The 2007 WCRF/AICR 2nd Expert Report was a landmark in the analysis of evidence linking diet, body weight and physical activity to cancer and led to the establishment of the Continuous Update Project (CUP). In 2018, as part of the CUP, WCRF/AICR will publish a new synthesis of the current evidence and update the Cancer Prevention Recommendations. This will ensure that everyone - from policymakers and health professionals to members of the public - has access to the most up-to-date information on how to reduce the risk of developing cancer. Overweight and obesity play a significant role in cancer risk, and rates of both are increasing in many parts of the world. This session will give an overview of new evidence relating obesity to cancer since the 2007 report. For example, since the 2007 Report, the number of cancers for which obesity is judged to be a contributory cause has increased from seven to eleven. The session will also shed light on the well-established mechanisms underpinning obesity and cancer links. Additionally, the session will provide an overview of diet and physical activity related factors that promote positive energy imbalance, leading to overweight and obesity. Finally, the session will highlight how policy can be used to address overweight and obesity at a population level, using WCRF International’s NOURISHING Framework. NOURISHING formalises a comprehensive package of policies to promote healthy diets and reduce obesity and non-communicable diseases; it is a tool for policymakers to identify where action is needed and assess if an approach is sufficiently comprehensive. The framework brings together ten policy areas across three domains: food environment, food system, and behaviour change communication. The framework is accompanied by a regularly updated database providing an extensive overview of implemented government policy actions from around the world. In conclusion, the session will provide an overview of obesity and cancer, highlighting the links seen in the epidemiology and exploring the mechanisms underpinning these, as well as the influences that help determine overweight and obesity. Finally, the session will illustrate policy approaches that can be taken to reduce overweight and obesity worldwide.Keywords: overweight, obesity, nutrition, cancer, mechanisms, policy
Procedia PDF Downloads 1605154 Culture of Argumentative Discourse Formation as an Inevitable Element of Professional Development of Foreign Language Teachers
Authors: Kuznetsova Tamara, Sametova Fauziya
Abstract:
Modern period of educational development is characterized by various attempts in higher quality and effective result provision. Having acquired the modernized educational paradigm, our academic community placed the personality development through language and culture under the focus of primary research. The competency-based concept claims for professionally ready specialists who are capable of solving practical problems. In this sense, under the circumstances of the current development of Kazakhstani society, it is inevitable to form the ability to conduct argumentative discourse as the crucial element of intercultural communicative competence. This article particularly states the necessity of the culture of argumentative discourse formation presents theoretical background of its organization and aims at identifying important argumentative skills within educational process.Keywords: argumentative discourse, teaching process, skills, competency
Procedia PDF Downloads 3665153 Rupture in the Paradigm of the International Policy of Illicit Drugs in the Field of Public Health and within the Framework of the World Health Organization, 2001 to 2016
Authors: Emy Nayana Pinto, Denise Bomtempo Birche De Carvalho
Abstract:
In the present study, the harmful use of illicit drugs is seen as a public health problem and as one of the expressions of the social question, since its consequences fall mainly on the poorer classes of the population. This perspective is a counterpoint to the dominant paradigm on illicit drug policy at the global level, whose centrality lies within the criminal justice arena. The 'drug problem' is internationally combated through fragmented approaches that focus its actions on banning and criminalizing users. In this sense, the research seeks to answer the following key questions: What are the influences of the prohibitionism in the recommendations of the United Nations (UN), the World Health Organization (WHO), and the formulation of drug policies in member countries? What are the actors that have been provoking the prospect of breaking with the prohibitionist paradigm? What is the WHO contribution to the rupture with the prohibitionist paradigm and the displacement of the drug problem in the field of public health? The general objective of this work is to seek evidence from the perspective of rupture with the prohibitionist paradigm in the field of drugs policies at the global and regional level, through analysis of documents of the World Health Organization (WHO), between the years of 2001 to 2016. The research was carried out in bibliographical and documentary sources. The bibliographic sources contributed to the approach with the object and the theoretical basis of the research. The documentary sources served to answer the research questions and evidence the existence of the perspective of change in drug policy. Twenty-two documents of the UN system were consulted, of which fifteen had the contribution of the World Health Organization (WHO). In addition to the documents that directly relate to the subject of the research, documents from various agencies, programs, and offices, such as the Joint United Nations Program on HIV/AIDS (UNAIDS) and the United Nations Office on Drugs and Crime (UNODC), which also has drugs as the central or transversal theme of its performance. The results showed that from the 2000s it was possible to find in the literature review and in the documentary analysis evidence of the critique of the prohibitionist paradigm parallel to the construction of a new perspective for drug policy at the global level and the displacement of criminal justice approaches for the scope of public health, with the adoption of alternative and pragmatic interventions based on human rights, scientific evidence and the reduction of social damages and health by the misuse of illicit drugs.Keywords: illicit drugs, international organizations, prohibitionism, public health, World Health Organization
Procedia PDF Downloads 1595152 Sri Lanka-Middle East Labour Migration Corridor: Trends, Patterns and Structural Changes
Authors: Dinesha Siriwardhane, Indralal De Silva, Sampath Amaratunge
Abstract:
Objective of this study is to explore the recent trends, patterns and the structural changes in the labour migration from Sri Lanka to Middle East countries and to discuss the possible impacts of those changes on the remittance flow. Study uses secondary data published by Sri Lanka Bureau of Foreign Employment and Central Bank. Thematic analysis of the secondary data revealed that the migration for labour has increased rapidly during past decades. Parallel with that the gender and the skill composition of the migration flow has been changing. Similarly, the destinations for male migration have changed over the period. These show positive implications on the international remittance receipts to the country.Keywords: migration, middle east, Sri Lanka, social sciences
Procedia PDF Downloads 4045151 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant
Authors: Michael Smalenberger
Abstract:
Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation
Procedia PDF Downloads 1765150 Institutional Segmantation and Country Clustering: Implications for Multinational Enterprises Over Standardized Management
Authors: Jung-Hoon Han, Jooyoung Kwak
Abstract:
Distances between cultures, institutions are gaining academic attention once again since the classical debate on the validity of globalization. Despite the incessant efforts to define international segments with various concepts, no significant attempts have been made considering the institutional dimensions. Resource-based theory and institutional theory provides useful insights in assessing market environment and understanding when and how MNEs loose or gain advantages. This study consists of two parts: identifying institutional clusters and predicting the effect of MNEs’ origin on the applicability of competitive advantages. MNEs in one country cluster are expected to use similar management systems.Keywords: institutional theory, resource-based theory, institutional environment, cultural dimensions, cluster analysis, standardized management
Procedia PDF Downloads 4915149 Transformational Leadership in the United States to Negate Current Ethnocentrisms
Authors: Molly Meadows
Abstract:
Following the presidency of Donald J. Trump, Americans have become hyperaware of ethnocentrisms that plague the culture. The president's egoist ethics encouraged a divide between what the citizens of the US identified as just or unjust. In the race for global supremacy and leading ideology, fears have arisen, exacerbated by the ethnocentricity of the country's leader, pointing to the possible harmful ethical standards of competing nations. Due to the concept of ethical absolutism, an international code of ethics would not be possible, and the changes needed to eliminate the stigma surrounding other cultures of thought would need to come from the governing body of the US. As the current leading global ideology, the US would need its government to embody a transformational leadership style in order to unite the motivations of the citizens and encourage intercultural tolerance.Keywords: ethics, transformational leadership, American politics, egoism, cultural intelligence, ethical relativism
Procedia PDF Downloads 1025148 Design and Implementation of Embedded FM Transmission Control SW for Low Power Battery System
Authors: Young-Su Ryu, Kyung-Won Park, Jae-Hoon Song, Ki-Won Kwon
Abstract:
In this paper, an embedded frequency modulation (FM) transmission control software (SW) for a low power battery system is designed and implemented. The simultaneous translation systems for various languages are needed as so many international conferences and festivals are held in world wide. Especially in portable transmitting and receiving systems, the ability of long operation life is used for a measure of value. This paper proposes an embedded FM transmission control SW for low power battery system and shows the results of the SW implemented on a portable FM transmission system.Keywords: FM transmission, simultaneous translation system, portable transmitting and receiving systems, low power embedded control SW
Procedia PDF Downloads 4455147 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection
Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy
Abstract:
Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks
Procedia PDF Downloads 785146 Design Improvement of Aircraft Turbofan Engine Following Bird Ingestion Testing
Authors: Ahmed H. Elkholy
Abstract:
Aircraft gas turbine engines are subject to damage by airborne foreign objects such as birds and garbage dumps. In order to assess their effect on engine performance, a complete foreign object damage (FOD) test was carried out and a component failure analysis was used to verify airworthiness standards (AWS) requirements for engine certification as set by international regulations. Ingestion damage due to 1.8 Kg (4 lb.) bird strike on an engine is presented in some detail. Based on the observed damage, improvements to the engine design were suggested in two different locations: the front bearing housing and the low compressor shaft. When these improvements were implemented, the engine showed an acceptable containment capability that meets AWS requirements.Keywords: aircraft engine, airworthiness standards, bird ingestion, foreign object damage
Procedia PDF Downloads 4235145 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 3905144 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 1265143 Sovereign Debt Restructuring: A Study of the Inadequacies of the Contractual Approach
Authors: Salamah Ansari
Abstract:
In absence of a comprehensive international legal regime for sovereign debt restructuring, majority of the complications arising from sovereign debt restructuring are frequently left to the uncertain market forces. The resort to market forces for sovereign debt restructuring has led to a phenomenal increase in litigations targeting assets of defaulting sovereign nations, internationally across jurisdictions with the first major wave of lawsuits against sovereigns in the 1980s with the Latin American crisis. Recent experiences substantiate that majority of obstacles faced during sovereign debt restructuring process are caused by inefficient creditor coordination and collective action problems. Collective action problems manifest as grab race, rush to exits, holdouts, the free rider problem and the rush to the courthouse. On defaulting, for a nation to successfully restructure its debt, all the creditors involved must accept some reduction in the value of their claims. As a single holdout creditor has the potential to undermine the restructuring process, hold-out creditors are snowballing with the increasing probability of earning high returns through litigations. This necessitates a mechanism to avoid holdout litigations and reinforce collective action on the part of the creditor. This can be done either through a statutory reform or through market-based contractual approach. In absence of an international sovereign bankruptcy regime, the impetus is mostly on inclusion of collective action clauses in debt contracts. The preference to contractual mechanisms vis- a vis a statutory approach can be explained with numerous reasons, but that's only part of the puzzle in trying to understand the economics of the underlying system. The contractual approach proposals advocate the inclusion of certain clauses in the debt contract for an orderly debt restructuring. These include clauses such as majority voting clauses, sharing clauses, non- acceleration clauses, initiation clauses, aggregation clauses, temporary stay on litigation clauses, priority financing clauses, and complete revelation of relevant information. However, voluntary market based contractual approach to debt workouts has its own complexities. It is a herculean task to enshrine clauses in debt contracts that are detailed enough to create an orderly debt restructuring mechanism while remaining attractive enough for creditors. Introduction of collective action clauses into debt contracts can reduce the barriers in efficient debt restructuring and also have the potential to improve the terms on which sovereigns are able to borrow. However, it should be borne in mind that such clauses are not a panacea to the huge institutional inadequacy that persists and may lead to worse restructuring outcomes.Keywords: sovereign debt restructuring, collective action clauses, hold out creditors, litigations
Procedia PDF Downloads 1615142 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis
Authors: Meng Su
Abstract:
High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis
Procedia PDF Downloads 1145141 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context
Authors: Nicole Merkle, Stefan Zander
Abstract:
Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.Keywords: ambient intelligence, machine learning, semantic web, software agents
Procedia PDF Downloads 2855140 Tracing the Developmental Repertoire of the Progressive: Evidence from L2 Construction Learning
Abstract:
Research investigating language acquisition from a constructionist perspective has demonstrated that language is learned as constructions at various linguistic levels, which is related to factors of frequency, semantic prototypicality, and form-meaning contingency. However, previous research on construction learning tended to focus on clause-level constructions such as verb argument constructions but few attempts were made to study morpheme-level constructions such as the progressive construction, which is regarded as a source of acquisition problems for English learners from diverse L1 backgrounds, especially for those whose L1 do not have an equivalent construction such as German and Chinese. To trace the developmental trajectory of Chinese EFL learners’ use of the progressive with respect to verb frequency, verb-progressive contingency, and verbal prototypicality and generality, a learner corpus consisting of three sub-corpora representing three different English proficiency levels was extracted from the Chinese Learners of English Corpora (CLEC). As the reference point, a native speakers’ corpus extracted from the Louvain Corpus of Native English Essays was also established. All the texts were annotated with C7 tagset by part-of-speech tagging software. After annotation all valid progressive hits were retrieved with AntConc 3.4.3 followed by a manual check. Frequency-related data showed that from the lowest to the highest proficiency level, (1) the type token ratio increased steadily from 23.5% to 35.6%, getting closer to 36.4% in the native speakers’ corpus, indicating a wider use of verbs in the progressive; (2) the normalized entropy value rose from 0.776 to 0.876, working towards the target score of 0.886 in native speakers’ corpus, revealing that upper-intermediate learners exhibited a more even distribution and more productive use of verbs in the progressive; (3) activity verbs (i.e., verbs with prototypical progressive meanings like running and singing) dropped from 59% to 34% but non-prototypical verbs such as state verbs (e.g., being and living) and achievement verbs (e.g., dying and finishing) were increasingly used in the progressive. Apart from raw frequency analyses, collostructional analyses were conducted to quantify verb-progressive contingency and to determine what verbs were distinctively associated with the progressive construction. Results were in line with raw frequency findings, which showed that contingency between the progressive and non-prototypical verbs represented by light verbs (e.g., going, doing, making, and coming) increased as English proficiency proceeded. These findings altogether suggested that beginning Chinese EFL learners were less productive in using the progressive construction: they were constrained by a small set of verbs which had concrete and typical progressive meanings (e.g., the activity verbs). But with English proficiency increasing, their use of the progressive began to spread to marginal members such as the light verbs.Keywords: Construction learning, Corpus-based, Progressives, Prototype
Procedia PDF Downloads 1305139 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria
Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov
Abstract:
This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model
Procedia PDF Downloads 725138 Contemporary Terrorism: Root Causes and Misconceptions
Authors: Thomas Slunecko Karat
Abstract:
The years since 9/11 2001 have given us a plethora of research papers with the word ‘terrorism’ in the title. Yet only a small subset of these papers has produced new data, which explains why more than 20 years of research since 9/11 have done little to increase our understanding of the mechanisms that lead to terrorism. Specifically, terrorism scholars are divided by political, temporal, geographical and financial demarcation lines which prevent a clear definition of terrorism. As a consequence, the true root causes of terrorism remain unexamined. Instead, the psychopathological conditions of the individual have been emphasized despite ample empirical evidence pointing in a different direction. This paper examines the underlying reasons and motives that prevent open discourse about the root causes of terrorism and proposes that terrorism is linked to the current international system of resource allocation and systematic violations of human rights.Keywords: terrorism, root causes of terrorism, prevention of terrorism, racism, human rights violations
Procedia PDF Downloads 965137 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok
Authors: Noriyuki Suyama
Abstract:
The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior
Procedia PDF Downloads 945136 Environmental Literacy of Teacher Educators in Colleges of Teacher Education in Israel
Authors: Tzipi Eshet
Abstract:
The importance of environmental education as part of a national strategy to promote the environment is recognized around the world. Lecturers at colleges of teacher education have considerable responsibility, directly and indirectly, for the environmental literacy of students who will end up teaching in the school system. This study examined whether lecturers in colleges of teacher education and teacher training in Israel, are able and willing to develop among the students, environmental literacy. Capability and readiness is assessed by evaluating the level of environmental literacy dimensions that include knowledge on environmental issues, positions related to the environmental agenda and "green" patterns of behavior in everyday life. The survey included 230 lecturers from 22 state colleges coming from various sectors (secular, religious, and Arab), from different academic fields and different personal backgrounds. Firstly, the results show that the higher the commitment to environmental issues, the lower the satisfaction with the current situation. In general, the respondents show positive environmental attitudes in all categories examined, they feel that they can personally influence responsible environmental behavior of others and are able to internalize environmental education in schools and colleges; they also report positive environmental behavior. There are no significant differences between teachers of different background characteristics when it comes to behavior patterns that generate personal income funds (e.g. returning bottles for deposit). Women show a more responsible environmental behavior than men. Jewish lecturers, in most categories, show more responsible behavior than Druze and Arab lecturers; however, when referring to positions, Arabs and Druze have a better sense in their ability to influence the environmental agenda. The Knowledge test, which included 15 questions, was mostly based on basic environmental issues. The average score was adequate - 83.6. Science lecturers' environmental literacy is higher than the other lecturers significantly. The larger the environmental knowledge base is, they are more environmental in their attitudes, and they feel more responsible toward the environment. It can be concluded from the research findings, that knowledge is a fundamental basis for developing environmental literacy. Environmental knowledge has a positive effect on the development of environmental commitment that is reflected in attitudes and behavior. This conclusion is probably also true of the general public. Hence, there is a great importance to the expansion of knowledge among the general public and teacher educators in particular on environmental. From the open questions in the survey, it is evident that most of the lecturers are interested in the subject and understand the need to integrate environmental issues in the colleges, either directly by teaching courses on the environment or indirectly by integrating environmental issues in different professions as well as asking the students to set an example (such as, avoid unnecessary printing, keeping the environment clean). The curriculum at colleges should include a variety of options for the development and enhancement of environmental literacy of student teachers, but first there must be a focus on bringing their teachers to a high literacy level so they can meet the difficult and important task they face.Keywords: colleges of teacher education, environmental literacy, environmental education, teacher's teachers
Procedia PDF Downloads 2875135 The Effect of Using Mobile Listening Applications on Listening Skills of Iranian Intermediate EFL Learners
Authors: Mahmoud Nabilu
Abstract:
The present study explored the effect of using Mobile listening applications on developing listening skills by Iranian intermediate EFL learners. Fifty male intermediate English learners whose age range was between 15 and 20, participated in the study. The participants were placed in two groups on the basis of their scores on a placement test. Therefore, the participants of the study were homogenized in terms of general proficiency, and groups were assigned as one experimental group and one control group. The experimental group was instructed by the treatment which was using mobile applications to develop their listening skills while the control group received traditional methods. The research data were obtained from the 40-item multiple-choice tests as a pre-test and a post-test. The results of the t-test clearly revealed that the learners in the experimental group performed better in the post-test than the pre-test. This implies that using a mobile application for developing listening skills as a treatment was effective in helping the language learners perform better on post-test. However, a statistically significant difference was found between the post-tests scores of the two groups. The mean of the experimental group was greater compared to the control group. The participants were Iranian and from an Iranian Language Institute, so care should be taken while generalizing the results to the learners of other nationalities. However, in the researcher's view, the findings of this study have valuable implications for teachers and learners, methodologists and syllabus designers, linguists and MALL/CALL (mobile/computer-assisted language learning) experts. Using the result of the present paper is an aim of raising the consciousness of a better technique of developing listening skills in order to make language learning more efficient for the learners.Keywords: Mobile listening applications, intermediate EFL learners, MALL, CALL
Procedia PDF Downloads 1995134 Rohingya Problem and the Impending Crisis: Outcome of Deliberate Denial of Citizenship Status and Prejudiced Refugee Laws in South East Asia
Authors: Priyal Sepaha
Abstract:
A refugee crisis is manifested by challenges, both for the refugees and the asylum giving state. The situation turns into a mega-crisis when the situation is prejudicially handled by the home state, inappropriate refugee laws, exploding refugee population, and above all, no hope of any foreseeable solution or remedy. This paper studies the impact on the capability of stateless Rohingyas to migrate and seek refuge due to the enforcement of rigid criteria of movement imposed both by Myanmar as well as the adjoining countries in the name of national security. This theoretical study identifies the issues and the key factors and players which have precipitated the crisis. It further discusses the possible ramifications in the home, asylum giving, and the adjoining countries for not discharging their roles aptly. Additionally, an attempt has been made to understand the scarce response given to the impending crisis by the regional organizations like SAARC, ASEAN and CHOGAM as well as international organizations like United Nations Human Rights Council, Security Council, Office of High Commissioner for Refugees and so on, in the name of inadequacy of monetary funds and physical resources. Based on the refugee laws and practices pertaining to the case of Rohingyas, this paper analyses that the Rohingya Crisis is in dire need of an effective action plan to curb and resolve the biggest humanitarian crisis situation of the century. This mounting human tragedy can be mitigated permanently, by strengthening existing and creating new interdependencies among all stakeholders, as further ignorance can drive the countries of the Indian Sub-continent, in particular, and South East Asia, by and large into a violent civil war for seizing long-awaited civil rights by the marginalized Rohingyas. To curb this mass crisis, it will require the application of coercive pressure and diplomatic pursuance on the home country to acknowledge the rights of its fleeing citizens. This further necessitates mustering adequate monetary funds and physical resources for the asylum providing state. Additional challenges such as devising mechanisms for the refugee’s safe return, comprehensive planning for their holistic economic development and rehabilitation plan are needed. These, however, can only come into effect with a conscious strive by the regional and international community to fulfil their assigned role.Keywords: asylum, citizenship, crisis, humanitarian, human rights, refugee, rohingya
Procedia PDF Downloads 1375133 Analyzing the Perceptions of Accounting Practitioners regarding Communication Skills of Distance-Learning Graduates
Authors: Carol S. Binnekade, Deon Scott, Christina C. Shuttleworth, Annelien A. Van Rooyen
Abstract:
Higher education institutions are constantly challenged to deliver skilled graduates into the workplace. Employers expect graduates to have the required technical knowledge as well as various pervasive skills. This also applies to accountants who need to know the technical requirements of financial reporting and be able to communicate with individuals, teams and clients at a high level. Accountants need to develop effective business conversational skills and use these skills to communicate up, down and across organizations, taking into consideration cultural and gender diversity. In addition, they need to master business writing and presentation skills. However, providing students with these skills in a distance-learning environment where interaction between students and instructors is limited, is a challenge for academics. The study on which this paper reports, forms part of a larger body of research, which explored the perceptions of accounting practitioners of the communication skills (or lack thereof) of recently qualified accounting students. Feedback (qualitative and quantitative) was obtained from various accounting practitioners in South Africa. Taking into consideration that distance learners communicate mainly with their instructors via email communication and their assignments are submitted using various word processor software, the researchers were of the opinion that the accounting graduates would be capable of communicating effectively once they entered the workplace. However, the research findings, inter alia, suggested that the accounting graduates lacked communication skills and that training was needed to differentiate between business and social communication once they entered the workplace. Recommendations on how these communication challenges may be addressed by higher education institutions are provided.Keywords: accounting practitioners, communication skills, distance education, pervasive skills
Procedia PDF Downloads 2075132 Beyond Rhetoric and Buzzword, Policies and Politics: Towards Practical Institutional Involvement in Science and Technology Teacher Education Programmes for Sustainable Development
Authors: Alvin Uchenna Ugwu
Abstract:
The United Nation’s 2030 agenda and Global Action Programme (GAP) for implementation of the Sustainable Development Goals (SDGs), has mandated all sectors in the societies, including education, to develop strategies towards actualizing sustainability in all facets of the society, by the year 2030. Education is no doubt a key tool for social change. However, educational institutions in most African nations need a paradigmatic shift to strike a balance between policies (curricular) and practices, with regards to Education for Sustainable Development (ESD). The paradigm shift in this regard is described as whole-institution/school approach. The whole institution approaches advocate action-focused ESD. In other words, ESD policy and curriculum makers, formal and non-formal education institutions, need to ‘practice what they preach’. This paper is developed from an ongoing study carried out by the author and guided by two research questions: -What are the views of intermediate phase science and technology preservice teachers on the ESD content included in the science and technology modules? -What challenges or enable intermediate phase science and technology pre-service teachers to learn about ESD in science and technology modules? The study drew from the views and experiences of preservice science teachers, learning about ESD in a university’s college of education in South Africa. Using qualitative case study research design, the research data were generated via questionnaires and focus group discussions. Analysis of generated data indicates that universities and institutions of higher learning need to demonstrate practical involvement while implementing ESD in societies, rather than just standing as knowledge media. Findings of the study further suggest that natural sciences and technology courses in teacher education programmes and other institutions of higher learning, should be perceived as key transformative tools in shaping the consciousness of students towards integrating and fostering ESD in developing countries such as South Africa. Thus, this paper seeks to promote ‘Whole Institution Involvement’ in teacher education colleges in South Africa, as a measure of improving ESD in higher education settings. The paper suggests that in order to achieve ESD in higher education settings and beyond, policies and practices should be reexamined beyond rhetoric and buzzwords. The paper further argues that implementation of ESD is largely influenced by context, hence two different contexts should be examined empirically.Keywords: education for sustainable development, higher education institutions, pre-service science teachers, qualitative case study research, whole institution involvement
Procedia PDF Downloads 1815131 Ethnic and National Determinants in the Process of Building Peace in Afghanistan After the Withdrawal of Western Forces in 2021
Authors: Małgorzata Cichy
Abstract:
Afghanistan is a source of conflicts that affect security on a global scale. The role of ethnic and national determinants in the peacebuilding process in this country remains an extremely important factor in this respect. Research methods include literature and data analysis (scientific literature, documents of governmental and non-governmental organizations, statistical data and media reports), institutional and legal analysis, as well as decision-making method. The main objective of the research is a comprehensive answer to the question of how ethnic and national factors affect the process of building peace in Afghanistan after 2021 and what impact it has on international security.Keywords: Afghanistan, pashtuns, peace, taliban
Procedia PDF Downloads 1035130 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 1255129 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland
Authors: Raptis Sotirios
Abstract:
Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services
Procedia PDF Downloads 2405128 Determining the Direction of Causality between Creating Innovation and Technology Market
Authors: Liubov Evstigneeva
Abstract:
In this paper an attempt is made to establish causal nexuses between innovation and international trade in Russia. The topicality of this issue is determined by the necessity of choosing policy instruments for economic modernization and transition to innovative development. The vector auto regression (VAR) model and Granger test are applied for the Russian monthly data from 2005 until the second quartile of 2015. Both lagged import and export at the national level cause innovation, the latter starts to stimulate foreign trade since it is a remote lag. In comparison to aggregate data, the results by patent’s categories are more diverse. Importing technologies from foreign countries stimulates patent activity, while innovations created in Russia are only Granger causality for import to Commonwealth of Independent States.Keywords: export, import, innovation, patents
Procedia PDF Downloads 3235127 Cultural Knowledge Transfer of the Inherited Karen Backstrap Weaving for the 4th Generation of a Pwo Karen Community
Authors: Suphitcha Charoen-Amornkitt, Chokeanand Bussracumpakorn
Abstract:
The tendency of the Karen backstrap weaving succession has gradually decreased due to the difficulty of weaving techniques and the relocation of the young generation. The Yang Nam Klat Nuea community, Nong Ya Plong District, Phetchaburi, is a Pwo Karen community that is seriously confronted with a lack of cultural heritage. Thus, a group of weavers was formed to revive the knowledge of weaving. However, they have been gradually confronted with culture assimilation to mainstream culture from the desire for marketing acceptance and imperative and forced the extinction of culture due to the disappearance of weaving details and techniques. Although there are practical solutions, i.e., product development, community improvement, knowledge improvement, and knowledge transfer, to inherit the Karen weaving culture, people in the community cannot fulfill their deep intention about the weaving inheritance as most solutions have focused on developing the commercial products and making the income instead of inheriting their knowledge. This research employed qualitative user research with an in-depth user interview to study communal knowledge transfer succession based on the internal involved parties, i.e., four expert weavers, three young weavers, and three 4th generation villagers. The purpose is to explore the correlation and mindset of villagers towards the culture with specific issues, including the psychology of culture, core knowledge and learning methods, cultural inheritance, and cultural engagement. As a result, the existing models of knowledge management mostly focused on tangible strategies, which can notice progress in short terms, such as direct teaching and consistent practicing. At the same time, the motivation and passion of inheritors were abolished while the research found that the young generation who profoundly connected with the textile culture will have a more significant intention to continue the culture. Therefore, this research suggests both internal and external solutions to treat the community. Regarding the internal solutions, family, weaving group, and school have an important role to participate with young villagers by encouraging activities to support the cultivating of Karen’s history, understanding their identities, and adapting the culture as a part of daily life. At the same time, collecting all of the knowledge in the archives, e.g., recorded video, instruction, and books, can crucially prevent the culture from extinction. Regarding the external solutions, this study suggests that working with social media will enhance the intimacy of textile culture, while the community should relieve the roles in marketing competition and start to drive cultural experiences to create a new market position. In conclusion, this research intends to explore the causes and motivation to support the transfer of the culture to the 4th generation villagers and to raise awareness of the diversity of culture in society. With these suggestions and the desire to improve pride and confidence in culture, the community agrees that strengthening the relationships between the young villagers and the weaving culture can bring attention and interest back to the weaving culture.Keywords: Pwo Karen textile culture, backstrap weaving succession, cultural inheritance, knowledge transfer, knowledge management
Procedia PDF Downloads 1045126 Emerging Technology for 6G Networks
Authors: Yaseein S. Hussein, Victor P. Gil Jiménez, Abdulmajeed Al-Jumaily
Abstract:
Due to the rapid advancement of technology, there is an increasing demand for wireless connections that are both fast and reliable, with minimal latency. New wireless communication standards are developed every decade, and the year 2030 is expected to see the introduction of 6G. The primary objectives of 6G network and terminal designs are focused on sustainability and environmental friendliness. The International Telecommunication Union-Recommendation division (ITU-R) has established the minimum requirements for 6G, with peak and user data rates of 1 Tbps and 10-100 Gbps, respectively. In this context, Light Fidelity (Li-Fi) technology is the most promising candidate to meet these requirements. This article will explore the various advantages, features, and potential applications of Li-Fi technology, and compare it with 5G networking, to showcase its potential impact among other emerging technologies that aim to enable 6G networks.Keywords: 6G networks, artificial intelligence (AI), Li-Fi technology, Terahertz (THz) communication, visible light communication (VLC)
Procedia PDF Downloads 97