Search results for: alternative approaches to grading
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7454

Search results for: alternative approaches to grading

824 The Effectiveness of Multiphase Flow in Well- Control Operations

Authors: Ahmed Borg, Elsa Aristodemou, Attia Attia

Abstract:

Well control involves managing the circulating drilling fluid within the wells and avoiding kicks and blowouts as these can lead to losses in human life and drilling facilities. Current practices for good control incorporate predictions of pressure losses through computational models. Developing a realistic hydraulic model for a good control problem is a very complicated process due to the existence of a complex multiphase region, which usually contains a non-Newtonian drilling fluid and the miscibility of formation gas in drilling fluid. The current approaches assume an inaccurate flow fluid model within the well, which leads to incorrect pressure loss calculations. To overcome this problem, researchers have been considering the more complex two-phase fluid flow models. However, even these more sophisticated two-phase models are unsuitable for applications where pressure dynamics are important, such as in managed pressure drilling. This study aims to develop and implement new fluid flow models that take into consideration the miscibility of fluids as well as their non-Newtonian properties for enabling realistic kick treatment. furthermore, a corresponding numerical solution method is built with an enriched data bank. The research work considers and implements models that take into consideration the effect of two phases in kick treatment for well control in conventional drilling. In this work, a corresponding numerical solution method is built with an enriched data bank. Software STARCCM+ for the computational studies to study the important parameters to describe wellbore multiphase flow, the mass flow rate, volumetric fraction, and velocity of each phase. Results showed that based on the analysis of these simulation studies, a coarser full-scale model of the wellbore, including chemical modeling established. The focus of the investigations was put on the near drill bit section. This inflow area shows certain characteristics that are dominated by the inflow conditions of the gas as well as by the configuration of the mud stream entering the annulus. Without considering the gas solubility effect, the bottom hole pressure could be underestimated by 4.2%, while the bottom hole temperature is overestimated by 3.2%. and without considering the heat transfer effect, the bottom hole pressure could be overestimated by 11.4% under steady flow conditions. Besides, larger reservoir pressure leads to a larger gas fraction in the wellbore. However, reservoir pressure has a minor effect on the steady wellbore temperature. Also as choke pressure increases, less gas will exist in the annulus in the form of free gas.

Keywords: multiphase flow, well- control, STARCCM+, petroleum engineering and gas technology, computational fluid dynamic

Procedia PDF Downloads 111
823 The One, the Many, and the Doctrine of Divine Simplicity: Variations on Simplicity in Essentialist and Existentialist Metaphysics

Authors: Mark Wiebe

Abstract:

One of the tasks contemporary analytic philosophers have focused on (e.g., Wolterstorff, Alston, Plantinga, Hasker, and Crisp) is the analysis of certain medieval metaphysical frameworks. This growing body of scholarship has helped clarify and prevent distorted readings of medieval and ancient writers. However, as scholars like Dolezal, Duby, and Brower have pointed out, these analyses have been incomplete or inaccurate in some instances, e.g., with regard to analogical speech or the doctrine of divine simplicity (DDS). Additionally, contributors to this work frequently express opposing claims or fail to note substantial differences between ancient and medieval thinkers. This is the case regarding the comparison between Thomas Aquinas and others. Anton Pegis and Étienne Gilson have argued along this line that Thomas’ metaphysical framework represents a fundamental shift. Gilson describes Thomas’ metaphysics as a turn from a form of “essentialism” to “existentialism.” One should argue that this shift distinguishes Thomas from many Analytic philosophers as well as from other classical defenders of the DDS. Moreover, many of the objections Analytic Philosophers make against Thomas presume the same metaphysical principles undergirding the above-mentioned form of essentialism. This weakens their force against Thomas’ positions. In order to demonstrate these claims, it will be helpful to consider Thomas’ metaphysical outlook alongside that of two other prominent figures: Augustine and Ockham. One area of their thinking which brings their differences to the surface has to do with how each relates to Platonic and Neo-Platonic thought. More specifically, it is illuminating to consider whether and how each distinguishes or conceives essence and existence. It is also useful to see how each approaches the Platonic conflicts between essence and individuality, unity and intelligibility. In both of these areas, Thomas stands out from Augustine and Ockham. Although Augustine and Ockham diverge in many ways, both ultimately identify being with particularity and pit particularity against both unity and intelligibility. Contrastingly, Thomas argues that being is distinct from and prior to essence. Being (i.e., Being in itself) rather than essence or form must therefore serve as the ground and ultimate principle for the existence of everything in which being and essence are distinct. Additionally, since change, movement, and addition improve and give definition to finite being, multitude and distinction are, therefore, principles of being rather than non-being. Consequently, each creature imitates and participates in God’s perfect Being in its own way; the perfection of each genus exists pre-eminently in God without being at odds with God’s simplicity, God has knowledge, power, and will, and these and the many other terms assigned to God refer truly to the being of God without being either meaningless or synonymous. The existentialist outlook at work in these claims distinguishes Thomas in a noteworthy way from his contemporaries and predecessors as much as it does from many of the analytic philosophers who have objected to his thought. This suggests that at least these kinds of objections do not apply to Thomas’ thought.

Keywords: theology, philosophy of religion, metaphysics, philosophy

Procedia PDF Downloads 67
822 The Mental Health Policy in the State of EspíRito Santo, Brazil: Judicialization

Authors: Fabiola Xavier Leal, Lara Campanharo, Sueli Aparecida Rodrigues Lucas

Abstract:

The phenomenon of judicialization in health policy brings with it a great deal of problematization, but in general, it means that some issues that were previously solved by traditional political bodies are being decided by the Judiciary bodies. It is, therefore, a controversial topic that has generated many reflections both in the academic and political fields, considering that not only a dispute of public funds is at stake, but also the debate on access to social rights provided for in the Brazilian Federal Constitution of 1988 and in the various public policies, such as healthcare. With regard to the phenomenon in the Mental Health Policy focusing on people who use drugs, the disputes that permeate this scenario are evident: moral, cultural, sanitary, economic, psychological aspects. There are also the individual and collective dimensions of suffering. And in this process, we all question: What is the role of the Brazilian State in this matter? In this context, another question that needs to be answered is the amount spent on this procedure in the state of Espírito Santo (ES), Brazil (in the last 04 years, around R$121,978,591.44 were paid only for compulsory hospitalization of individuals) in the field in question, which is the financing of the services of the Psychosocial Care Network (RAPS). Therefore, this article aims to problematize the phenomenon of judicialization in Mental Health Policy through the compulsory hospitalization of people who use drugs in Espírito Santo (ES). We proposed a study that sought to understand how this has been occurring and making an impact on the provision of RAPS services in the Espírito Santo scenario. Therefore, the general objective of this study is to analyze the expenses with compulsory hospitalizations for drug use carried out by the State Health Department (SESA) between 2014 and 2019, in which we will seek to identify its destination and the impact of these actions on public health policy. For the purposes of this article, we will present the preliminary data of this study, such as the amount spent by the state and the receiving institutions. For data collection, the following data sources were used: documents available publicly on the Transparency Portal (payments made per year, institutions that received, subjects hospitalized, period and the amount of the daily rates paid); as well as the processes generated by SESA through its own system - ONBASE. For qualitative analysis, content analysis was used; and for quantitative analysis, descriptive statistics was used. Thus, we seek to problematize the issue of judicialization for compulsory hospitalizations, considering the current situation in which this resource has been widely requested to legitimize the war on drugs. This scenario highlights the moral-legal discourse, pointing out strategies through the control of bodies and through faith as an alternative.

Keywords: compulsory hospitalization, drugs, judicialization, mental health

Procedia PDF Downloads 164
821 The Effect of Radish (Raphanus Sativus L.) Leaves Ethanol Extract on Blood Glucose Levels in Streptozotocin-Nicotinamide-Induced Type-2 Diabetic Rats

Authors: Satria B. Mahathma, Asri Hendrawati

Abstract:

Background: Diabetes mellitus (DM) is a metabolic disorder syndrome characterized by chronic hyperglycemia. The number of people with diabetes rose from 108 million in 1980 to 422 million in 2014. In general, almost 90% of the prevalence of DM is type 2 DM which marked by insulin resistance and decreased receptor sensitivity. Aside from conventional antidiabetic therapy, the utilization of medicinal plants as alternative medicine has beneficial effects in diabetic patients. Flavonoid contents in radish leaves such as quercetin, pelargonidin, and kaempferol are thought to have antidiabetic activity on decreasing blood glucose levels by tricyclic nucleotide modulation of pancreatic beta cells and ameliorating insulin resistance. This study aimed to determine the effect of variant concentration of radish leaves ethanol extract on blood glucose levels in diabetic rats. Method: This study used pretest-posttest control group design by using 16 male Wistar rats which were induced type-2 diabetic by streptozotocin 60 mg/kg BW-nicotinamide 120 mg/kg BW intraperitoneally. Rats who had developed type-2 DM later divided randomly into 4 groups; negative control received placebo, positive control received glibenclamide 5 mg/kg BW/day, rats intervention I and intervention II received 100% and 50% of radish leaves ethanol extract, respectively. Treatments were administered orally for four weeks. The blood glucose levels were measured using the Enzymatic Colorimetric Test “GOD-PAP”. Data were analyzed by the dependent t-test for pretest-posttest intervention difference and one-way ANOVA followed by post hoc test to determine the significant difference of each treatment to obtain the significant data. Result: The result revealed that intervention group had lower blood glucose levels mean than control group which the lowest was intervention II group (negative control: 540,9 ± 191,7 mg/dl, positive control: 494, 97 ± 64,91 mg/dl, intervention I: 301,92 ± 165,70 mg/dl, and intervention II group: 276,1 ± 139,02 mg/dl. Intervention II group had the highest antidiabetic activity, followed by the intervention I group with the amount of decrease in blood glucose levels were -151,85 ± 77,43 mg/dl and -11,08 ± 186,62 mg/dl, however negative and positive control group didn’t have antidiabetic activity. The dependent t-test result showed there is a significant difference in decreasing blood glucose levels in the intervention II pretest-posttest intervention (p=0,03) while the other group didn’t. Data analyzed by one-way ANOVA also revealed the intervention II group significantly declined blood glucose levels compared to the negative and positive control group (p = 0,033 and p=0,032, respectively). Conclusion: There is a significant effect of radish leaves ethanol extract on blood glucose levels in streptozotocin-nicotinamide-induced diabetic rats with the optimal therapeutic effect at a concentration of 50%.

Keywords: blood glucose levels, medicinal plant, radish leaves, type-2 diabetes mellitus

Procedia PDF Downloads 130
820 Modeling and Analysis Of Occupant Behavior On Heating And Air Conditioning Systems In A Higher Education And Vocational Training Building In A Mediterranean Climate

Authors: Abderrahmane Soufi

Abstract:

The building sector is the largest consumer of energy in France, accounting for 44% of French consumption. To reduce energy consumption and improve energy efficiency, France implemented an energy transition law targeting 40% energy savings by 2030 in the tertiary building sector. Building simulation tools are used to predict the energy performance of buildings but the reliability of these tools is hampered by discrepancies between the real and simulated energy performance of a building. This performance gap lies in the simplified assumptions of certain factors, such as the behavior of occupants on air conditioning and heating, which is considered deterministic when setting a fixed operating schedule and a fixed interior comfort temperature. However, the behavior of occupants on air conditioning and heating is stochastic, diverse, and complex because it can be affected by many factors. Probabilistic models are an alternative to deterministic models. These models are usually derived from statistical data and express occupant behavior by assuming a probabilistic relationship to one or more variables. In the literature, logistic regression has been used to model the behavior of occupants with regard to heating and air conditioning systems by considering univariate logistic models in residential buildings; however, few studies have developed multivariate models for higher education and vocational training buildings in a Mediterranean climate. Therefore, in this study, occupant behavior on heating and air conditioning systems was modeled using logistic regression. Occupant behavior related to the turn-on heating and air conditioning systems was studied through experimental measurements collected over a period of one year (June 2023–June 2024) in three classrooms occupied by several groups of students in engineering schools and professional training. Instrumentation was provided to collect indoor temperature and indoor relative humidity in 10-min intervals. Furthermore, the state of the heating/air conditioning system (off or on) and the set point were determined. The outdoor air temperature, relative humidity, and wind speed were collected as weather data. The number of occupants, age, and sex were also considered. Logistic regression was used for modeling an occupant turning on the heating and air conditioning systems. The results yielded a proposed model that can be used in building simulation tools to predict the energy performance of teaching buildings. Based on the first months (summer and early autumn) of the investigations, the results illustrate that the occupant behavior of the air conditioning systems is affected by the indoor relative humidity and temperature in June, July, and August and by the indoor relative humidity, temperature, and number of occupants in September and October. Occupant behavior was analyzed monthly, and univariate and multivariate models were developed.

Keywords: occupant behavior, logistic regression, behavior model, mediterranean climate, air conditioning, heating

Procedia PDF Downloads 54
819 Teacher Professional Development in Saudi Arabia through the Implementation of Universal Design for Learning

Authors: Majed A. Alsalem

Abstract:

Universal Design for Learning (UDL) is common theme in education across the US and an influential model and framework that enables students in general and particularly students who are deaf and hard of hearing (DHH) to access the general education curriculum. UDL helps teachers determine how information will be presented to students and how to keep students engaged. Moreover, UDL helps students to express their understanding and knowledge to others. UDL relies on technology to promote students' interaction with content and their communication of knowledge. This study included 120 DHH students who received daily instruction based on UDL principles. This study presents the results of the study and discusses its implications for the integration of UDL in day-to-day practice as well as in the country's education policy. UDL is a Western concept that began and grew in the US, and it has just begun to transfer to other countries such as Saudi Arabia. It will be very important to researchers, practitioners, and educators to see how UDL is being implemented in a new place with a different culture. UDL is a framework that is built to provide multiple means of engagement, representation, and action and expression that should be part of curricula and lessons for all students. The purpose of this study is to investigate the variables associated with the implementation of UDL in Saudi Arabian schools and identify the barriers that could prevent the implementation of UDL. Therefore, this study used a mixed methods design that use both quantitative and qualitative methods. More insights will be gained by including both quantitative and qualitative rather than using a single method. By having methods that different concepts and approaches, the databases will be enriched. This study uses levels of collecting date through two stages in order to insure that the data comes from multiple ways to mitigate validity threats and establishing trustworthiness in the findings. The rationale and significance of this study is that it will be the first known research that targets UDL in Saudi Arabia. Furthermore, it will deal with UDL in depth to set the path for further studies in the Middle East. From a perspective of content, this study considers teachers’ implementation knowledge, skills, and concerns of implementation. This study deals with effective instructional designs that have not been presented in any conferences, workshops, teacher preparation and professional development programs in Saudi Arabia. Specifically, Saudi Arabian schools are challenged to design inclusive schools and practices as well as to support all students’ academic skills development. The total participants in stage one were 336 teachers of DHH students. The results of the intervention indicated significant differences among teachers before and after taking the training sessions associated with their understanding and level of concern. Teachers have indicated interest in knowing more about UDL and adopting it into their practices; they reported that UDL has benefits that will enhance their performance for supporting student learning.

Keywords: deaf and hard of hearing, professional development, Saudi Arabia, universal design for learning

Procedia PDF Downloads 427
818 Comparison of Two Methods of Cryopreservation of Testicular Tissue from Prepubertal Lambs

Authors: Rensson Homero Celiz Ygnacio, Marco Aurélio Schiavo Novaes, Lucy Vanessa Sulca Ñaupas, Ana Paula Ribeiro Rodrigues

Abstract:

The cryopreservation of testicular tissue emerges as an alternative for the preservation of the reproductive potential of individuals who still cannot produce sperm; however, they will undergo treatments that may affect their fertility (e.g., chemotherapy). Therefore, the present work aims to compare two cryopreservation methods (slow freezing and vitrification) in testicular tissue of prepubertal lambs. For that, to obtain the testicular tissue, the animals were castrated and the testicles were collected immediately in a physiological solution supplemented with antibiotics. In the laboratory, the testis was split into small pieces. The total size of the testicular fragments was 3×3x1 mm³ and was placed in a dish contained in Minimum Essential Medium (MEM-HEPES). The fragments were distributed randomly into non-cryopreserved (fresh control), slow freezing (SF), and vitrified. To SF procedures, two fragments from a given male were then placed in a 2,0 mL cryogenic vial containing 1,0 mL MEM-HEPES supplemented with 20% fetal bovine serum (FBS) and 20% dimethylsulfoxide (DMSO). Tubes were placed into a Mr. Frosty™ Freezing container with isopropyl alcohol and transferred to a -80°C freezer for overnight storage. On the next day, each tube was plunged into liquid nitrogen (NL). For vitrification, the ovarian tissue cryosystem (OTC) device was used. Testicular fragments were placed in the OTC device and exposed to the first vitrification solution composed of MEM-HEPES supplemented with 10 mg/mL Bovine Serum Albumin (BSA), 0.25 M sucrose, 10% Ethylene glycol (EG), 10% DMSO and 150 μM alpha-lipoic acid for four min. The VS1 was discarded and then the fragments were submerged into a second vitrification solution (VS2) containing the same composition of VS1 but 20% EG and 20% DMSO. VS2 was then discarded and each OTC device containing up to four testicular fragments was closed and immersed in NL. After the storage period, the fragments were removed from the NL, kept at room temperature for one min and then immersed at 37 °C in a water bath for 30 s. Samples were warmed by sequentially immersing in solutions of MEM-HEPES supplemented with 3 mg/mL BSA and decreasing concentrations of sucrose. Hematoxylin-eosin staining to analyze the tissue architecture was used. The score scale used was from 0 to 3, classified with a score 0 representing normal morphologically, and 3 were considered a lot of alteration. The histomorphological evaluation of the testicular tissue shows that when evaluating the nuclear alteration (distinction of nucleoli and condensation of nuclei), there are no differences when using slow freezing with respect to the control. However, vitrification presents greater damage (p <0.05). On the other hand, when evaluating the epithelial alteration, we observed that the freezing showed scores statistically equal to the control in variables such as retraction of the basement membrane, formation of gaps and organization of the peritubular cells. The results of the study demonstrated that cryopreservation using the slow freezing method is an excellent tool for the preservation of pubertal testicular tissue.

Keywords: cryopreservation, slow freezing, vitrification, testicular tissue, lambs

Procedia PDF Downloads 168
817 Application of the State of the Art of Hydraulic Models to Manage Coastal Problems, Case Study: The Egyptian Mediterranean Coast Model

Authors: Alsayed Ibrahim Diwedar, Ahmed ElKut, Mohamed Yossef

Abstract:

Coastal problems are stressing the coastal environment due to its complexity. The dynamic interaction between the sea and the land results in serious problems that threaten coastal areas worldwide, in addition to human interventions and activities. This makes the coastal environment highly vulnerable to natural processes like flooding, erosion, and the impact of human activities as pollution. Protecting and preserving this vulnerable coastal zone with its valuable ecosystems calls for addressing the coastal problems. This, in the end, will support the sustainability of the coastal communities and maintain the current and future generations. Consequently applying suitable management strategies and sustainable development that consider the unique characteristics of the coastal system is a must. The coastal management philosophy aims to solve the conflicts of interest between human development activities and this dynamic nature. Modeling emerges as a successful tool that provides support to decision-makers, engineers, and researchers for better management practices. Modeling tools proved that they are accurate and reliable in prediction. With its capability to integrate data from various sources such as bathymetric surveys, satellite images, and meteorological data, it offers the possibility for engineers and scientists to understand this complex dynamic system and get in-depth into the interaction between both the natural and human-induced factors. Enabling decision makers to make informed choices and develop effective strategies for sustainable development and risk mitigation. The application of modeling tools supports the evaluation of various scenarios by affording the possibility to simulate and forecast different coastal processes from the hydrodynamic and wave actions and the resulting flooding and erosion. The state-of-the-art application of modeling tools in coastal management allows for better understanding and predicting coastal processes, optimizing infrastructure planning and design, supporting ecosystem-based approaches, assessing climate change impacts, managing hazards, and finally facilitating stakeholder engagement. This paper emphasizes the role of hydraulic models in enhancing the management of coastal problems by discussing the diverse applications of modeling in coastal management. It highlights the modelling role in understanding complex coastal processes, and predicting outcomes. The importance of informing decision-makers with modeling results which gives technical and scientific support to achieve sustainable coastal development and protection.

Keywords: coastal problems, coastal management, hydraulic model, numerical model, physical model

Procedia PDF Downloads 12
816 Evaluating the Benefits of Intelligent Acoustic Technology in Classrooms: A Case Study

Authors: Megan Burfoot, Ali GhaffarianHoseini, Nicola Naismith, Amirhosein GhaffarianHoseini

Abstract:

Intelligent Acoustic Technology (IAT) is a novel architectural device used in buildings to automatically vary the acoustic conditions of space. IAT is realized by integrating two components: Variable Acoustic Technology (VAT) and an intelligent system. The VAT passively alters the RT by changing the total sound absorption in a room. In doing so, the Reverberation Time (RT) is changed and thus, the sound strength and clarity are altered. The intelligent system detects sound waves in real-time to identify the aural situation, and the RT is adjusted accordingly based on pre-programmed algorithms. IAT - the synthesis of these two components - can dramatically improve acoustic comfort, as the acoustic condition is automatically optimized for any detected aural situation. This paper presents an evaluation of the improvements of acoustic comfort in an existing tertiary classroom located at Auckland University of Technology in New Zealand. This is a pilot case study, the first of its’ kind attempting to quantify the benefits of IAT. Naturally, the potential acoustic improvements from IAT can be actualized by only installing the VAT component of IAT and by manually adjusting it rather than utilizing an intelligent system. Such a simplified methodology is adopted for this case study to understand the potential significance of IAT without adopting a time and cost-intensive strategy. For this study, the VAT is built by overlaying reflective, rotating louvers over sound absorption panels. RT's are measured according to international standards before and after installing VAT in the classroom. The louvers are manually rotated in increments by the experimenter and further RT measurements are recorded. The results are compared with recommended guidelines and reference values from national standards for spaces intended for speech and communication. The results obtained from the measurements are used to quantify the potential improvements in classroom acoustic comfort, where IAT to be used. This evaluation reveals the current existence of poor acoustic conditions in the classroom caused by high RT's. The poor acoustics are also largely attributed to the classrooms’ inability to vary acoustic parameters for changing aural situations. The classroom experiences one static acoustic state, neglecting to recognize the nature of classrooms as flexible, dynamic spaces. Evidently, when using VAT the classroom is prescribed with a wide range of RTs it can achieve. Namely, acoustic requirements for varying teaching approaches are satisfied, and acoustic comfort is improved. By quantifying the benefits of using VAT, it can confidently suggest these same benefits are achieved with IAT. Nevertheless, it is encouraged that future studies continue this line of research toward the eventual development of IAT and its’ acceptance into mainstream architecture.

Keywords: acoustic comfort, classroom acoustics, intelligent acoustics, variable acoustics

Procedia PDF Downloads 181
815 Spatial Deictics in Face-to-Face Communication: Findings in Baltic Languages

Authors: Gintare Judzentyte

Abstract:

The present research is aimed to discuss semantics and pragmatics of spatial deictics (deictic adverbs of place and demonstrative pronouns) in the Baltic languages: in spoken Lithuanian and in spoken Latvian. The following objectives have been identified to achieve the aim: 1) to determine the usage of adverbs of place in spoken Lithuanian and Latvian and to verify their meanings in face-to-face communication; 2) to determine the usage of demonstrative pronouns in spoken Lithuanian and Latvian and to verify their meanings in face-to-face communication; 3) to compare the systems between the two spoken languages and to identify the main tendencies. As meanings of demonstratives (adverbs of place and demonstrative pronouns) are context-bound, it is necessary to verify their usage in spontaneous interaction. Besides, deictic gestures play a very important role in face-to-face communication. Therefore, an experimental method is necessary to collect the data. Video material representing spoken Lithuanian and spoken Latvian was recorded by means of the method of a qualitative interview (a semi-structured interview: an empirical research is all about asking right questions). The collected material was transcribed and evaluated taking into account several approaches: 1) physical distance (location of the referent, visual accessibility of the referent); 2) deictic gestures (the combination of language and gesture is especially characteristic of the exophoric use); 3) representation of mental spaces in physical space (a speaker sometimes wishes to mark something that is psychically close as psychologically distant and vice versa). The research of the collected data revealed that in face-to-face communication the participants choose deictic adverbs of place instead of demonstrative pronouns to locate/identify entities in situations where the demonstrative pronouns would be expected in spoken Lithuanian and in spoken Latvian. The analysis showed that visual accessibility of the referent is very important in face-to-face communication, but the main criterion while localizing objects and entities is the need for contrast: lith. čia ‘here’, šis ‘this’, latv. šeit ‘here’, šis ‘this’ usually identify distant entities and are used instead of distal demonstratives (lith. ten ‘there’, tas ‘that’, latv. tur ‘there’, tas ‘that’), because the referred objects/subjects contrast to further entities. Furthermore, the interlocutors in examples from a spontaneously situated interaction usually extend their space and can refer to a ‘distal’ object/subject with a ‘proximal’ demonstrative based on the psychological choice. As the research of the spoken Baltic languages confirmed, the choice of spatial deictics in face-to-face communication is strongly effected by a complex of criteria. Although there are some main tendencies, the exact meaning of spatial deictics in the spoken Baltic languages is revealed and is relevant only in a certain context.

Keywords: Baltic languages, face-to-face communication, pragmatics, semantics, spatial deictics

Procedia PDF Downloads 284
814 Air–Water Two-Phase Flow Patterns in PEMFC Microchannels

Authors: Ibrahim Rassoul, A. Serir, E-K. Si Ahmed, J. Legrand

Abstract:

The acronym PEM refers to Proton Exchange Membrane or alternatively Polymer Electrolyte Membrane. Due to its high efficiency, low operating temperature (30–80 °C), and rapid evolution over the past decade, PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause “flooding” (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The experimental transparent fuel cell used in this work was designed to represent actual full scale of fuel cell geometry. According to the operating conditions, a number of flow regimes may appear in the microchannel: droplet flow, blockage water liquid bridge /plug (concave and convex forms), slug/plug flow and film flow. Some of flow patterns are new, while others have been already observed in PEMFC microchannels. An algorithm in MATLAB was developed to automatically determine the flow structure (e.g. slug, droplet, plug, and film) of detected liquid water in the test microchannels and yield information pertaining to the distribution of water among the different flow structures. A video processing algorithm was developed to automatically detect dynamic and static liquid water present in the gas channels and generate relevant quantitative information. The potential benefit of this software allows the user to obtain a more precise and systematic way to obtain measurements from images of small objects. The void fractions are also determined based on images analysis. The aim of this work is to provide a comprehensive characterization of two-phase flow in an operating fuel cell which can be used towards the optimization of water management and informs design guidelines for gas delivery microchannels for fuel cells and its essential in the design and control of diverse applications. The approach will combine numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, air-water two phase flow, gas diffusion layer, microchannels, advancing contact angle, receding contact angle, void fraction, surface tension, image processing

Procedia PDF Downloads 302
813 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging

Authors: Jiangbo Li, Wenqian Huang

Abstract:

Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.

Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging

Procedia PDF Downloads 292
812 Selective Extraction of Lithium from Native Geothermal Brines Using Lithium-ion Sieves

Authors: Misagh Ghobadi, Rich Crane, Karen Hudson-Edwards, Clemens Vinzenz Ullmann

Abstract:

Lithium is recognized as the critical energy metal of the 21st century, comparable in importance to coal in the 19th century and oil in the 20th century, often termed 'white gold'. Current global demand for lithium, estimated at 0.95-0.98 million metric tons (Mt) of lithium carbonate equivalent (LCE) annually in 2024, is projected to rise to 1.87 Mt by 2027 and 3.06 Mt by 2030. Despite anticipated short-term stability in supply and demand, meeting the forecasted 2030 demand will require the lithium industry to develop an additional capacity of 1.42 Mt of LCE annually, exceeding current planned and ongoing efforts. Brine resources constitute nearly 65% of global lithium reserves, underscoring the importance of exploring lithium recovery from underutilized sources, especially geothermal brines. However, conventional lithium extraction from brine deposits faces challenges due to its time-intensive process, low efficiency (30-50% lithium recovery), unsuitability for low lithium concentrations (<300 mg/l), and notable environmental impacts. Addressing these challenges, direct lithium extraction (DLE) methods have emerged as promising technologies capable of economically extracting lithium even from low-concentration brines (>50 mg/l) with high recovery rates (75-98%). However, most studies (70%) have predominantly focused on synthetic brines instead of native (natural/real), with limited application of these approaches in real-world case studies or industrial settings. This study aims to bridge this gap by investigating a geothermal brine sample collected from a real case study site in the UK. A Mn-based lithium-ion sieve (LIS) adsorbent was synthesized and employed to selectively extract lithium from the sample brine. Adsorbents with a Li:Mn molar ratio of 1:1 demonstrated superior lithium selectivity and adsorption capacity. Furthermore, the pristine Mn-based adsorbent was modified through transition metals doping, resulting in enhanced lithium selectivity and adsorption capacity. The modified adsorbent exhibited a higher separation factor for lithium over major co-existing cations such as Ca, Mg, Na, and K, with separation factors exceeding 200. The adsorption behaviour was well-described by the Langmuir model, indicating monolayer adsorption, and the kinetics followed a pseudo-second-order mechanism, suggesting chemisorption at the solid surface. Thermodynamically, negative ΔG° values and positive ΔH° and ΔS° values were observed, indicating the spontaneity and endothermic nature of the adsorption process.

Keywords: adsorption, critical minerals, DLE, geothermal brines, geochemistry, lithium, lithium-ion sieves

Procedia PDF Downloads 36
811 Metacognitive Processing in Early Readers: The Role of Metacognition in Monitoring Linguistic and Non-Linguistic Performance and Regulating Students' Learning

Authors: Ioanna Taouki, Marie Lallier, David Soto

Abstract:

Metacognition refers to the capacity to reflect upon our own cognitive processes. Although there is an ongoing discussion in the literature on the role of metacognition in learning and academic achievement, little is known about its neurodevelopmental trajectories in early childhood, when children begin to receive formal education in reading. Here, we evaluate the metacognitive ability, estimated under a recently developed Signal Detection Theory model, of a cohort of children aged between 6 and 7 (N=60), who performed three two-alternative-forced-choice tasks (two linguistic: lexical decision task, visual attention span task, and one non-linguistic: emotion recognition task) including trial-by-trial confidence judgements. Our study has three aims. First, we investigated how metacognitive ability (i.e., how confidence ratings track accuracy in the task) relates to performance in general standardized tasks related to students' reading and general cognitive abilities using Spearman's and Bayesian correlation analysis. Second, we assessed whether or not young children recruit common mechanisms supporting metacognition across the different task domains or whether there is evidence for domain-specific metacognition at this early stage of development. This was done by examining correlations in metacognitive measures across different task domains and evaluating cross-task covariance by applying a hierarchical Bayesian model. Third, using robust linear regression and Bayesian regression models, we assessed whether metacognitive ability in this early stage is related to the longitudinal learning of children in a linguistic and a non-linguistic task. Notably, we did not observe any association between students’ reading skills and metacognitive processing in this early stage of reading acquisition. Some evidence consistent with domain-general metacognition was found, with significant positive correlations between metacognitive efficiency between lexical and emotion recognition tasks and substantial covariance indicated by the Bayesian model. However, no reliable correlations were found between metacognitive performance in the visual attention span and the remaining tasks. Remarkably, metacognitive ability significantly predicted children's learning in linguistic and non-linguistic domains a year later. These results suggest that metacognitive skill may be dissociated to some extent from general (i.e., language and attention) abilities and further stress the importance of creating educational programs that foster students’ metacognitive ability as a tool for long term learning. More research is crucial to understand whether these programs can enhance metacognitive ability as a transferable skill across distinct domains or whether unique domains should be targeted separately.

Keywords: confidence ratings, development, metacognitive efficiency, reading acquisition

Procedia PDF Downloads 145
810 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design

Authors: Mohammad Bagher Anvari, Arman Shojaei

Abstract:

Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.

Keywords: incremental launching, bridge construction, finite element model, optimization

Procedia PDF Downloads 86
809 Optical and Near-UV Spectroscopic Properties of Low-Redshift Jetted Quasars in the Main Sequence in the Main Sequence Context

Authors: Shimeles Terefe Mengistue, Ascensión Del Olmo, Paola Marziani, Mirjana Pović, María Angeles Martínez-Carballo, Jaime Perea, Isabel M. Árquez

Abstract:

Quasars have historically been classified into two distinct classes, radio-loud (RL) and radio-quiet (RQ), taking into account the presence and absence of relativistic radio jets, respectively. The absence of spectra with a high S/N ratio led to the impression that all quasars (QSOs) are spectroscopically similar. Although different attempts were made to unify these two classes, there is a long-standing open debate involving the possibility of a real physical dichotomy between RL and RQ quasars. In this work, we present new high S/N spectra of 11 extremely powerful jetted quasars with radio-to-optical flux density ratio > 1000 that concomitantly cover the low-ionization emission of Mgii𝜆2800 and Hbeta𝛽 as well as the Feii blends in the redshift range 0.35 < z < 1, observed at Calar Alto Observatory (Spain). This work aims to quantify broad emission line differences between RL and RQ quasars by using the four-dimensional eigenvector 1 (4DE1) parameter space and its main sequence (MS) and to check the effect of powerful radio ejection on the low ionization broad emission lines. Emission lines are analysed by making two complementary approaches, a multicomponent non-linear fitting to account for the individual components of the broad emission lines and by analysing the full profile of the lines through parameters such as total widths, centroid velocities at different fractional intensities, asymmetry, and kurtosis indices. It is found that broad emission lines show large reward asymmetry both in Hbeta𝛽 and Mgii2800A. The location of our RL sources in a UV plane looks similar to the optical one, with weak Feii UV emission and broad Mgii2800A. We supplement the 11 sources with large samples from previous work to gain some general inferences. The result shows, compared to RQ, our extreme RL quasars show larger median Hbeta full width at half maximum (FWHM), weaker Feii emission, larger 𝑀BH, lower 𝐿bol/𝐿Edd, and a restricted space occupation in the optical and UV MS planes. The differences are more elusive when the comparison is carried out by restricting the RQ population to the region of the MS occupied by RL quasars, albeit an unbiased comparison matching 𝑀BH and 𝐿bol/𝐿Edd suggests that the most powerful RL quasars show the highest redward asymmetries in Hbeta.

Keywords: galaxies, active, line, profiles, quasars, emission lines, supermassive black holes

Procedia PDF Downloads 55
808 Drug Delivery Cationic Nano-Containers Based on Pseudo-Proteins

Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava

Abstract:

The elaboration of effective drug delivery vehicles is still topical nowadays since targeted drug delivery is one of the most important challenges of the modern nanomedicine. The last decade has witnessed enormous research focused on synthetic cationic polymers (CPs) due to their flexible properties, in particular as non-viral gene delivery systems, facile synthesis, robustness, not oncogenic and proven gene delivery efficiency. However, the toxicity is still an obstacle to the application in pharmacotherapy. For overcoming the problem, creation of new cationic compounds including the polymeric nano-size particles – nano-containers (NCs) loading with different pharmaceuticals and biologicals is still relevant. In this regard, a variety of NCs-based drug delivery systems have been developed. We have found that amino acid-based biodegradable polymers called as pseudo-proteins (PPs), which can be cleared from the body after the fulfillment of their function are highly suitable for designing pharmaceutical NCs. Among them, one of the most promising are NCs made of biodegradable Cationic PPs (CPPs). For preparing new cationic NCs (CNCs), we used CPPs composed of positively charged amino acid L-arginine (R). The CNCs were fabricated by two approaches using: (1) R-based homo-CPPs; (2) Blends of R-based CPPs with regular (neutral) PPs. According to the first approach NCs we prepared from CPPs 8R3 (composed of R, sebacic acid and 1,3-propanediol) and 8R6 (composed of R, sebacic acid and 1,6-hexanediol). The NCs prepared from these CPPs were 72-101 nm in size with zeta potential within +30 ÷ +35 mV at a concentration 6 mg/mL. According to the second approach, CPPs 8R6 was blended in organic phase with neutral PPs 8L6 (composed of leucine, sebacic acid and 1,6-hexanediol). The NCs prepared from the blends were 130-140 nm in size with zeta potential within +20 ÷ +28 mV depending on 8R6/8L6 ratio. The stability studies of fabricated NCs showed that no substantial change of the particle size and distribution and no big particles’ formation is observed after three months storage. In vitro biocompatibility study of the obtained NPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed both type cathionic NCs are biocompatible. The obtained data allow concluding that the obtained CNCs are promising for the application as biodegradable drug delivery vehicles. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 'New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications'.

Keywords: biodegradable polymers, cationic pseudo-proteins, nano-containers, drug delivery vehicles

Procedia PDF Downloads 149
807 Life-Cycle Assessment of Residential Buildings: Addressing the Influence of Commuting

Authors: J. Bastos, P. Marques, S. Batterman, F. Freire

Abstract:

Due to demands of a growing urban population, it is crucial to manage urban development and its associated environmental impacts. While most of the environmental analyses have addressed buildings and transportation separately, both the design and location of a building affect environmental performance and focusing on one or the other can shift impacts and overlook improvement opportunities for more sustainable urban development. Recently, several life-cycle (LC) studies of residential buildings have integrated user transportation, focusing exclusively on primary energy demand and/or greenhouse gas emissions. Additionally, most papers considered only private transportation (mainly car). Although it is likely to have the largest share both in terms of use and associated impacts, exploring the variability associated with mode choice is relevant for comprehensive assessments and, eventually, for supporting decision-makers. This paper presents a life-cycle assessment (LCA) of a residential building in Lisbon (Portugal), addressing building construction, use and user transportation (commuting with private and public transportation). Five environmental indicators or categories are considered: (i) non-renewable primary energy (NRE), (ii) greenhouse gas intensity (GHG), (iii) eutrophication (EUT), (iv) acidification (ACID), and (v) ozone layer depletion (OLD). In a first stage, the analysis addresses the overall life-cycle considering the statistical model mix for commuting in the residence location. Then, a comparative analysis compares different available transportation modes to address the influence mode choice variability has on the results. The results highlight the large contribution of transportation to the overall LC results in all categories. NRE and GHG show strong correlation, as the three LC phases contribute with similar shares to both of them: building construction accounts for 6-9%, building use for 44-45%, and user transportation for 48% of the overall results. However, for other impact categories there is a large variation in the relative contribution of each phase. Transport is the most significant phase in OLD (60%); however, in EUT and ACID building use has the largest contribution to the overall LC (55% and 64%, respectively). In these categories, transportation accounts for 31-38%. A comparative analysis was also performed for four alternative transport modes for the household commuting: car, bus, motorcycle, and company/school collective transport. The car has the largest results in all impact categories. When compared to the overall LC with commuting by car, mode choice accounts for a variability of about 35% in NRE, GHG and OLD (the categories where transportation accounted for the largest share of the LC), 24% in EUT and 16% in ACID. NRE and GHG show a strong correlation because all modes have internal combustion engines. The second largest results for NRE, GHG and OLD are associated with commuting by motorcycle; however, for ACID and EUT this mode has better performance than bus and company/school transport. No single transportation mode performed best in all impact categories. Integrated assessments of buildings are needed to avoid shifts of impacts between life-cycle phases and environmental categories, and ultimately to support decision-makers.

Keywords: environmental impacts, LCA, Lisbon, transport

Procedia PDF Downloads 357
806 The Impression of Adaptive Capacity of the Rural Community in the Indian Himalayan Region: A Way Forward for Sustainable Livelihood Development

Authors: Rommila Chandra, Harshika Choudhary

Abstract:

The value of integrated, participatory, and community based sustainable development strategies is eminent, but in practice, it still remains fragmentary and often leads to short-lived results. Despite the global presence of climate change, its impacts are felt differently by different communities based on their vulnerability. The developing countries have the low adaptive capacity and high dependence on environmental variables, making them highly susceptible to outmigration and poverty. We need to understand how to enable these approaches, taking into account the various governmental and non-governmental stakeholders functioning at different levels, to deliver long-term socio-economic and environmental well-being of local communities. The research assessed the financial and natural vulnerability of Himalayan networks, focusing on their potential to adapt to various changes, through accessing their perceived reactions and local knowledge. The evaluation was conducted by testing indices for vulnerability, with a major focus on indicators for adaptive capacity. Data for the analysis were collected from the villages around Govind National Park and Wildlife Sanctuary, located in the Indian Himalayan Region. The villages were stratified on the basis of connectivity via road, thus giving two kinds of human settlements connected and isolated. The study focused on understanding the complex relationship between outmigration and the socio-cultural sentiments of local people to not abandon their land, assessing their adaptive capacity for livelihood opportunities, and exploring their contribution that integrated participatory methodologies can play in delivering sustainable development. The result showed that the villages having better road connectivity, access to market, and basic amenities like health and education have a better understanding about the climatic shift, natural hazards, and a higher adaptive capacity for income generation in comparison to the isolated settlements in the hills. The participatory approach towards environmental conservation and sustainable use of natural resources were seen more towards the far-flung villages. The study helped to reduce the gap between local understanding and government policies by highlighting the ongoing adaptive practices and suggesting precautionary strategies for the community studied based on their local conditions, which differ on the basis of connectivity and state of development. Adaptive capacity in this study has been taken as the externally driven potential of different parameters, leading to a decrease in outmigration and upliftment of the human environment that could lead to sustainable livelihood development in the rural areas of Himalayas.

Keywords: adaptive capacity, Indian Himalayan region, participatory, sustainable livelihood development

Procedia PDF Downloads 109
805 Making Meaning, Authenticity, and Redefining a Future in Former Refugees and Asylum Seekers Detained in Australia

Authors: Lynne McCormack, Andrew Digges

Abstract:

Since 2013, the Australian government has enforced mandatory detention of anyone arriving in Australia without a valid visa, including those subsequently identified as a refugee or seeking asylum. While consistent with the increased use of immigration detention internationally, Australia’s use of offshore processing facilities both during and subsequent to refugee status determination processing has until recently remained a unique feature of Australia’s program of deterrence. The commonplace detention of refugees and asylum seekers following displacement is a significant and independent source of trauma and a contributory factor in adverse psychological outcomes. Officially, these individuals have no prospect of resettlement in Australia, are barred from applying for substantive visas, and are frequently and indefinitely detained in closed facilities such as immigration detention centres, or alternative places of detention, including hotels. It is also important to note that the limited access to Australia’s immigration detention population made available to researchers often means that data available for secondary analysis may be incomplete or delayed in its release. Further, studies into the lived experience of refugees and asylum seekers are typically cross-sectional and convenience sampled, employing a variety of designs and research methodologies that limit comparability and focused on the immediacy of the individual’s experience. Consequently, how former detainees make sense of their experience, redefine their future trajectory upon release, and recover a sense of authenticity and purpose, is unknown. As such, the present study sought the positive and negative subjective interpretations of 6 participants in Australia regarding their lived experiences as refugees and asylum seekers within Australia’s immigration detention system and its impact on their future sense of self. It made use of interpretative phenomenological analysis (IPA), a qualitative research methodology that is interested in how individuals make sense of, and ascribe meaning to, their unique lived experiences of phenomena. Underpinned by phenomenology, hermeneutics, and critical realism, this idiographic study aimed to explore both positive and negative subjective interpretations of former refugees and asylum seekers held in detention in Australia. It sought to understand how they make sense of their experiences, how detention has impacted their overall journey as displaced persons, and how they have moved forward in the aftermath of protracted detention in Australia. Examining the unique lived experiences of previously detained refugees and asylum seekers may inform the future development of theoretical models of posttraumatic growth among this vulnerable population, thereby informing the delivery of future mental health and resettlement services.

Keywords: mandatory detention, refugee, asylum seeker, authenticity, Interpretative phenomenological analysis

Procedia PDF Downloads 92
804 Removal of Heavy Metal Ions from Aqueous Solution by Polymer Enhanced Ultrafiltration Using Unmodified Starch as Biopolymer

Authors: Nurul Huda Baharuddin, Nik Meriam Nik Sulaiman, Mohammed Kheireddine Aroua

Abstract:

The effects of pH, polymer concentration, and metal ions feed concentration for four selected heavy metals Zn (II), Pb (II), Cr (III) and Cr (VI) were tested by using Polymer Enhanced Ultrafiltration (PEUF). An alternative biopolymer namely unmodified starch is proposed as a binding reagent in consequences, as compared to commonly used water-soluble polymers namely polyethylene glycol (PEG) and polyethyleneimine (PEI) in the removal of selected four heavy metal ions. The speciation species profiles of four selected complexes ions namely Zn (II), Pb (II), Cr (III) and Cr (VI) and the present of hydroxides ions (OH-) in variously charged ions were investigated by available software at certain pH range. In corresponds to identify the potential of complexation behavior between metal ion-polymers, potentiometric titration studies were obtained at first before carried out experimental works. Experimental works were done using ultrafiltration systems obtained by laboratory ultrafiltration bench scale equipped with 10 kDa polysulfone hollow fiber membrane. Throughout the laboratory works, the rejection coefficient and permeate flux were found to be significantly affected by the main operating parameter, namely the effects of pH, polymer composition and metal ions concentrations. The interaction of complexation between two binding polymers namely unmodified starch and PEG were occurred due to physical attraction of metal ions to the polymer on the molecular surface with high possibility of chemical occurrence. However, these selected metal ions are mainly complexes by polymer functional groups whenever there is interaction with PEI polymer. For study of single metal ions solutions, Zn (II) ions' rejections approaching over 90% were obtained at pH 7 for each tested polymer. This behavior was similar to Pb (II), Cr (III) and Cr (VI); where the rejections were obtained at lower acidic pH and increased at neutral pH of 7. Different behavior was found by Cr (VI) ions where a high rejection was only achieved at acidic pH region with PEI. Polymer concentration and metal ions concentration are found to have a significant effect on rejections. For mixed metal ion solutions, the behavior of metal ion rejections was similar to single metal ion solutions for investigation on the effects of pH. Rejection values were high at pH 7 for Zn (II) pH 7 for Zn (II) and Cr (III) ions, corresponding to higher rejections with unmodified starch. Pb (II) ions obtained high rejections when tested with PEG whenever carried out in mixed metal ion solutions. High Cr (VI) ions' rejection was found with PEI in single and mixed metal ions solutions at neutral pH range. The influence of starch’s granule structure towards the rejections of these four selected metal ions is found to be attracted in a non-ionic manner. No significant effects on permeate flux were obtained when tested at different pH ranges, polymer concentrations and metal ions feed either by single or mixtures metal ions solutions. Canizares Model was employed as the theoretical model to predict permeate flux and metal ions retention on the study of heavy metal ions removal.

Keywords: polyethyleneimine, polyethylene glycol, polymer-enhanced ultrafiltration, unmodified starch

Procedia PDF Downloads 164
803 Loss of the Skin Barrier after Dermal Application of the Low Molecular Methyl Siloxanes: Volatile Methyl Siloxanes, VMS Silicones

Authors: D. Glamowska, K. Szymkowska, K. Mojsiewicz- Pieńkowska, K. Cal, Z. Jankowski

Abstract:

Introduction: The integrity of the outermost layer of skin (stratum corneum) is vital to the penetration of various compounds, including toxic substances. Barrier function of skin depends of its structure. The barrier function of the stratum corneum is provided by patterned lipid lamellae (binlayer). However, a lot of substances, including the low molecular methyl siloxanes (volatile methyl siloxanes, VMS) have an impact on alteration the skin barrier due to damage of stratum corneum structure. VMS belong to silicones. They are widely used in the pharmaceutical as well as cosmetic industry. Silicones fulfill the role of ingredient or excipient in medicinal products and the excipient in personal care products. Due to the significant human exposure to this group of compounds, an important aspect is toxicology of the compounds and safety assessment of products. Silicones in general opinion are considered as a non-toxic substances, but there are some data about their negative effect on living organisms through the inhaled or oral application. However, the transdermal route has not been described in the literature as a possible alternative route of penetration. The aim of the study was to verify the possibility of penetration of the stratum corneum, further permeation into the deeper layers of the skin (epidermis and dermis) as well as to the fluid acceptor by VMS. Methods: Research methodology was developed based on the OECD and WHO guidelines. In ex-vivo study, the fluorescence microscope and ATR FT-IR spectroscopy was used. The Franz- type diffusion cells were used to application of the VMS on the sample of human skin (A=0.65 cm) for 24h. The stratum corneum at the application site was tape-stripped. After separation of epidermis, relevant dyes: fluorescein, sulforhodamine B, rhodamine B hexyl ester were put on and observations were carried in the microscope. To confirm the penetration and permeation of the cyclic or linear VMS and thus the presence of silicone in the individual layers of the skin, spectra ATR FT-IR of the sample after application of silicone and H2O (control sample) were recorded. The research included comparison of the intesity of bands in characteristic positions for silicones (1263 cm-1, 1052 cm-1 and 800 cm-1). Results: and Conclusions The results present that cyclic and linear VMS are able to overcome the barrier of the skin. Influence of them on damage of corneocytes of the stratum corneum was observed. This phenomenon was due to distinct disturbances in the lipid structure of the stratum corneum. The presence of cyclic and linear VMS were identified in the stratum corneum, epidermis as well as in the dermis by both fluorescence microscope and ATR FT-IR spectroscopy. This confirms that the cyclic and linear VMS can penetrate to stratum corneum and permeate through the human skin layers. Apart from this they cause changes in the structure of the skin. Results show to possible absorption into the blood and lymphathic vessels by the VMS with linear and cyclic structure.

Keywords: low molecular methyl siloxanes, volatile methyl siloxanes, linear and cyclic siloxanes, skin penetration, skin permeation

Procedia PDF Downloads 337
802 Convective Boiling of CO₂/R744 in Macro and Micro-Channels

Authors: Adonis Menezes, J. C. Passos

Abstract:

The current panorama of technology in heat transfer and the scarcity of information about the convective boiling of CO₂ and hydrocarbon in small diameter channels motivated the development of this work. Among non-halogenated refrigerants, CO₂/ R744 has distinct thermodynamic properties compared to other fluids. The R744 presents significant differences in operating pressures and temperatures, operating at higher values compared to other refrigerants, and this represents a challenge for the design of new evaporators, as the original systems must normally be resized to meet the specific characteristics of the R744, which creates the need for a new design and optimization criteria. To carry out the convective boiling tests of CO₂, an experimental apparatus capable of storing (m= 10kg) of saturated CO₂ at (T = -30 ° C) in an accumulator tank was used, later this fluid was pumped using a positive displacement pump with three pistons, and the outlet pressure was controlled and could reach up to (P = 110bar). This high-pressure saturated fluid passed through a Coriolis type flow meter, and the mass velocities varied between (G = 20 kg/m².s) up to (G = 1000 kg/m².s). After that, the fluid was sent to the first test section of circular cross-section in diameter (D = 4.57mm), where the inlet and outlet temperatures and pressures, were controlled and the heating was promoted by the Joule effect using a source of direct current with a maximum heat flow of (q = 100 kW/m²). The second test section used a cross-section with multi-channels (seven parallel channels) with a square cross-section of (D = 2mm) each; this second test section has also control of temperature and pressure at the inlet and outlet as well as for heating a direct current source was used, with a maximum heat flow of (q = 20 kW/m²). The fluid in a biphasic situation was directed to a parallel plate heat exchanger so that it returns to the liquid state, thus being able to return to the accumulator tank, continuing the cycle. The multi-channel test section has a viewing section; a high-speed CMOS camera was used for image acquisition, where it was possible to view the flow patterns. The experiments carried out and presented in this report were conducted in a rigorous manner, enabling the development of a database on the convective boiling of the R744 in macro and micro channels. The analysis prioritized the processes from the beginning of the convective boiling until the drying of the wall in a subcritical regime. The R744 resurfaces as an excellent alternative to chlorofluorocarbon refrigerants due to its negligible ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) rates, among other advantages. The results found in the experimental tests were very promising for the use of CO₂ in micro-channels in convective boiling and served as a basis for determining the flow pattern map and correlation for determining the heat transfer coefficient in the convective boiling of CO₂.

Keywords: convective boiling, CO₂/R744, macro-channels, micro-channels

Procedia PDF Downloads 137
801 Comparison of Methodologies to Compute the Probabilistic Seismic Hazard Involving Faults and Associated Uncertainties

Authors: Aude Gounelle, Gloria Senfaute, Ludivine Saint-Mard, Thomas Chartier

Abstract:

The long-term deformation rates of faults are not fully captured by Probabilistic Seismic Hazard Assessment (PSHA). PSHA that use catalogues to develop area or smoothed-seismicity sources is limited by the data available to constraint future earthquakes activity rates. The integration of faults in PSHA can at least partially address the long-term deformation. However, careful treatment of fault sources is required, particularly, in low strain rate regions, where estimated seismic hazard levels are highly sensitive to assumptions concerning fault geometry, segmentation and slip rate. When integrating faults in PSHA various constraints on earthquake rates from geologic and seismologic data have to be satisfied. For low strain rate regions where such data is scarce it would be especially challenging. Faults in PSHA requires conversion of the geologic and seismologic data into fault geometries, slip rates and then into earthquake activity rates. Several approaches exist for translating slip rates into earthquake activity rates. In the most frequently used approach, the background earthquakes are handled using a truncated approach, in which earthquakes with a magnitude lower or equal to a threshold magnitude (Mw) occur in the background zone, with a rate defined by the rate in the earthquake catalogue. Although magnitudes higher than the threshold are located on the fault with a rate defined using the average slip rate of the fault. As high-lighted by several research, seismic events with magnitudes stronger than the selected magnitude threshold may potentially occur in the background and not only at the fault, especially in regions of slow tectonic deformation. It also has been known that several sections of a fault or several faults could rupture during a single fault-to-fault rupture. It is then essential to apply a consistent modelling procedure to allow for a large set of possible fault-to-fault ruptures to occur aleatory in the hazard model while reflecting the individual slip rate of each section of the fault. In 2019, a tool named SHERIFS (Seismic Hazard and Earthquake Rates in Fault Systems) was published. The tool is using a methodology to calculate the earthquake rates in a fault system where the slip-rate budget of each fault is conversed into rupture rates for all possible single faults and faultto-fault ruptures. The objective of this paper is to compare the SHERIFS method with one other frequently used model to analyse the impact on the seismic hazard and through sensibility studies better understand the influence of key parameters and assumptions. For this application, a simplified but realistic case study was selected, which is in an area of moderate to hight seismicity (South Est of France) and where the fault is supposed to have a low strain.

Keywords: deformation rates, faults, probabilistic seismic hazard, PSHA

Procedia PDF Downloads 54
800 The Report of Co-Construction into a Trans-National Education Teaching Team

Authors: Juliette MacDonald, Jun Li, Wenji Xiang, Mingwei Zhao

Abstract:

Shanghai International College of Fashion and Innovation (SCF) was created as a result of a collaborative partnership agreement between the University of Edinburgh and Donghua University. The College provides two programmes: Fashion Innovation and Fashion Interior Design and the overarching curriculum has the intention of developing innovation and creativity within an international learning, teaching, knowledge exchange and research context. The research problem presented here focuses on the multi-national/cultural faculty in the team, the challenges arising from difficulties in communication and the associated limitations of management frameworks. The teaching faculty at SCF are drawn from China, Finland, Korea, Singapore and the UK with input from Flying Faculty from Fashion and Interior Design, Edinburgh College of Art (ECA), for 5 weeks each semester. Rather than fully replicating the administrative and pedagogical style of one or other of the institutions within this joint partnership the aim from the outset was to create a third way which acknowledges the quality assurance requirements of both Donghua and Edinburgh, the academic and technical needs of the students and provides relevant development and support for all the SCF-based staff and Flying Academics. It has been well acknowledged by those who are involved in teaching across cultures that there is often a culture shock associated with transnational education but that the experience of being involved in the delivery of a curriculum at a Joint Institution can also be very rewarding for staff and students. It became clear at SCF that if a third way might be achieved which encourages innovative approaches to fashion education whilst balancing the expectations of Chinese and western concepts of education and the aims of two institutions, then it was going to be necessary to construct a framework which developed close working relationships for the entire teaching team, so not only between academics and students but also between technicians and administrators at ECA and SCF. The attempts at co-construction and integration are built on the sharing of cultural and educational experiences and knowledge as well as provision of opportunities for reflection on the pedagogical purpose of the curriculum and its delivery. Methods on evaluating the effectiveness of these aims include a series of surveys and interviews and analysis of data drawn from teaching projects delivered to the students along with graduate successes from the last five years, since SCF first opened its doors. This paper will provide examples of best practice developed by SCF which have helped guide the faculty and embed common core values and aims of co-construction regulations and management, whilst building a pro-active TNE (Trans-National Education) team which enhances the learning experience for staff and students alike.

Keywords: cultural co-construction, educational team management, multi-cultural challenges, TNE integration for teaching teams

Procedia PDF Downloads 116
799 The Effects of a Hippotherapy Simulator in Children with Cerebral Palsy: A Pilot Study

Authors: Canan Gunay Yazici, Zubeyir Sarı, Devrim Tarakci

Abstract:

Background: Hippotherapy considered as global techniques used in rehabilitation of children with cerebral palsy as it improved gait pattern, balance, postural control, balance and gross motor skills development but it encounters some problems (such as the excess of the cost of horses' care, nutrition, housing). Hippotherapy simulator is being developed in recent years to overcome these problems. These devices aim to create the effects of hippotherapy made with a real horse on patients by simulating the movements of a real horse. Objectives: To evaluate the efficacy of hippotherapy simulator on gross motor functions, sitting postural control and dynamic balance of children with cerebral palsy (CP). Methods: Fourteen children with CP, aged 6–15 years, seven with a diagnosis of spastic hemiplegia, five of diplegia, two of triplegia, Gross Motor Function Classification System level I-III. The Horse Riding Simulator (HRS), including four-speed program (warm-up, level 1-2-3), was used for hippotherapy simulator. Firstly, each child received Neurodevelopmental Therapy (NDT; 45min twice weekly eight weeks). Subsequently, the same children completed HRS+NDT (30min and 15min respectively, twice weekly eight weeks). Children were assessed pre-treatment, at the end of 8th and 16th week. Gross motor function, sitting postural control, dynamic sitting and standing balance were evaluated by Gross Motor Function Measure-88 (GMFM-88, Dimension B, D, E and Total Score), Trunk Impairment Scale (TIS), Pedalo® Sensamove Balance Test and Pediatric Balance Scale (PBS) respectively. Unit of Scientific Research Project of Marmara University supported our study. Results: All measured variables were a significant increase compared to baseline values after both intervention (NDT and HRS+NDT), except for dynamic sitting balance evaluated by Pedalo®. Especially HRS+NDT, increase in the measured variables was considerably higher than NDT. After NDT, the Total scores of GMFM-88 (mean baseline 62,2 ± 23,5; mean NDT: 66,6 ± 22,2; p < 0,05), TIS (10,4 ± 3,4; 12,1 ± 3; p < 0,05), PBS (37,4 ± 14,6; 39,6 ± 12,9; p < 0,05), Pedalo® sitting (91,2 ± 6,7; 92,3 ± 5,2; p > 0,05) and Pedalo® standing balance points (80,2 ± 10,8; 82,5 ± 11,5; p < 0,05) increased by 7,1%, 2%, 3,9%, 5,2% and 6 % respectively. After HRS+NDT treatment, the total scores of GMFM-88 (mean baseline: 62,2 ± 23,5; mean HRS+NDT: 71,6 ± 21,4; p < 0,05), TIS (10,4 ± 3,4; 15,6 ± 2,9; p < 0,05), PBS (37,4 ± 14,6; 42,5 ± 12; p < 0,05), Pedalo® sitting (91,2 ± 6,7; 93,8 ± 3,7; p > 0,05) and standing balance points (80,2 ± 10,8; 86,2 ± 5,6; p < 0,05) increased by 15,2%, 6%, 7,3%, 6,4%, and 11,9%, respectively, compared to the initial values. Conclusion: Neurodevelopmental therapy provided significant improvements in gross motor functions, sitting postural control, sitting and standing balance of children with CP. When the hippotherapy simulator added to the treatment program, it was observed that these functions were further developed (especially with gross motor functions and dynamic balance). As a result, this pilot study showed that the hippotherapy simulator could be a useful alternative to neurodevelopmental therapy for the improvement of gross motor function, sitting postural control and dynamic balance of children with CP.

Keywords: balance, cerebral palsy, hippotherapy, rehabilitation

Procedia PDF Downloads 138
798 DIF-JACKET: a Thermal Protective Jacket for Firefighters

Authors: Gilda Santos, Rita Marques, Francisca Marques, João Ribeiro, André Fonseca, João M. Miranda, João B. L. M. Campos, Soraia F. Neves

Abstract:

Every year, an unacceptable number of firefighters are seriously burned during firefighting operations, with some of them eventually losing their life. Although thermal protective clothing research and development has been searching solutions to minimize firefighters heat load and skin burns, currently commercially available solutions focus in solving isolated problems, for example, radiant heat or water-vapor resistance. Therefore, episodes of severe burns and heat strokes are still frequent. Taking this into account, a consortium composed by Portuguese entities has joined synergies to develop an innovative protective clothing system by following a procedure based on the application of numerical models to optimize the design and using a combinationof protective clothing components disposed in different layers. Recently, it has been shown that Phase Change Materials (PCMs) can contribute to the reduction of potential heat hazards in fire extinguish operations, and consequently, their incorporation into firefighting protective clothing has advantages. The greatest challenge is to integrate these materials without compromising garments ergonomics and, at the same time, accomplishing the International Standard of protective clothing for firefighters – laboratory test methods and performance requirements for wildland firefighting clothing. The incorporation of PCMs into the firefighter's protective jacket will result in the absorption of heat from the fire and consequently increase the time that the firefighter can be exposed to it. According to the project studies and developments, to favor a higher use of the PCM storage capacityand to take advantage of its high thermal inertia more efficiently, the PCM layer should be closer to the external heat source. Therefore, in this stage, to integrate PCMs in firefighting clothing, a mock-up of a vest specially designed to protect the torso (back, chest and abdomen) and to be worn over a fire-resistant jacketwas envisaged. Different configurations of PCMs, as well as multilayer approaches, were studied using suitable joining technologies such as bonding, ultrasound, and radiofrequency. Concerning firefighter’s protective clothing, it is important to balance heat protection and flame resistance with comfort parameters, namely, thermaland water-vapor resistances. The impact of the most promising solutions regarding thermal comfort was evaluated to refine the performance of the global solutions. Results obtained with experimental bench scale model and numerical simulation regarding the integration of PCMs in a vest designed as protective clothing for firefighters will be presented.

Keywords: firefighters, multilayer system, phase change material, thermal protective clothing

Procedia PDF Downloads 155
797 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 64
796 Comparative Analysis of Costs and Well Drilling Techniques for Water, Geothermal Energy, Oil and Gas Production

Authors: Thales Maluf, Nazem Nascimento

Abstract:

The development of society relies heavily on the total amount of energy obtained and its consumption. Over the years, there has been an advancement on energy attainment, which is directly related to some natural resources and developing systems. Some of these resources should be highlighted for its remarkable presence in world´s energy grid, such as water, petroleum, and gas, while others deserve attention for representing an alternative to diversify the energy grid, like geothermal sources. Therefore, because all these resources can be extracted from the underground, drilling wells is a mandatory activity in terms of exploration, and it involves a previous geological study and an adequate preparation. It also involves a cleaning process and an extraction process that can be executed by different procedures. For that reason, this research aims the enhancement of exploration processes through a comparative analysis of drilling costs and techniques used to produce them. The analysis itself is based on a bibliographical review based on books, scientific papers, schoolwork and mainly explore drilling methods and technologies, equipment used, well measurements, extraction methods, and production costs. Besides techniques and costs regarding the drilling processes, some properties and general characteristics of these sources are also compared. Preliminary studies show that there are some major differences regarding the exploration processes, mostly because these resources are naturally distinct. Water wells, for instance, have hundreds of meters of length because water is stored close to the surface, while oil, gas, and geothermal production wells can reach thousands of meters, which make them more expensive to be drilled. The drilling methods present some general similarities especially regarding the main mechanism of perforation, but since water is a resource stored closer to the surface than the other ones, there is a wider variety of methods. Water wells can be drilled by rotary mechanisms, percussion mechanisms, rotary-percussion mechanisms, and some other simpler methods. Oil and gas production wells, on the other hand, require rotary or rotary-percussion drilling with a proper structure called drill rig and resistant materials for the drill bits and the other components, mostly because they´re stored in sedimentary basins that can be located thousands of meters under the ground. Geothermal production wells also require rotary or rotary-percussion drilling and require the existence of an injection well and an extraction well. The exploration efficiency also depends on the permeability of the soil, and that is why it has been developed the Enhanced Geothermal Systems (EGS). Throughout this review study, it can be verified that the analysis of the extraction processes of energy resources is essential since these resources are responsible for society development. Furthermore, the comparative analysis of costs and well drilling techniques for water, geothermal energy, oil, and gas production, which is the main goal of this research, can enable the growth of energy generation field through the emergence of ideas that improve the efficiency of energy generation processes.

Keywords: drilling, water, oil, Gas, geothermal energy

Procedia PDF Downloads 136
795 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors

Authors: Ali H. Daraji, Ye Jianqiao

Abstract:

The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.

Keywords: energy harvesting, optimisation, sensor, wing

Procedia PDF Downloads 296