Search results for: Kriging techniques
73 Design and Fabrication of AI-Driven Kinetic Facades with Soft Robotics for Optimized Building Energy Performance
Authors: Mohammadreza Kashizadeh, Mohammadamin Hashemi
Abstract:
This paper explores a kinetic building facade designed for optimal energy capture and architectural expression. The system integrates photovoltaic panels with soft robotic actuators for precise solar tracking, resulting in enhanced electricity generation compared to static facades. Driven by the growing interest in dynamic building envelopes, the exploration of facade systems are necessitated. Increased energy generation and regulation of energy flow within buildings are potential benefits offered by integrating photovoltaic (PV) panels as kinetic elements. However, incorporating these technologies into mainstream architecture presents challenges due to the complexity of coordinating multiple systems. To address this, the design leverages soft robotic actuators, known for their compliance, resilience, and ease of integration. Additionally, the project investigates the potential for employing Large Language Models (LLMs) to streamline the design process. The research methodology involved design development, material selection, component fabrication, and system assembly. Grasshopper (GH) was employed within the digital design environment for parametric modeling and scripting logic, and an LLM was experimented with to generate Python code for the creation of a random surface with user-defined parameters. Various techniques, including casting, Three-dimensional 3D printing, and laser cutting, were utilized to fabricate physical components. A modular assembly approach was adopted to facilitate installation and maintenance. A case study focusing on the application of this facade system to an existing library building at Polytechnic University of Milan is presented. The system is divided into sub-frames to optimize solar exposure while maintaining a visually appealing aesthetic. Preliminary structural analyses were conducted using Karamba3D to assess deflection behavior and axial loads within the cable net structure. Additionally, Finite Element (FE) simulations were performed in Abaqus to evaluate the mechanical response of the soft robotic actuators under pneumatic pressure. To validate the design, a physical prototype was created using a mold adapted for a 3D printer's limitations. Casting Silicone Rubber Sil 15 was used for its flexibility and durability. The 3D-printed mold components were assembled, filled with the silicone mixture, and cured. After demolding, nodes and cables were 3D-printed and connected to form the structure, demonstrating the feasibility of the design. This work demonstrates the potential of soft robotics and Artificial Intelligence (AI) for advancements in sustainable building design and construction. The project successfully integrates these technologies to create a dynamic facade system that optimizes energy generation and architectural expression. While limitations exist, this approach paves the way for future advancements in energy-efficient facade design. Continued research efforts will focus on cost reduction, improved system performance, and broader applicability.Keywords: artificial intelligence, energy efficiency, kinetic photovoltaics, pneumatic control, soft robotics, sustainable building
Procedia PDF Downloads 3172 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan
Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad
Abstract:
Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules
Procedia PDF Downloads 10771 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 1870 The Influence of Fashion Bloggers on the Pre-Purchase Decision for Online Fashion Products among Generation Y Female Malaysian Consumers
Authors: Mohd Zaimmudin Mohd Zain, Patsy Perry, Lee Quinn
Abstract:
This study explores how fashion consumers are influenced by fashion bloggers towards pre-purchase decision for online fashion products in a non-Western context. Malaysians rank among the world’s most avid online shoppers, with apparel the third most popular purchase category. However, extant research on fashion blogging focuses on the developed Western market context. Numerous international fashion retailers have entered the Malaysian market from luxury to fast fashion segments of the market; however Malaysian fashion consumers must balance religious and social norms for modesty with their dress style and adoption of fashion trends. Consumers increasingly mix and match Islamic and Western elements of dress to create new styles enabling them to follow Western fashion trends whilst paying respect to social and religious norms. Social media have revolutionised the way that consumers can search for and find information about fashion products. For online fashion brands with no physical presence, social media provide a means of discovery for consumers. By allowing the creation and exchange of user-generated content (UGC) online, they provide a public forum that gives individual consumers their own voices, as well as access to product information that facilitates their purchase decisions. Social media empower consumers and brands have important roles in facilitating conversations among consumers and themselves, to help consumers connect with them and one another. Fashion blogs have become an important fashion information sources. By sharing their personal style and inspiring their followers with what they wear on popular social media platforms such as Instagram, fashion bloggers have become fashion opinion leaders. By creating UGC to spread useful information to their followers, they influence the pre-purchase decision. Hence, successful Western fashion bloggers such as Chiara Ferragni may earn millions of US dollars every year, and some have created their own fashion ranges and beauty products, become judges in fashion reality shows, won awards, and collaborated with high street and luxury brands. As fashion blogging has become more established worldwide, increasing numbers of fashion bloggers have emerged from non-Western backgrounds to promote Islamic fashion styles, such as Hassanah El-Yacoubi and Dian Pelangi. This study adopts a qualitative approach using netnographic content analysis of consumer comments on two famous Malaysian fashion bloggers’ Instagram accounts during January-March 2016 and qualitative interviews with 16 Malaysian Generation Y fashion consumers during September-October 2016. Netnography adapts ethnographic techniques to the study of online communities or computer-mediated communications. Template analysis of the data involved coding comments according to the theoretical framework, which was developed from the literature review. Initial data analysis shows the strong influence of Malaysian fashion bloggers on their followers in terms of lifestyle and morals as well as fashion style. Followers were guided towards the mix and match trend of dress with Western and Islamic elements, for example, showing how vivid colours or accessories could be worked into an outfit whilst still respecting social and religious norms. The blogger’s Instagram account is a form of online community where followers can communicate and gain guidance and support from other followers, as well as from the blogger.Keywords: fashion bloggers, Malaysia, qualitative, social media
Procedia PDF Downloads 21869 Charcoal Traditional Production in Portugal: Contribution to the Quantification of Air Pollutant Emissions
Authors: Cátia Gonçalves, Teresa Nunes, Inês Pina, Ana Vicente, C. Alves, Felix Charvet, Daniel Neves, A. Matos
Abstract:
The production of charcoal relies on rudimentary technologies using traditional brick kilns. Charcoal is produced under pyrolysis conditions: breaking down the chemical structure of biomass under high temperature in the absence of air. The amount of the pyrolysis products (charcoal, pyroligneous extract, and flue gas) depends on various parameters, including temperature, time, pressure, kiln design, and wood characteristics like the moisture content. This activity is recognized for its inefficiency and high pollution levels, but it is poorly characterized. This activity is widely distributed and is a vital economic activity in certain regions of Portugal, playing a relevant role in the management of woody residues. The location of the units establishes the biomass used for charcoal production. The Portalegre district, in the Alto Alentejo region (Portugal), is a good example, essentially with rural characteristics, with a predominant farming, agricultural, and forestry profile, and with a significant charcoal production activity. In this district, a recent inventory identifies almost 50 charcoal production units, equivalent to more than 450 kilns, of which 80% appear to be in operation. A field campaign was designed with the objective of determining the composition of the emissions released during a charcoal production cycle. A total of 30 samples of particulate matter and 20 gas samples in Tedlar bags were collected. Particulate and gas samplings were performed in parallel, 2 in the morning and 2 in the afternoon, alternating the inlet heads (PM₁₀ and PM₂.₅), in the particulate sampler. The gas and particulate samples were collected in the plume as close as the emission chimney point. The biomass (dry basis) used in the carbonization process was a mixture of cork oak (77 wt.%), holm oak (7 wt.%), stumps (11 wt.%), and charred wood (5 wt.%) from previous carbonization processes. A cylindrical batch kiln (80 m³) with 4.5 m diameter and 5 m of height was used in this study. The composition of the gases was determined by gas chromatography, while the particulate samples (PM₁₀, PM₂.₅) were subjected to different analytical techniques (thermo-optical transmission technique, ion chromatography, HPAE-PAD, and GC-MS after solvent extraction) after prior gravimetric determination, to study their organic and inorganic constituents. The charcoal production cycle presents widely varying operating conditions, which will be reflected in the composition of gases and particles produced and emitted throughout the process. The concentration of PM₁₀ and PM₂.₅ in the plume was calculated, ranging between 0.003 and 0.293 g m⁻³, and 0.004 and 0.292 g m⁻³, respectively. Total carbon, inorganic ions, and sugars account, in average, for PM10 and PM₂.₅, 65 % and 56 %, 2.8 % and 2.3 %, 1.27 %, and 1.21 %, respectively. The organic fraction studied until now includes more than 30 aliphatic compounds and 20 PAHs. The emission factors of particulate matter to produce charcoal in the traditional kiln were 33 g/kg (wooddb) and 27 g/kg (wooddb) for PM₁₀ and PM₂.₅, respectively. With the data obtained in this study, it is possible to fill the lack of information about the environmental impact of the traditional charcoal production in Portugal. Acknowledgment: Authors thanks to FCT – Portuguese Science Foundation, I.P. and to Ministry of Science, Technology and Higher Education of Portugal for financial support within the scope of the project CHARCLEAN (PCIF/GVB/0179/2017) and CESAM (UIDP/50017/2020 + UIDB/50017/2020).Keywords: brick kilns, charcoal, emission factors, PAHs, total carbon
Procedia PDF Downloads 14268 Thermally Conductive Polymer Nanocomposites Based on Graphene-Related Materials
Authors: Alberto Fina, Samuele Colonna, Maria del Mar Bernal, Orietta Monticelli, Mauro Tortello, Renato Gonnelli, Julio Gomez, Chiara Novara, Guido Saracco
Abstract:
Thermally conductive polymer nanocomposites are of high interest for several applications including low-temperature heat recovery, heat exchangers in a corrosive environment and heat management in electronics and flexible electronics. In this paper, the preparation of thermally conductive nanocomposites exploiting graphene-related materials is addressed, along with their thermal characterization. In particular, correlations between 1- chemical and physical features of the nanoflakes and 2- processing conditions with the heat conduction properties of nanocomposites is studied. Polymers are heat insulators; therefore, the inclusion of conductive particles is the typical solution to obtain a sufficient thermal conductivity. In addition to traditional microparticles such as graphite and ceramics, several nanoparticles have been proposed, including carbon nanotubes and graphene, for the use in polymer nanocomposites. Indeed, thermal conductivities for both carbon nanotubes and graphenes were reported in the wide range of about 1500 to 6000 W/mK, despite such property may decrease dramatically as a function of the size, number of layers, the density of topological defects, re-hybridization defects as well as on the presence of impurities. Different synthetic techniques have been developed, including mechanical cleavage of graphite, epitaxial growth on SiC, chemical vapor deposition, and liquid phase exfoliation. However, the industrial scale-up of graphene, defined as an individual, single-atom-thick sheet of hexagonally arranged sp2-bonded carbons still remains very challenging. For large scale bulk applications in polymer nanocomposites, some graphene-related materials such as multilayer graphenes (MLG), reduced graphene oxide (rGO) or graphite nanoplatelets (GNP) are currently the most interesting graphene-based materials. In this paper, different types of graphene-related materials were characterized for their chemical/physical as well as for thermal properties of individual flakes. Two selected rGOs were annealed at 1700°C in vacuum for 1 h to reduce defectiveness of the carbon structure. Thermal conductivity increase of individual GNP with annealing was assessed via scanning thermal microscopy. Graphene nano papers were prepared from both conventional RGO and annealed RGO flakes. Characterization of the nanopapers evidenced a five-fold increase in the thermal diffusivity on the nano paper plane for annealed nanoflakes, compared to pristine ones, demonstrating the importance of structural defectiveness reduction to maximize the heat dissipation performance. Both pristine and annealed RGO were used to prepare polymer nanocomposites, by melt reactive extrusion. Thermal conductivity showed two- to three-fold increase in the thermal conductivity of the nanocomposite was observed for high temperature treated RGO compared to untreated RGO, evidencing the importance of using low defectivity nanoflakes. Furthermore, the study of different processing paremeters (time, temperature, shear rate) during the preparation of poly (butylene terephthalate) nanocomposites evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; which in turn affected the thermal conductivity performance. Thermal conductivity of about 1.7 W/mK, i.e. one order of magnitude higher than for pristine polymer, was obtained with 10%wt of annealed GNPs, which is in line with state of the art nanocomposites prepared by more complex and less upscalable in situ polymerization processes.Keywords: graphene, graphene-related materials, scanning thermal microscopy, thermally conductive polymer nanocomposites
Procedia PDF Downloads 26767 A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems
Authors: Ajit Rai, Hamza Deroui, Blandine Vacher, Khwansiri Ninpan, Arthur Aumont, Francesco Vitillo, Robert Plana
Abstract:
Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures.Keywords: deterministic scheduling, optimization coupling, modular scheduling, RCPSP
Procedia PDF Downloads 19866 Xen45 Gel Implant in Open Angle Glaucoma: Efficacy, Safety and Predictors of Outcome
Authors: Fossarello Maurizio, Mattana Giorgio, Tatti Filippo.
Abstract:
The most widely performed surgical procedure in Open-Angle Glaucoma (OAG) is trabeculectomy. Although this filtering procedure is extremely effective, surgical failure and postoperative complications are reported. Due to the its invasive nature and possible complications, trabeculectomy is usually reserved, in practice, for patients who are refractory to medical and laser therapy. Recently, a number of micro-invasive surgical techniques (MIGS: Micro-Invasive Glaucoma Surgery), have been introduced in clinical practice. They meet the criteria of micro-incisional approach, minimal tissue damage, short surgical time, reliable IOP reduction, extremely high safety profile and rapid post-operative recovery. Xen45 Gel Implant (Allergan, Dublin, Ireland) is one of the MIGS alternatives, and consists in a porcine gelatin tube designed to create an aqueous flow from the anterior chamber to the subconjunctival space, bypassing the resistance of the trabecular meshwork. In this study we report the results of this technique as a favorable option in the treatment of OAG for its benefits in term of efficacy and safety, either alone or in combination with cataract surgery. This is a retrospective, single-center study conducted in consecutive OAG patients, who underwent Xen45 Gel Stent implantation alone or in combination with phacoemulsification, from October 2018 to June 2019. The primary endpoint of the study was to evaluate the reduction of both IOP and number of antiglaucoma medications at 12 months. The secondary endpoint was to correlate filtering bleb morphology evaluated by means of anterior segment OCT with efficacy in IOP lowering and eventual further procedures requirement. Data were recorded on Microsoft Excel and study analysis was performed using Microsoft Excel and SPSS (IBM). Mean values with standard deviations were calculated for IOPs and number of antiglaucoma medications at all points. Kolmogorov-Smirnov test showed that IOP followed a normal distribution at all time, therefore the paired Student’s T test was used to compare baseline and postoperative mean IOP. Correlation between postoperative Day 1 IOP and Month 12 IOP was evaluated using Pearson coefficient. Thirty-six eyes of 36 patients were evaluated. As compared to baseline, mean IOP and the mean number of antiglaucoma medications significantly decreased from 27,33 ± 7,67 mmHg to 16,3 ± 2,89 mmHg (38,8% reduction) and from 2,64 ± 1,39 to 0,42 ± 0,8 (84% reduction), respectively, at 12 months after surgery (both p < 0,001). According to bleb morphology, eyes were divided in uniform group (n=8, 22,2%), subconjunctival separation group (n=5, 13,9%), microcystic multiform group (n=9, 25%) and multiple internal layer group (n=14, 38,9%). Comparing to baseline, there was no significative difference in IOP between the 4 groups at month 12 follow-up visit. Adverse events included bleb function decrease (n=14, 38,9%), hypotony (n=8, 22,2%) and choroidal detachment (n=2, 5,6%). All eyes presenting bleb flattening underwent needling and MMC injection. The higher percentage of patients that required secondary needling was in the uniform group (75%), with a significant difference between the groups (p=0,03). Xen45 gel stent, either alone or in combination with phacoemulsification, provided a significant lowering in both IOP and medical antiglaucoma treatment and an elevated safety profile.Keywords: anterior segment OCT, bleb morphology, micro-invasive glaucoma surgery, open angle glaucoma, Xen45 gel implant
Procedia PDF Downloads 14165 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 6364 21st-Century Middlebrow Film: A Critical Examination of the Spectator Experience in Malayalam Film
Authors: Anupama A. P.
Abstract:
The Malayalam film industry, known as Mollywood, has a rich tradition of storytelling and cultural significance within Indian cinema. Middlebrow films have emerged as a distinct influential category, particularly in the 1980s, with directors like K.G. George, who engaged with female subjectivity and drew inspiration from the ‘women’s cinema’ of the 1950s and 1960s. In recent decades, particularly post-2010, the industry has transformed significantly with a new generation of filmmakers diverging from melodrama and new wave of the past, incorporating advanced technology and modern content. This study examines the evolution and impact of Malayalam middlebrow cinema in the 21st century, focusing on post-2000 films and their influence on contemporary spectator experiences. These films appeal to a wide range of audiences without compromising on their artistic integrity, tackling social issues and personal dramas with thematic and narrative complexity. Historically, middlebrow films in Malayalam cinema have portrayed realism and addressed the socio-political climate of Kerala, blending realism with reflexivity and moving away from traditional sentimentality. This shift is evident in the new generation of Malayalam films, which present a global representation of characters and a modern treatment of individuals. To provide a comprehensive understanding of this evolution, the study analyzes a diverse selection of films such as Kerala Varma Pazhassi Raja (2009), Drishyam (2013), Maheshinte Prathikaaram (2016), Take Off (2017), and Thondimuthalum Driksakshiyum (2017) and Virus (2019) illustrating the broad thematic range and innovative narrative techniques characteristic of this genre. These films exemplify how middlebrow cinema continues to evolve, adapting to changing societal contexts and audience expectations. This research employs a theoretical methodology, drawing on cultural studies and audience reception theory, utilizing frameworks such as Bordwell’s narrative theory, Deleuze’s concept of deterritorialization, and Hall’s encoding/decoding model to analyze the changes in Malayalam middlebrow cinema and interpret the storytelling methods, spectator experience, and audience reception of these films. The findings indicate that Malayalam middlebrow cinema post-2010 offers a spectator experience that is both intellectually stimulating and broadly appealing. This study highlights the critical role of middlebrow cinema in reflecting and shaping societal values, making it a significant cultural artefact within the broader context of Indian and global cinema. By bridging entertainment with thought-provoking narratives, these films engage audiences and contribute to wider cultural discourse, making them pivotal in contemporary cinematic landscapes. To conclude, this study highlights the importance of Malayalam middle-brow cinema in influencing contemporary cinematic tastes. The nuanced and approachable narratives of post-2010 films are posited to assume an increasingly pivotal role in the future of Malayalam cinema. By providing a deeper understanding of Malayalam middlebrow cinema and its societal implications, this study enriches theoretical discourse, promotes regional cinema, and offers valuable insights into contemporary spectator experiences and the future trajectory of Malayalam cinema.Keywords: Malayalam cinema, middlebrow cinema, spectator experience, audience reception, deterritorialization
Procedia PDF Downloads 3263 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 7362 Transitioning Towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges
Authors: Atefeh Salehipoor
Abstract:
Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: 1. Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. 2. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. 3. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. 4. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. 5. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. 6. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension
Procedia PDF Downloads 8361 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design
Authors: H. K. Esfahani, B. Datta
Abstract:
Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site
Procedia PDF Downloads 23160 Classical Improvisation Facilitating Enhanced Performer-Audience Engagement and a Mutually Developing Impulse Exchange with Concert Audiences
Authors: Pauliina Haustein
Abstract:
Improvisation was part of Western classical concert culture and performers’ skill sets until early 20th century. Historical accounts, as well as recent studies, indicate that improvisatory elements in the programme may contribute specifically towards the audiences’ experience of enhanced emotional engagement during the concert. This paper presents findings from the author’s artistic practice research, which explored re-introducing improvisation to Western classical performance practice as a musician (cellist and ensemble partner/leader). In an investigation of four concert cycles, the performer-researcher sought to gain solo and chamber music improvisation techniques (both related to and independent of repertoire), conduct ensemble improvisation rehearsals, design concerts with an improvisatory approach, and reflect on interactions with audiences after each concert. Data was collected through use of reflective diary, video recordings, measurement of sound parameters, questionnaires, a focus group, and interviews. The performer’s empirical experiences and findings from audience research components were juxtaposed and interrogated to better understand the (1) rehearsal and planning processes that enable improvisatory elements to return to Western classical concert experience and (2) the emotional experience and type of engagement that occur throughout the concert experience for both performer and audience members. This informed the development of a concert model, in which a programme of solo and chamber music repertoire and improvisations were combined according to historically evidenced performance practice (including free formal solo and ensemble improvisations based on audience suggestions). Inspired by historical concert culture, where elements of risk-taking, spontaneity, and audience involvement (such as proposing themes for fantasies) were customary, this concert model invited musicians to contribute to the process personally and creatively at all stages, from programme planning, and throughout the live concert. The type of democratic, personal, creative, and empathetic collaboration that emerged, as a result, appears unique in Western classical contexts, rather finding resonance in jazz ensemble, drama, or interdisciplinary settings. The research identified features of ensemble improvisation, such as empathy, emergence, mutual engagement, and collaborative creativity, that became mirrored in audience’s responses, generating higher levels of emotional engagement, empathy, inclusivity, and a participatory, co-creative experience. It appears that duringimprovisatory moments in the concert programme, audience members started feeling more like active participants in za\\a creative, collaborative exchange and became stakeholders in a deeper phenomenon of meaning-making and narrativization. Examining interactions between all involved during the concert revealed that performer-audience impulse exchange occurred on multiple levels of awareness and seemed to build upon each other, resulting in particularly strong experiences of both performer and audience’s engagement. This impact appeared especially meaningful for audience members who were seldom concertgoers and reported little familiarity with classical music. The study found that re-introducing improvisatory elements to Western classical concert programmes has strong potential in increasing audience’s emotional engagement with the musical performance, enabling audience members to connect more personally with the individual performers, and in reaching new-to-classical-music audiences.Keywords: artistic research, audience engagement, audience experience, classical improvisation, ensemble improvisation, emotional engagement, improvisation, improvisatory approach, musical performance, practice research
Procedia PDF Downloads 12859 Comparative Analysis of Learner-centred Education in Early Childhood Curriculum Policies in England and Hong Kong
Authors: Dongdong Bai
Abstract:
The curriculum is essential in determining the quality of early childhood education (ECE). Education policy is intricately linked to the effective execution of the preschool education curriculum. The learner-centred education (LCE) approach is a globally common educational concept. However, it is an approach that is applied variably in ECE policy-making and implementation across diverse cultural contexts. Notwithstanding its significance, limited study has investigated the ECE curriculum policies on the articulation and implementation of the LCE concept in England and Hong Kong’s non-profit-making kindergartens — two regions with intricate historical and cultural connections. Moreover, both regions have experienced significant transformations in ECE policy since 1997. This research employs a qualitative comparative approach, with discourse analysis of key policy documents and relevant literature as the primary methodology. The study develops a comparison framework grounded in Adamson and Morris' curriculum comparison theory, which evaluates curricula from the perspectives of purpose, focus, and manifestation. The paper is structured around three key elements: (1) educational objectives; (2) implementation guidance, including pedagogical strategies, learning content and assessment mechanism; and (3) influential cultural ideologies. Through this framework, the study explores the similarities and differences in the design and implementation of LCE within ECE policies in England and Hong Kong’s non-profit-making kindergartens, while examining the cultural factors that shape these policy variations. The findings indicate that both England and Hong Kong possess child-centered educational objectives focused on enhancing cognitive, skill-based, and physical development; however, Hong Kong's policies notably emphasize alleviating academic pressure in achieving these curriculum aims. England's recommendations advocate for play-based, and exploratory learning to augment children's cognitive development. Conversely, Hong Kong utilizes narrative techniques and indoor instruction to facilitate progressive education. Additionally, both areas encompass cognitive disciplines such as literacy and numeracy; however, England distinctly prioritizes citizenship education with an emphasis on cultural traits. In contrast, Hong Kong amalgamates Western educational ideas with an emphasis on traditional Chinese culture and values, encompassing the study of Chinese characters, etiquette, and moral education rooted in Confucian cultural ideologies. Ultimately, regarding assessment mechanisms, England has transitioned from government-led professional evaluation programs to a hybrid of market and governmental oversight. Conversely, Hong Kong's curriculum evaluation mechanism primarily consists of self-evaluation and public supervision, yet it is evident that the policy could benefit from greater receptiveness to public and expert input. The underlying cultural ideologies significantly influence these policy discrepancies. In England, ECE policies are guided by core concepts that viewing children as individuals, agents, and future citizens. In Hong Kong, the policies reflect Confucian traditions and cultural values, which shape their unique approach to ECE in Hong Kong societies. In conclusion, whereas both locations strive to advocate LCE for the comprehensive development of children, significant differences arise in curriculum focus and implementation policies, shaped by their respective cultural philosophies.Keywords: curriculum policy, cultural contexts, early childhood education, learner-centred education
Procedia PDF Downloads 1658 Even When the Passive Resistance Is Obligatory: Civil Intellectuals’ Solidarity Activism in Tea Workers Movement
Authors: Moshreka Aditi Huq
Abstract:
This study shows how a progressive portion of civil intellectuals in Bangladesh contributed as the solidarity activist entities in a movement of tea workers that became the symbol of their unique moral struggle. Their passive yet sharp way of resistance, with the integration of mass tea workers of a tea estate, got demonstrated against certain private companies and government officials who approached to establish a special economic zone inside the tea garden without offering any compensation and rehabilitation for poor tea workers. Due to massive protests and rebellion, the authorized entrepreneurs had to step back and called off the project immediately. The extraordinary features of this movement generated itself from the deep core social need of indigenous tea workers who are still imprisoned in the colonial cage. Following an anthropological and ethnographic perspective, this study adopted the main three techniques of intensive interview, focus group discussion, and laborious observation, to extract empirical data. The intensive interviews were undertaken informally using a mostly conversational approach. Focus group discussions were piloted among various representative groups where observations prevailed as part of the regular documentation process. These were conducted among civil intellectual entities, tea workers, tea estate authorities, civil service authorities, and business officials to obtain a holistic view of the situation. The fieldwork was executed in capital Dhaka city, along with northern areas like Chandpur-Begumkhan Tea Estate of Chunarughat Upazilla and Habiganj city of Habiganj District of Bangladesh. Correspondingly, secondary data were accessed through books, scholarly papers, archives, newspapers, reports, leaflets, posters, writing blog, and electronic pages of social media. The study results find that: (1) civil intellectuals opposed state-sponsored business impositions by producing counter-discourse and struggled against state hegemony through the phases of the movement; (2) instead of having the active physical resistance, civil intellectuals’ strength was preferably in passive form which was portrayed through their intellectual labor; (3) the combined movement of tea workers and civil intellectuals reflected on social security of ethnic worker communities that contrasts state’s pseudo-development motives which ultimately supports offensive and oppressive neoliberal growths of economy; (4) civil intellectuals are revealed as having certain functional limitations in the process of movement organization as well as resource mobilization; (5) in specific contexts, the genuine need of protest by indigenous subaltern can overshadow intellectual elitism and helps to raise the voices of ‘subjugated knowledge’. This study is quite likely to represent two sets of apparent protagonist entities in the discussion of social injustice and oppressive development intervention. On the one, hand it may help us to find the basic functional characteristics of civil intellectuals in Bangladesh when they are in a passive mode of resistance in social movement issues. On the other hand, it represents the community ownership and inherent protest tendencies of indigenous workers when they feel threatened and insecure. The study seems to have the potential to understand the conditions of ‘subjugated knowledge’ of subalterns. Furthermore, being the memory and narratives, these ‘activism mechanisms’ of social entities broadens the path to understand ‘power’ and ‘resistance’ in more fascinating ways.Keywords: civil intellectuals, resistance, subjugated knowledge, indigenous
Procedia PDF Downloads 12557 Determination of Aquifer Geometry Using Geophysical Methods: A Case Study from Sidi Bouzid Basin, Central Tunisia
Authors: Dhekra Khazri, Hakim Gabtni
Abstract:
Because of Sidi Bouzid water table overexploitation, this study aims at integrating geophysical methods to determinate aquifers geometry assessing their geological situation and geophysical characteristics. However in highly tectonic zones controlled by Atlassic structural features with NE-SW major directions (central Tunisia), Bouguer gravimetric responses of some areas can be as much dominated by the regional structural tendency, as being non-identified or either defectively interpreted such as the case of Sidi Bouzid basin. This issue required a residual gravity anomaly elaboration isolating the Sidi Bouzid basin gravity response ranging between -8 and -14 mGal and crucial for its aquifers geometry characterization. Several gravity techniques helped constructing the Sidi Bouzid basin's residual gravity anomaly, such as Upwards continuation compared to polynomial regression trends and power spectrum analysis detecting deep basement sources at (3km), intermediate (2km) and shallow sources (1km). A 3D Euler Deconvolution was also performed detecting deepest accidents trending NE-SW, N-S and E-W with depth values reaching 5500 m and delineating the main outcropping structures of the study area. Further gravity treatments highlighted the subsurface geometry and structural features of Sidi Bouzid basin over Horizontal and vertical gradient, and also filters based on them such as Tilt angle and Source Edge detector locating rooted edges or peaks from potential field data detecting a new E-W lineament compartmentalizing the Sidi Bouzid gutter into two unequally residual anomaly and subsiding domains. This subsurface morphology is also detected by the used 2D seismic reflection sections defining the Sidi Bouzid basin as a deep gutter within a tectonic set of negative flower structures, and collapsed and tilted blocks. Furthermore, these structural features were confirmed by forward gravity modeling process over several modeled residual gravity profiles crossing the main area. Sidi Bouzid basin (central Tunisia) is also of a big interest cause of the unknown total thickness and the undefined substratum of its siliciclastic Tertiary package, and its aquifers unbounded structural subsurface features and deep accidents. The Combination of geological, hydrogeological and geophysical methods is then of an ultimate need. Therefore, a geophysical methods integration based on gravity survey supporting available seismic data through forward gravity modeling, enhanced lateral and vertical extent definition of the basin's complex sedimentary fill via 3D gravity models, improved depth estimation by a depth to basement modeling approach, and provided 3D isochronous seismic mapping visualization of the basin's Tertiary complex refining its geostructural schema. A subsurface basin geomorphology mapping, over an ultimate matching between the basin's residual gravity map and the calculated theoretical signature map, was also displayed over the modeled residual gravity profiles. An ultimate multidisciplinary geophysical study of the Sidi Bouzid basin aquifers can be accomplished via an aeromagnetic survey and a 4D Microgravity reservoir monitoring offering temporal tracking of the target aquifer's subsurface fluid dynamics enhancing and rationalizing future groundwater exploitation in this arid area of central Tunisia.Keywords: aquifer geometry, geophysics, 3D gravity modeling, improved depths, source edge detector
Procedia PDF Downloads 28356 Trajectory Optimization for Autonomous Deep Space Missions
Authors: Anne Schattel, Mitja Echim, Christof Büskens
Abstract:
Trajectory planning for deep space missions has become a recent topic of great interest. Flying to space objects like asteroids provides two main challenges. One is to find rare earth elements, the other to gain scientific knowledge of the origin of the world. Due to the enormous spatial distances such explorer missions have to be performed unmanned and autonomously. The mathematical field of optimization and optimal control can be used to realize autonomous missions while protecting recourses and making them safer. The resulting algorithms may be applied to other, earth-bound applications like e.g. deep sea navigation and autonomous driving as well. The project KaNaRiA ('Kognitionsbasierte, autonome Navigation am Beispiel des Ressourcenabbaus im All') investigates the possibilities of cognitive autonomous navigation on the example of an asteroid mining mission, including the cruise phase and approach as well as the asteroid rendezvous, landing and surface exploration. To verify and test all methods an interactive, real-time capable simulation using virtual reality is developed under KaNaRiA. This paper focuses on the specific challenge of the guidance during the cruise phase of the spacecraft, i.e. trajectory optimization and optimal control, including first solutions and results. In principle there exist two ways to solve optimal control problems (OCPs), the so called indirect and direct methods. The indirect methods are being studied since several decades and their usage needs advanced skills regarding optimal control theory. The main idea of direct approaches, also known as transcription techniques, is to transform the infinite-dimensional OCP into a finite-dimensional non-linear optimization problem (NLP) via discretization of states and controls. These direct methods are applied in this paper. The resulting high dimensional NLP with constraints can be solved efficiently by special NLP methods, e.g. sequential quadratic programming (SQP) or interior point methods (IP). The movement of the spacecraft due to gravitational influences of the sun and other planets, as well as the thrust commands, is described through ordinary differential equations (ODEs). The competitive mission aims like short flight times and low energy consumption are considered by using a multi-criteria objective function. The resulting non-linear high-dimensional optimization problems are solved by using the software package WORHP ('We Optimize Really Huge Problems'), a software routine combining SQP at an outer level and IP to solve underlying quadratic subproblems. An application-adapted model of impulsive thrusting, as well as a model of an electrically powered spacecraft propulsion system, is introduced. Different priorities and possibilities of a space mission regarding energy cost and flight time duration are investigated by choosing different weighting factors for the multi-criteria objective function. Varying mission trajectories are analyzed and compared, both aiming at different destination asteroids and using different propulsion systems. For the transcription, the robust method of full discretization is used. The results strengthen the need for trajectory optimization as a foundation for autonomous decision making during deep space missions. Simultaneously they show the enormous increase in possibilities for flight maneuvers by being able to consider different and opposite mission objectives.Keywords: deep space navigation, guidance, multi-objective, non-linear optimization, optimal control, trajectory planning.
Procedia PDF Downloads 41255 Networks, Regulations and Public Action: The Emerging Experiences of Sao Paulo
Authors: Lya Porto, Giulia Giacchè, Mario Aquino Alves
Abstract:
The paper aims to describe the linkage between government and civil society proposing a study on agro-ecological agriculture policy and urban action in São Paulo city underling the main achievements obtained. The negotiation processes between social movements and the government (inputs) and its results on political regulation and public action for Urban Agriculture (UA) in São Paulo city (outputs) have been investigated. The method adopted is qualitative, with techniques of semi-structured interviews, participant observation, and documental analysis. The authors conducted 30 semi-structured interviews with organic farmers, activists, governmental and non-governmental managers. Participant observation was conducted in public gardens, urban farms, public audiences, democratic councils, and social movements meetings. Finally, public plans and laws were also analyzed. São Paulo city with around 12 million inhabitants spread out in a 1522 km2 is the economic capital of Brazil, marked by spatial and socioeconomic segregation, currently aggravated by environmental crisis, characterized by water scarcity, pollution, and climate changes. In recent years, Urban Agriculture (UA) social movements gained strength and struggle for a different city with more green areas, organic food production, and public occupation. As the dynamics of UA occurs by the action of multiple actresses and institutions that struggle to build multiple senses on UA, the analysis will be based on literature about solidarity economy, governance, public action and networks. Those theories will mark out the analysis that will emphasize the approach of inter-subjectivity built between subjects, as well as the hybrid dynamics of multiple actors and spaces in the construction of policies for UA. Concerning UA we identified four main typologies based on land ownership, main function (economic or activist), form of organization of the space, and type of production (organic or not). The City Hall registers 500 productive unities of agriculture, with around 1500 producers, but researcher estimated a larger number of unities. Concerning the social movements we identified three categories that differ in goals and types of organization, but all of them work by networks of activists and/or organizations. The first category does not consider themselves as a movement, but a network. They occupy public spaces to grow organic food and to propose another type of social relations in the city. This action is similar to what became known as the green guerrillas. The second is configured as a movement that is structured to raise awareness about agro-ecological activities. The third one is a network of social movements, farmers, organizations and politicians that work focused on pressure and negotiation with executive and legislative government to approve regulations and policies on organic and agro-ecological Urban Agriculture. We conclude by highlighting how the interaction among institutions and civil society produced important achievements for recognition and implementation of UA within the city. Some results of this process are awareness for local production, legal and institutional recognition of the rural zone around the city into the planning tool, the investment on organic school public procurements, the establishment of participatory management of public squares, the inclusion of UA on Municipal Strategic Plan and Master Plan.Keywords: public action, policies, agroecology, urban and peri-urban agriculture, Sao Paulo
Procedia PDF Downloads 29454 Effect of Additives on Post-hydrogen Decompression Microstructure and Mechanical Behaviour of PA11 Involved in Type-IV Hydrogen Tank Liners
Authors: Mitia Ramarosaona, Sylvie Castagnet, Damien Halm, Henri-Alexandre Cayzac, Nicolas Dufaure, Philippe Papin
Abstract:
In light of the ongoing energy transition, 'Infrastructure developments' for hydrogen transportation and storage raise studies on the materials employed for hyperbaric vessels. Type IV tanks represent the most mature choice for gaseous hydrogen storage at high pressure – 70MPa. These tanks are made of a composite shell and an internal hydrogen-exposed polymer liner. High pressure conditions lead to severe mechanical loading requiring high resistance. Liner is in contact with hydrogen and undergoes compression – decompression cycles during system filling and emptying. Stresses induced by this loading, coupled with hydrogen diffusion, were found to cause microstructural changes and degradation of mechanical behaviour after decompression phase in some studies on HDPE. These phenomena are similar to those observed in elastomeric components like sealing rings, which can affect permeability and lead to their failure. They may lead to a hydrogen leak, compromising security and tightness of the tank. While these phenomena have been identified in elastomers, they remain less addressed in thermoplastics and consequences post-decompression damages on mechanical behaviour and to the best of author's knowledge was not studied either. Different additives are also included in liner formulation to improve its behaviour. This study aimed to better understand damage micro-mechanisms in PA11s exposed to hydrogen compression-decompression cycles and understand if additives influence their resistance. Samples of pure, plasticized and impact-modified PA11s are exposed to 1, 3 and 8 pressure cycles including hydrogen saturation at 70MPa followed by severe 15-second decompression. After hydrogen exposure and significantly later than full desorption, the residual mechanical behaviour is characterized through impact and monotonic tensile tests, on plain and notched samples. Several techniques of microstructure and micro-nano damage characterization are carried out to assess whether changes in macroscopic properties are driven by microstructural changes in the crystalline structure (SAXS-WAXS acquisitions and SEM micrographs). Thanks to WAXS acquisition and microscopic observation, the effects due to additives and pressure consequences can be decorrelated. Pure PA11 and PA11 with a low percentage of additives show an increase in stress level at the first yielding point after hydrogen cycles. The amplitude of the stress increase is more important in formulation with additives because of changes in PA11 matrix behavior and environment created by additives actions. Plasticizer modifies chain mobility leading to microstructure changes while other additives, more ductile than PA11, is able to cavitate inside PA11 matrix when undergoing decompression. On plasticized formulation, plasticizer migration are suspected to enhance impact of hydrogen cycling on mechanical behaviour. Compared to the literature on HDPE and elastomers, no damages like cavitation or cracking could be evidenced from SAXS experiments on every PA11 formulation tested. In perspectives, on all formulation, experimental work is underway to confirm influence of residual pressure level after decompression on post-decompression damages level, the aim is to better understand the factors affecting the mechanical behavior of thermoplastics subject to mechanical solicitation from decompression in hydrogen tank liners, not mechanical behaviour of liner in hydrogen tanks directly.Keywords: additives, hydrogen tank liner, microstructural analysis, PA11
Procedia PDF Downloads 4553 Current Zonal Isolation Regulation and Standards: A Compare and Contrast Review in Plug and Abandonment
Authors: Z. A. Al Marhoon, H. S. Al Ramis, C. Teodoriu
Abstract:
Well-integrity is one of the major elements considered for drilling geothermal, oil, and gas wells. Well-integrity is minimizing the risk of unplanned fluid flow in the well bore throughout the well lifetime. Well integrity is maximized by applying technical concepts along with practical practices and strategic planning. These practices are usually governed by standardization and regulation entities. Practices during well construction can affect the integrity of the seal at the time of abandonment. On the other hand, achieving a perfect barrier system is impracticable due to the needed cost. This results in a needed balance between regulations requirements and practical applications. The guidelines are only effective when they are attainable in practical applications. Various governmental regulations and international standards have different guidelines on what constitutes high-quality isolation from unwanted flow. Each regulating or standardization body differ in requirements based on the abandonment objective. Some regulation account more for the environmental impact, water table contamination, and possible leaks. Other regulation might lean towards driving more economical benefits while achieving an acceptable isolation criteria. The research methodology used in this topic is derived from a literature review method combined with a compare and contrast analysis. The literature review on various zonal isolation regulations and standards has been conducted. A review includes guidelines from NORSOK (Norwegian governing entity), BSEE (USA offshore governing entity), API (American Petroleum Institute) combined with ISO (International Standardization Organization). The compare and contrast analysis is conducted by assessing the objective of each abandonment regulations and standardization. The current state of well barrier regulation is in balancing action. From one side of this balance, the environmental impact and complete zonal isolation is considered. The other side of the scale is practical application and associated cost. Some standards provide a fair amount of details concerning technical requirements and are often flexible with the needed associated cost. These guidelines cover environmental impact with laws that prevent major or disastrous environmental effects of improper sealing of wells. Usually these regulations are concerned with the near future of sealing rather than long-term. Consequently, applying these guidelines become more feasible from a cost point of view to the required plugging entities. On the other hand, other regulation have well integrity procedures and regulations that lean toward more restrictions environmentally with an increased associated cost requirements. The environmental impact is detailed and covered with its entirety, including medium to small environmental impact in barrier installing operations. Clear and precise attention to long-term leakage prevention is present in these regulations. The result of the compare and contrast analysis of the literature showed that there are various objectives that might tip the scale from one side of the balance (cost) to the other (sealing quality) especially in reference to zonal isolation. Furthermore, investing in initial well construction is a crucial part of ensuring safe final well abandonment. The safety and the cost saving at the end of the well life cycle is dependent upon a well-constructed isolation systems at the beginning of the life cycle. Long term studies on zonal isolation using various hydraulic or mechanical materials need to take place to further assess permanently abandoned wells to achieve the desired balance. Well drilling and isolation techniques will be more effective when they are operationally feasible and have reasonable associated cost to aid the local economy.Keywords: plug and abandon, P&A regulation, P&A standards, international guidelines, gap analysis
Procedia PDF Downloads 13352 Phytochemical Investigation, Leaf Structure and Antimicrobial Screening of Pistacia lentiscus against Multi-Drug Resistant Bacteria
Authors: S. Mamoucha, N.Tsafantakis, T. Ioannidis, S. Chatzipanagiotou, C. Nikolaou, L. Skaltsounis, N. Fokialakis, N. Christodoulakis
Abstract:
Introduction: Pistacia lentiscus L. (well known as Mastic tree) is an evergreen sclerophyllous shrub that extensively thrives in the eastern Mediterranean area yet only the trees cultivated in the southern region of the Greek island Chios produces mastic resin. Different parts of P. lentiscus L. var. chia have been used in folk medicine for various purposes, such as tonic, aphrodisiac, antiseptic, antihypertensive and management of dental, gastrointestinal, liver, urinary, and respiratory tract disorders. Several studies have focused on the antibacterial activity of its resin (gum) and its essential oil. However, there is no study combining anatomy of the plant organs, phytochemical profile, and antibacterial screening of the plant. In our attempt to discover novel bioactive metabolites from the mastic tree, we screened its antibacterial activity not only against ATCC strains but also against clinical, resistant strains. Materials-methods: Leaves were investigated using Transmission (ΤΕΜ) and Scanning Εlectron Microscopy (SEM). Histochemical tests were performed on fresh and fixed tissue. Extracts prepared from dried, powdered leaves using 3 different solvents (DCM, MeOH and H2O) the waste water obtained after a hydrodistillation process for essential oil production were screened for their phytochemical content and antibacterial activity. Μetabolite profiling of polar and non-polar extracts was recorded by GC-MS and LC-HRMS techniques and analyzed using in-house and commercial libraries. The antibacterial screening was performed against Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, Pseudomonas aeruginosa ATCC27853 and against clinical, resistant strains Methicillin-resistant S. aureus (MRSA), Carbapenem-Resistant Metallo-β-Lactamase (carbapenemase) P. aeruginosa (VIM), Klebsiella pneumoniae carbapenemases (KPCs) and Acinetobacter baumanii resistant strains. The antibacterial activity was tested by the Kirby Bauer and the Agar Well Diffusion method. The zone of inhibition (ZI) of each extract was measured and compared with those of common antibiotics. Results: Leaf is compact with inosclereids and numerous idioblasts containing a globular, spiny crystal. The major nerves of the leaf contain a resin duct. Mesophyll cells showed accumulation of osmiophillic metabolites. Histochemical treatments defined secondary metabolites in subcellular localization. The phytochemical investigation revealed the presence of a large number of secondary metabolites, belonging to different chemical groups, such as terpenoids, phenolic compounds (mainly myricetin, kaempferol and quercetin glycosides), phenolic, and fatty acids. Among the extracts, the hydrostillation wastewater achieved the best results against most of the bacteria tested. MRSA, VIM and A. baumanii were inhibited. Conclusion: Extracts from plants have recently been of great interest with respect to their antimicrobial activity. Their use emerged from a growing tendency to replace synthetic antimicrobial agents with natural ones. Leaves of P. lentiscus L. var. chia showed a high antimicrobial activity even against drug - resistant bacteria. Future prospects concern the better understanding of mode of action of the antibacterial activity, the isolation of the most bioactive constituents and the clarification if the activity is related to a single compound or to the synergistic effect of several ones.Keywords: antibacterial screening, leaf anatomy, phytochemical profile, Pistacia lentiscus var. chia
Procedia PDF Downloads 27451 The Prospects of Optimized KOH/Cellulose 'Papers' as Hierarchically Porous Electrode Materials for Supercapacitor Devices
Authors: Dina Ibrahim Abouelamaiem, Ana Jorge Sobrido, Magdalena Titirici, Paul R. Shearing, Daniel J. L. Brett
Abstract:
Global warming and scarcity of fossil fuels have had a radical impact on the world economy and ecosystem. The urgent need for alternative energy sources has hence elicited an extensive research for exploiting efficient and sustainable means of energy conversion and storage. Among various electrochemical systems, supercapacitors attracted significant attention in the last decade due to their high power supply, long cycle life compared to batteries and simple mechanism. Recently, the performance of these devices has drastically improved, as tuning of nanomaterials provided efficient charge and storage mechanisms. Carbon materials, in various forms, are believed to pioneer the next generation of supercapacitors due to their attractive properties that include high electronic conductivities, high surface areas and easy processing and functionalization. Cellulose has eco-friendly attributes that are feasible to replace man-made fibers. The carbonization of cellulose yields carbons, including activated carbon and graphite fibers. Activated carbons successively are the most exploited candidates for supercapacitor electrode materials that can be complemented with pseudocapacitive materials to achieve high energy and power densities. In this work, the optimum functionalization conditions of cellulose have been investigated for supercapacitor electrode materials. The precursor was treated with potassium hydroxide (KOH) at different KOH/cellulose ratios prior to the carbonization process in an inert nitrogen atmosphere at 850 °C. The chalky products were washed, dried and characterized with different techniques including transmission electron microscopy (TEM), x-ray tomography and nitrogen adsorption-desorption isotherms. The morphological characteristics and their effect on the electrochemical performances were investigated in two and three-electrode systems. The KOH/cellulose ratios of 0.5:1 and 1:1 exhibited the highest performances with their unique hierarchal porous network structure, high surface areas and low cell resistances. Both samples acquired the best results in three-electrode systems and coin cells with specific gravimetric capacitances as high as 187 F g-1 and 20 F g-1 at a current density of 1 A g-1 and retention rates of 72% and 70%, respectively. This is attributed to the morphology of the samples that constituted of a well-balanced micro-, meso- and macro-porosity network structure. This study reveals that the electrochemical performance doesn’t solely depend on high surface areas but also an optimum pore size distribution, specifically at low current densities. The micro- and meso-pore contribution to the final pore structure was found to dominate at low KOH loadings, reaching ‘equilibrium’ with macropores at the optimum KOH loading, after which macropores dictate the porous network. The wide range of pore sizes is detrimental for the mobility and penetration of electrolyte ions in the porous structures. These findings highlight the influence of various morphological factors on the double-layer capacitances and high performance rates. In addition, they open a platform for the investigation of the optimized conditions for double-layer capacitance that can be coupled with pseudocapacitive materials to yield higher energy densities and capacities.Keywords: carbon, electrochemical performance, electrodes, KOH/cellulose optimized ratio, morphology, supercapacitor
Procedia PDF Downloads 21950 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation
Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong
Abstract:
Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation
Procedia PDF Downloads 19049 Continuity Through Best Practice. A Case Series of Complex Wounds Manage by Dedicated Orthopedic Nursing Team
Authors: Siti Rahayu, Khairulniza Mohd Puat, Kesavan R., Mohammad Harris A., Jalila, Kunalan G., Fazir Mohamad
Abstract:
The greatest challenge has been in establishing and maintaining the dedicated nursing team. Continuity is served when nurses are assigned exclusively for managing wound, where they can continue to build expertise and skills. In addition, there is a growing incidence of chronic wounds and recognition of the complexity involved in caring for these patients. We would like to share 4 cases with different techniques of wound management. 1st case, 39 years old gentleman with underlying rheumatoid arthritis with chronic periprosthetic joint infection of right total knee replacement presented with persistent drainage over right knee. Patient was consulted for two stage revision total knee replacement. However, patient only agreed for debridement and retention of implant. After debridement, large medial and lateral wound was treated with Instillation Negative Pressure Wound Therapy Dressings. After several cycle, the wound size reduced, and conventional dressing was applied. 2nd case, 58 years old gentleman with underlying diabetes presented with right foot necrotizing fasciitis with gangrene of 5th toe. He underwent extensive debridement of foot with rays’ amputation of 5th toe. Post debridement patient was started on Instillation Negative Pressure Wound Therapy Dressings. After several cycle of VAC, the wound bed was prepared, and he underwent split skin graft over right foot. 3 rd case, 60 years old gentleman with underlying diabetes mellitus presented with right foot necrotizing soft tissue infection. He underwent rays’ amputation and extensive wound debridement. Upon stabilization of general condition, patient was discharge with regular wound dressing by same nurse and doctor during each visit to clinic follow up. After 6 months of follow up, the wound healed well. 4th case, 38-year-old gentleman had alleged motor vehicle accident and sustained closed fracture right tibial plateau. Open reduction and proximal tibial locking plate were done. At 2 weeks post-surgery, the patient presented with warm, erythematous leg and pus discharge from the surgical site. Empirical antibiotic was started, and wound debridement was done. Intraoperatively, 50cc pus was evacuated, unhealthy muscle and tissue debrided. No loosening of the implant. Patient underwent multiple wound debridement. At 2 weeks post debridement wound healed well, but the proximal aspect was unable to close immediately. This left the proximal part of the implant to be exposed. Patient was then put on VAC dressing for 3 weeks until healthy granulation tissue closes the implant. Meanwhile, antibiotic was change according to culture and sensitivity. At 6 weeks post the first debridement, the wound was completely close, and patient was discharge home well. At 3 months post operatively, patient wound and fracture healed uneventfully and able to ambulate independently. Complex wounds are too serious to be dealt with. Team managing complex wound need continuous support through the provision of educational tools to support their professional development, engagement with local and international expert, as well as highquality products that increase efficiencies in servicesKeywords: VAC (Vacuum Assisted Closure), empirical- initial antibiotics, NPWT- negative pressure wound therapy, NF- necrotizing fasciitis, gangrene- blackish discoloration due to poor blood supply
Procedia PDF Downloads 10548 Fabrication of Zeolite Modified Cu Doped ZnO Films and Their Response towards Nitrogen Monoxide
Authors: Irmak Karaduman, Tugba Corlu, Sezin Galioglu, Burcu Akata, M. Ali Yildirim, Aytunç Ateş, Selim Acar
Abstract:
Breath analysis represents a promising non-invasive, fast and cost-effective alternative to well-established diagnostic and monitoring techniques such as blood analysis, endoscopy, ultrasonic and tomographic monitoring. Portable, non-invasive, and low-cost breath analysis devices are becoming increasingly desirable for monitoring different diseases, especially asthma. Beacuse of this, NO gas sensing at low concentrations has attracted progressive attention for clinical analysis in asthma. Recently, nanomaterials based sensors are considered to be a promising clinical and laboratory diagnostic tool, because its large surface–to–volume ratio, controllable structure, easily tailored chemical and physical properties, which bring high sensitivity, fast dynamic processand even the increasing specificity. Among various nanomaterials, semiconducting metal oxides are extensively studied gas-sensing materials and are potential sensing elements for breathanalyzer due to their high sensitivity, simple design, low cost and good stability.The sensitivities of metal oxide semiconductor gas sensors can be enhanced by adding noble metals. Doping contents, distribution, and size of metallic or metal oxide catalysts are key parameters for enhancing gas selectivity as well as sensitivity. By manufacturing doping MOS structures, it is possible to develop more efficient sensor sensing layers. Zeolites are perhaps the most widely employed group of silicon-based nanoporous solids. Their well-defined pores of sub nanometric size have earned them the name of molecular sieves, meaning that operation in the size exclusion regime is possible by selecting, among over 170 structures available, the zeolite whose pores allow the pass of the desired molecule, while keeping larger molecules outside.In fact it is selective adsorption, rather than molecular sieving, the mechanism that explains most of the successful gas separations achieved with zeolite membranes. In view of their molecular sieving and selective adsorption properties, it is not surprising that zeolites have found use in a number of works dealing with gas sensing devices. In this study, the Cu doped ZnO nanostructure film was produced by SILAR method and investigated the NO gas sensing properties. To obtain the selectivity of the sample, the gases including CO,NH3,H2 and CH4 were detected to compare with NO. The maximum response is obtained at 85 C for 20 ppb NO gas. The sensor shows high response to NO gas. However, acceptable responses are calculated for CO and NH3 gases. Therefore, there are no responses obtain for H2 and CH4 gases. Enhanced to selectivity, Cu doped ZnO nanostructure film was coated with zeolite A thin film. It is found that the sample possess an acceptable response towards NO hardly respond to CO, NH3, H2 and CH4 at room temperature. This difference in the response can be expressed in terms of differences in the molecular structure, the dipole moment, strength of the electrostatic interaction and the dielectric constant. The as-synthesized thin film is considered to be one of the extremely promising candidate materials in electronic nose applications. This work is supported by The Scientific and Technological Research Council of Turkey (TUBİTAK) under Project No, 115M658 and Gazi University Scientific Research Fund under project no 05/2016-21.Keywords: Cu doped ZnO, electrical characterization, gas sensing, zeolite
Procedia PDF Downloads 28547 Classification Using Worldview-2 Imagery of Giant Panda Habitat in Wolong, Sichuan Province, China
Authors: Yunwei Tang, Linhai Jing, Hui Li, Qingjie Liu, Xiuxia Li, Qi Yan, Haifeng Ding
Abstract:
The giant panda (Ailuropoda melanoleuca) is an endangered species, mainly live in central China, where bamboos act as the main food source of wild giant pandas. Knowledge of spatial distribution of bamboos therefore becomes important for identifying the habitat of giant pandas. There have been ongoing studies for mapping bamboos and other tree species using remote sensing. WorldView-2 (WV-2) is the first high resolution commercial satellite with eight Multi-Spectral (MS) bands. Recent studies demonstrated that WV-2 imagery has a high potential in classification of tree species. The advanced classification techniques are important for utilising high spatial resolution imagery. It is generally agreed that object-based image analysis is a more desirable method than pixel-based analysis in processing high spatial resolution remotely sensed data. Classifiers that use spatial information combined with spectral information are known as contextual classifiers. It is suggested that contextual classifiers can achieve greater accuracy than non-contextual classifiers. Thus, spatial correlation can be incorporated into classifiers to improve classification results. The study area is located at Wuyipeng area in Wolong, Sichuan Province. The complex environment makes it difficult for information extraction since bamboos are sparsely distributed, mixed with brushes, and covered by other trees. Extensive fieldworks in Wuyingpeng were carried out twice. The first one was on 11th June, 2014, aiming at sampling feature locations for geometric correction and collecting training samples for classification. The second fieldwork was on 11th September, 2014, for the purposes of testing the classification results. In this study, spectral separability analysis was first performed to select appropriate MS bands for classification. Also, the reflectance analysis provided information for expanding sample points under the circumstance of knowing only a few. Then, a spatially weighted object-based k-nearest neighbour (k-NN) classifier was applied to the selected MS bands to identify seven land cover types (bamboo, conifer, broadleaf, mixed forest, brush, bare land, and shadow), accounting for spatial correlation within classes using geostatistical modelling. The spatially weighted k-NN method was compared with three alternatives: the traditional k-NN classifier, the Support Vector Machine (SVM) method and the Classification and Regression Tree (CART). Through field validation, it was proved that the classification result obtained using the spatially weighted k-NN method has the highest overall classification accuracy (77.61%) and Kappa coefficient (0.729); the producer’s accuracy and user’s accuracy achieve 81.25% and 95.12% for the bamboo class, respectively, also higher than the other methods. Photos of tree crowns were taken at sample locations using a fisheye camera, so the canopy density could be estimated. It is found that it is difficult to identify bamboo in the areas with a large canopy density (over 0.70); it is possible to extract bamboos in the areas with a median canopy density (from 0.2 to 0.7) and in a sparse forest (canopy density is less than 0.2). In summary, this study explores the ability of WV-2 imagery for bamboo extraction in a mountainous region in Sichuan. The study successfully identified the bamboo distribution, providing supporting knowledge for assessing the habitats of giant pandas.Keywords: bamboo mapping, classification, geostatistics, k-NN, worldview-2
Procedia PDF Downloads 31346 Characterization of the Lytic Bacteriophage VbɸAB-1 against Drug Resistant Acinetobacter baumannii Isolated from Hospitalized Pressure Ulcers Patients
Authors: M. Doudi, M. H. Pazandeh, L. Rahimzadeh Torabi
Abstract:
Bedsores are pressure ulcers that occur on the skin or tissue due to being immobile and lying in bed for extended periods. Bedsores have the potential to progress into open ulcers, increasing the possibility of variety of bacterial infection. Acinetobacter baumannii, a pathogen of considerable clinical importance, exhibited a significant correlation with Bedsores (pressure ulcers) infections, thereby manifesting a wide spectrum of antibiotic resistance. The emergence of drug resistance has led researchers to focus on alternative methods, particularly phage therapy, for tackling bacterial infections. Phage therapy has emerged as a novel therapeutic approach to regulate the activity of these agents. The management of bacterial infections greatly benefits from the clinical utilization of bacteriophages as a valuable antimicrobial intervention. The primary objective of this investigation consisted of isolating and discerning potent bacteriophage capable of targeting multi drug-resistant (MDR) and extensively drug-resistant (XDR) bacteria obtained from pressure ulcers. In present study, analyzed and isolated A. baumannii strains obtained from a cohort of patients suffering from pressure ulcers at Taleghani Hospital in Ahvaz, Iran. An approach that included biochemical and molecular identification techniques was used to determine the taxonomic classification of bacterial isolates at the genus and species levels. The molecular identification process was facilitated by using the 16S rRNA gene in combination with universal primers 27 F, and 1492 R. Bacteriophage was obtained through the isolation process conducted on treatment plant sewage located in Isfahan, Iran. The main goal of this study was to evaluate different characteristics of phage, such as their appearance, range of hosts they can infect, how quickly they can enter a host, their stability at varying temperatures and pH levels, their effectiveness in killing bacteria, the growth pattern of a single phage stage, mapping of enzymatic digestion, and identification of proteomics patterns. The findings demonstrated that an examination was conducted on a sample of 50 specimens, wherein 15 instances of A. baumannii were identified. These microorganisms are the predominant Gram-negative agents known to cause wound infections in individuals suffering from bedsores. The study's findings indicated a high prevalence of antibiotic resistance in the strains isolated from pressure ulcers, excluding the clinical strains that exhibited responsiveness to colistin.According to the findings obtained from assessments of host range and morphological characteristics of bacteriophage VbɸAB-1, it can be concluded that this phage possesses specificity towards A. Baumannii BAH_Glau1001 was classified as a member of the Plasmaviridae family. The bacteriophage mentioned earlier showed the strongest antibacterial effect at a temperature of 18 °C and a pH of 6.5. Through the utilization of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on protein fragments, it was established that the bacteriophage VbɸAB-1 exhibited a size range between 50 and 75 kilodaltons (KDa). The numerous research findings on the effectiveness of phages and the safety studies conducted suggest that the phages studied in this research can be considered as a practical solution and recommended approach for controlling and treating stubborn pathogens in burn wounds among hospitalized patients.Keywords: acinetobacter baumannii, extremely drug- resistant, phage therapy, surgery wound
Procedia PDF Downloads 9245 Climate Change Effects on Western Coastal Groundwater in Yemen (1981-2020)
Authors: Afrah S. M. Al-Mahfadi
Abstract:
Climate change is a global issue that has significant impacts on water resources, resulting in environmental, economic, and political consequences. Groundwater reserves, particularly in coastal areas, are facing depletion, leading to serious problems in regions such as Yemen. This study focuses on the western coastal region of Yemen, which already faces risks such as water crises, food insecurity, and widespread poverty. Climate change exacerbates these risks by causing high temperatures, sea level rise, inadequate sea level rise, and inadequate environmental policies. Research Aim: The aim of this research is to provide a comprehensive overview of the impact of climate change on the western coastal region of Yemen. Specifically, the study aims to analyze the relationship between climate change and the loss of fresh groundwater resources in this area. Methodology: The research utilizes a combination of a literature review and three case studies conducted through site visits. Arch-GIS mapping is employed to analyze and visualize the relationship between climate change and the depletion of fresh groundwater resources. Additionally, data on precipitation from 1981 to 2020 and scenarios of projected sea level rise (SLR) are considered. Findings: The study reveals several future issues resulting from climate change. It is projected that the annual temperature will increase while the rainfall rate will decrease. Furthermore, the sea level is expected to rise by approximately 0.30 to 0.72 meters by 2100. These factors contribute to the loss of wetlands, the retreat of shorelines and estuaries, and the intrusion of seawater into the coastal aquifer, rendering drinking water from wells increasingly saline. Data Collection and Analysis Procedures: Data for this research are collected through a literature review, including studies on climate change impacts in coastal areas and the hydrogeology of the study region. Furthermore, three case studies are conducted through site visits. Arch-GIS mapping techniques are utilized to analyze the relationship between climate change and the loss of fresh groundwater resources. Historical precipitation data from 1981 to 2020 and scenarios of projected sea level rise are also analyzed. Questions Addressed: (1) What is the impact of climate change on the western coastal region of Yemen? (2) How does climate change affect the availability of fresh groundwater resources in this area? Conclusion: The study concludes that the western coastal region of Yemen is facing significant challenges due to climate change. The projected increase in temperature, decrease in rainfall, and rise in sea levels have severe implications, such as the loss of wetlands, shorelines, and estuaries. Additionally, the intrusion of seawater into the coastal aquifer further exacerbates the issue of saline drinking water. Urgent measures are needed to address climate change, including improving water management, implementing integrated coastal zone planning, raising awareness among stakeholders, and implementing emergency projects to mitigate the impacts. Recommendations: To mitigate the adverse effects of climate change, several recommendations are provided. These include improving water management practices, developing integrated coastal zone planning strategies, raising awareness among all stakeholders, improving health and education, and implementing emergency projects to combat climate change. These measures aim to enhance adaptive capacity and resilience in the face of future climate change impacts.Keywords: climate change, groundwater, coastal wetlands, Yemen
Procedia PDF Downloads 6544 Optimal Pressure Control and Burst Detection for Sustainable Water Management
Authors: G. K. Viswanadh, B. Rajasekhar, G. Venkata Ramana
Abstract:
Water distribution networks play a vital role in ensuring a reliable supply of clean water to urban areas. However, they face several challenges, including pressure control, pump speed optimization, and burst event detection. This paper combines insights from two studies to address these critical issues in Water distribution networks, focusing on the specific context of Kapra Municipality, India. The first part of this research concentrates on optimizing pressure control and pump speed in complex Water distribution networks. It utilizes the EPANET- MATLAB Toolkit to integrate EPANET functionalities into the MATLAB environment, offering a comprehensive approach to network analysis. By optimizing Pressure Reduce Valves (PRVs) and variable speed pumps (VSPs), this study achieves remarkable results. In the Benchmark Water Distribution System (WDS), the proposed PRV optimization algorithm reduces average leakage by 20.64%, surpassing the previous achievement of 16.07%. When applied to the South-Central and East zone WDS of Kapra Municipality, it identifies PRV locations that were previously missed by existing algorithms, resulting in average leakage reductions of 22.04% and 10.47%. These reductions translate to significant daily Water savings, enhancing Water supply reliability and reducing energy consumption. The second part of this research addresses the pressing issue of burst event detection and localization within the Water Distribution System. Burst events are a major contributor to Water losses and repair expenses. The study employs wireless sensor technology to monitor pressure and flow rate in real time, enabling the detection of pipeline abnormalities, particularly burst events. The methodology relies on transient analysis of pressure signals, utilizing Cumulative Sum and Wavelet analysis techniques to robustly identify burst occurrences. To enhance precision, burst event localization is achieved through meticulous analysis of time differentials in the arrival of negative pressure waveforms across distinct pressure sensing points, aided by nodal matrix analysis. To evaluate the effectiveness of this methodology, a PVC Water pipeline test bed is employed, demonstrating the algorithm's success in detecting pipeline burst events at flow rates of 2-3 l/s. Remarkably, the algorithm achieves a localization error of merely 3 meters, outperforming previously established algorithms. This research presents a significant advancement in efficient burst event detection and localization within Water pipelines, holding the potential to markedly curtail Water losses and the concomitant financial implications. In conclusion, this combined research addresses critical challenges in Water distribution networks, offering solutions for optimizing pressure control, pump speed, burst event detection, and localization. These findings contribute to the enhancement of Water Distribution System, resulting in improved Water supply reliability, reduced Water losses, and substantial cost savings. The integrated approach presented in this paper holds promise for municipalities and utilities seeking to improve the efficiency and sustainability of their Water distribution networks.Keywords: pressure reduce valve, complex networks, variable speed pump, wavelet transform, burst detection, CUSUM (Cumulative Sum), water pipeline monitoring
Procedia PDF Downloads 87