Search results for: elliptic curve digital signature algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7376

Search results for: elliptic curve digital signature algorithm

806 The Impact of the COVID-19 on the Cybercrimes in Hungary and the Possible Solutions for Prevention

Authors: László Schmidt

Abstract:

Technological and digital innovation is constantly and dynamically evolving, which poses an enormous challenge to both lawmaking and law enforcement. To legislation because artificial intelligence permeates many areas of people’s daily lives that the legislator must regulate. it can see how challenging it is to regulate e.g. self-driving cars/taxis/camions etc. Not to mention cryptocurrencies and Chat GPT, the use of which also requires legislative intervention. Artificial intelligence also poses an extraordinary challenge to law enforcement. In criminal cases, police and prosecutors can make great use of AI in investigations, e.g. in forensics, DNA samples, reconstruction, identification, etc. But it can also be of great help in the detection of crimes committed in cyberspace. In the case of cybercrime, on the one hand, it can be viewed as a new type of crime that can only be committed with the help of information systems, and that has a specific protected legal object, such as an information system or data. On the other hand, it also includes traditional crimes that are much easier to commit with the help of new tools. According to Hungarian Criminal Code section 375 (1), any person who, for unlawful financial gain, introduces data into an information system, or alters or deletes data processed therein, or renders data inaccessible, or otherwise interferes with the functioning of the information system, and thereby causes damage, is guilty of a felony punishable by imprisonment not exceeding three years. The Covid-19 coronavirus epidemic has had a significant impact on our lives and our daily lives. It was no different in the world of crime. With people staying at home for months, schools, restaurants, theatres, cinemas closed, and no travel, criminals have had to change their ways. Criminals were committing crimes online in even greater numbers than before. These crimes were very diverse, ranging from false fundraising, the collection and misuse of personal data, extortion to fraud on various online marketplaces. The most vulnerable age groups (minors and elderly) could be made more aware and prevented from becoming victims of this type of crime through targeted programmes. The aim of the study is to show the Hungarian judicial practice in relation to cybercrime and possible preventive solutions.

Keywords: cybercrime, COVID-19, Hungary, criminal law

Procedia PDF Downloads 60
805 Benefits of Environmental Aids to Chronobiology Management and Its Impact on Depressive Mood in an Operational Setting

Authors: M. Trousselard, D. Steiler, C. Drogou, P. van-Beers, G. Lamour, S. N. Crosnier, O. Bouilland, P. Dubost, M. Chennaoui, D. Léger

Abstract:

According to published data, undersea navigation for long periods (nuclear-powered ballistic missile submarine, SSBN) constitutes an extreme environment in which crews are subjected to multiple stresses, including the absence of natural light, illuminance below 1,000 lux, and watch schedules that do not respect natural chronobiological rhythms, for a period of 60-80 days. These stresses seem clearly detrimental to the submariners’ sleep, with consequences for their affective (seasonal affective disorder-like) and cognitive functioning. In the long term, there are abundant publications regarding the consequences of sleep disruption for the occurrence of organic cardiovascular, metabolic, immunological or malignant diseases. It seems essential to propose countermeasures for the duration of the patrol in order to reduce the negative physiological effects on the sleep and mood of submariners. Light therapy, the preferred treatment for dysfunctions of the internal biological clock and the resulting seasonal depression, cannot be used without data to assist knowledge of submariners’ chronobiology (melatonin secretion curve) during patrols, given the unusual characteristics of their working environment. These data are not available in the literature. The aim of this project was to assess, in the course of two studies, the benefits of two environmental techniques for managing chronobiological stress: techniques for optimizing potential (TOP; study 1)3, an existing programme to help in the psychophysiological regulation of stress and sleep in the armed forces, and dawn and dusk simulators (DDS, study 2). For each experiment, psychological, physiological (sleep) or biological (melatonin secretion) data were collected on D20 and D50 of patrol. In the first experiment, we studied sleep and depressive distress in 19 submariners in an operational setting on board an SSBM during a first patrol, and assessed the impact of TOP on the quality of sleep and depressive distress in these same submariners over the course of a second patrol. The submariners were trained in TOP between the two patrols for a 2-month period, at a rate of 1 h of training per week, and assigned daily informal exercises. Results show moderate disruptions in sleep pattern and duration associated with the intensity of depressive distress. The use of TOP during the following patrol improved sleep and depressive mood only in submariners who regularly practiced the techniques. In light of these limited benefits, we assessed, in a second experiment, the benefits of DDS on chronobiology (daily secretion of melatonin) and depressive distress. Ninety submariners were randomly allocated to two groups, group 1 using DDS daily, and group 2 constituting the control group. Although the placebo effect was not controlled, results showed a beneficial effect on chronobiology and depressive mood for submariners with a morning chronotype. Conclusions: These findings demonstrate the difficulty of practicing the tools of psychophysiological management in real life. They raise the question of the subjects’ autonomy with respect to using aids that involve regular practice. It seems important to study autonomy in future studies, as a cognitive resource resulting from the interaction between internal positive resources and “coping” resources, to gain a better understanding of compliance problems.

Keywords: chronobiology, light therapy, seasonal affective disorder, sleep, stress, stress management, submarine

Procedia PDF Downloads 456
804 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm

Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy

Abstract:

IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.

Keywords: IoT, fog networks, data stewardship, dynamic access policy

Procedia PDF Downloads 59
803 Didactic Suitability and Mathematics Through Robotics and 3D Printing

Authors: Blanco T. F., Fernández-López A.

Abstract:

Nowadays, education, motivated by the new demands of the 21st century, acquires a dimension that converts the skills that new generations may need into a huge and uncertain set of knowledge too broad to be entirety covered. Within this set, and as tools to reach them, we find Learning and Knowledge Technologies (LKT). Thus, in order to prepare students for an everchanging society in which the technological boom involves everything, it is essential to develop digital competence. Nevertheless LKT seems not to have found their place in the educational system. This work is aimed to go a step further in the research of the most appropriate procedures and resources for technological integration in the classroom. The main objective of this exploratory study is to analyze the didactic suitability (epistemic, cognitive, affective, interactional, mediational and ecological) for teaching and learning processes of mathematics with robotics and 3D printing. The analysis carried out is drawn from a STEAM (Science, Technology, Engineering, Art and Mathematics) project that has the Pilgrimage way to Santiago de Compostela as a common thread. The sample is made up of 25 Primary Education students (10 and 11 years old). A qualitative design research methodology has been followed, the sessions have been distributed according to the type of technology applied. Robotics has been focused towards learning two-dimensional mathematical notions while 3D design and printing have been oriented towards three-dimensional concepts. The data collection instruments used are evaluation rubrics, recordings, field notebooks and participant observation. Indicators of didactic suitability proposed by Godino (2013) have been used for the analysis of the data. In general, the results show a medium-high level of didactic suitability. Above these, a high mediational and cognitive suitability stands out, which led to a better understanding of the positions and relationships of three-dimensional bodies in space and the concept of angle. With regard to the other indicators of the didactic suitability, it should be noted that the interactional suitability would require more attention and the affective suitability a deeper study. In conclusion, the research has revealed great expectations around the combination of teaching-learning processes of mathematics and LKT. Although there is still a long way to go in terms of the provision of means and teacher training.

Keywords: 3D printing, didactic suitability, educational design, robotics

Procedia PDF Downloads 104
802 The Spatial Pattern of Economic Rents of an Airport Development Area: Lessons Learned from the Suvarnabhumi International Airport, Thailand

Authors: C. Bejrananda, Y. Lee, T. Khamkaew

Abstract:

With the rise of the importance of air transportation in the 21st century, the role of economics in airport planning and decision-making has become more important to the urban structure and land value around it. Therefore, this research aims to examine the relationship between an airport and its impacts on the distribution of urban land uses and land values by applying the Alonso’s bid rent model. The New Bangkok International Airport (Suvarnabhumi International Airport) was taken as a case study. The analysis was made over three different time periods of airport development (after the airport site was proposed, during airport construction, and after the opening of the airport). The statistical results confirm that Alonso’s model can be used to explain the impacts of the new airport only for the northeast quadrant of the airport, while proximity to the airport showed the inverse relationship with the land value of all six types of land use activities through three periods of time. It indicates that the land value for commercial land use is the most sensitive to the location of the airport or has the strongest requirement for accessibility to the airport compared to the residential and manufacturing land use. Also, the bid-rent gradients of the six types of land use activities have declined dramatically through the three time periods because of the Asian Financial Crisis in 1997. Therefore, the lesson learned from this research concerns about the reliability of the data used. The major concern involves the use of different areal units for assessing land value for different time periods between zone block (1995) and grid block (2002, 2009). As a result, this affect the investigation of the overall trends of land value assessment, which are not readily apparent. In addition, the next concern is the availability of the historical data. With the lack of collecting historical data for land value assessment by the government, some of data of land values and aerial photos are not available to cover the entire study area. Finally, the different formats of using aerial photos between hard-copy (1995) and digital photo (2002, 2009) made difficult for measuring distances. Therefore, these problems also affect the accuracy of the results of the statistical analyses.

Keywords: airport development area, economic rents, spatial pattern, suvarnabhumi international airport

Procedia PDF Downloads 274
801 Evaluating the Validity of CFD Model of Dispersion in a Complex Urban Geometry Using Two Sets of Experimental Measurements

Authors: Mohammad R. Kavian Nezhad, Carlos F. Lange, Brian A. Fleck

Abstract:

This research presents the validation study of a computational fluid dynamics (CFD) model developed to simulate the scalar dispersion emitted from rooftop sources around the buildings at the University of Alberta North Campus. The ANSYS CFX code was used to perform the numerical simulation of the wind regime and pollutant dispersion by solving the 3D steady Reynolds-averaged Navier-Stokes (RANS) equations on a building-scale high-resolution grid. The validation study was performed in two steps. First, the CFD model performance in 24 cases (eight wind directions and three wind speeds) was evaluated by comparing the predicted flow fields with the available data from the previous measurement campaign designed at the North Campus, using the standard deviation method (SDM), while the estimated results of the numerical model showed maximum average percent errors of approximately 53% and 37% for wind incidents from the North and Northwest, respectively. Good agreement with the measurements was observed for the other six directions, with an average error of less than 30%. In the second step, the reliability of the implemented turbulence model, numerical algorithm, modeling techniques, and the grid generation scheme was further evaluated using the Mock Urban Setting Test (MUST) dispersion dataset. Different statistical measures, including the fractional bias (FB), the geometric mean bias (MG), and the normalized mean square error (NMSE), were used to assess the accuracy of the predicted dispersion field. Our CFD results are in very good agreement with the field measurements.

Keywords: CFD, plume dispersion, complex urban geometry, validation study, wind flow

Procedia PDF Downloads 135
800 Numerical Simulations of Acoustic Imaging in Hydrodynamic Tunnel with Model Adaptation and Boundary Layer Noise Reduction

Authors: Sylvain Amailland, Jean-Hugh Thomas, Charles Pézerat, Romuald Boucheron, Jean-Claude Pascal

Abstract:

The noise requirements for naval and research vessels have seen an increasing demand for quieter ships in order to fulfil current regulations and to reduce the effects on marine life. Hence, new methods dedicated to the characterization of propeller noise, which is the main source of noise in the far-field, are needed. The study of cavitating propellers in closed-section is interesting for analyzing hydrodynamic performance but could involve significant difficulties for hydroacoustic study, especially due to reverberation and boundary layer noise in the tunnel. The aim of this paper is to present a numerical methodology for the identification of hydroacoustic sources on marine propellers using hydrophone arrays in a large hydrodynamic tunnel. The main difficulties are linked to the reverberation of the tunnel and the boundary layer noise that strongly reduce the signal-to-noise ratio. In this paper it is proposed to estimate the reflection coefficients using an inverse method and some reference transfer functions measured in the tunnel. This approach allows to reduce the uncertainties of the propagation model used in the inverse problem. In order to reduce the boundary layer noise, a cleaning algorithm taking advantage of the low rank and sparse structure of the cross-spectrum matrices of the acoustic and the boundary layer noise is presented. This approach allows to recover the acoustic signal even well under the boundary layer noise. The improvement brought by this method is visible on acoustic maps resulting from beamforming and DAMAS algorithms.

Keywords: acoustic imaging, boundary layer noise denoising, inverse problems, model adaptation

Procedia PDF Downloads 335
799 Clustering for Detection of the Population at Risk of Anticholinergic Medication

Authors: A. Shirazibeheshti, T. Radwan, A. Ettefaghian, G. Wilson, C. Luca, Farbod Khanizadeh

Abstract:

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature, which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on over 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. To further evaluate the performance of the model, any association between the average risk score within each group and other factors such as socioeconomic status (i.e., Index of Multiple Deprivation) and an index of health and disability were investigated. The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings also show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, indicating that females are more at risk from this kind of multiple medications. The risk may be monitored and controlled in well artificial intelligence-equipped healthcare management systems.

Keywords: anticholinergic medicines, clustering, deprivation, socioeconomic status

Procedia PDF Downloads 212
798 A Review Study on the Importance and Correlation of Crisis Literacy and Media Communications for Vulnerable Marginalized People During Crisis

Authors: Maryam Jabeen

Abstract:

In recent times, there has been a notable surge in attention towards diverse literacy concepts such as media literacy, information literacy, and digital literacy. These concepts have garnered escalating interest, spurring the emergence of novel approaches, particularly in the aftermath of the Covid-19 crisis. However, amidst discussions of crises, the domain of crisis literacy remains largely uncharted within academic exploration. Crisis literacy, also referred to as disaster literacy, denotes an individual's aptitude to not only comprehend but also effectively apply information, enabling well-informed decision-making and adherence to instructions about disaster mitigation, preparedness, response, and recovery. This theoretical and descriptive study seeks to transcend foundational literacy concepts, underscoring the urgency for an in-depth exploration of crisis literacy and its interplay with the realm of media communication. Given the profound impact of the pandemic experience and the looming uncertainty of potential future crises, there arises a pressing need to elevate crisis literacy, or disaster literacy, towards heightened autonomy and active involvement within the spheres of critical disaster preparedness, recovery initiatives, and media communication domains. This research paper is part of my ongoing Ph.D. research study, which explores on a broader level the Encoding and decoding of media communications in relation to crisis literacy. The primary objective of this research paper is to expound upon a descriptive, theoretical research endeavor delving into this domain. The emphasis lies in highlighting the paramount significance of media communications in literacy of crisis, coupled with an accentuated focus on its role in providing information to marginalized populations amidst crises. In conclusion, this research bridges the gap in crisis literacy correlation to media communications exploration, advocating for a comprehensive understanding of its dynamics and its symbiotic relationship with media communications. It intends to foster a heightened sense of crisis literacy, particularly within marginalized communities, catalyzing proactive participation in disaster preparedness, recovery processes, and adept media interactions.

Keywords: covid-19, crisis literacy, crisis, marginalized, media and communications, pandemic, vulnerable people

Procedia PDF Downloads 62
797 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review

Authors: Faisal Muhibuddin, Ani Dijah Rahajoe

Abstract:

This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.

Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review

Procedia PDF Downloads 65
796 Caregiver Training Results in Accurate Reporting of Stool Frequency

Authors: Matthew Heidman, Susan Dallabrida, Analice Costa

Abstract:

Background:Accuracy of caregiver reported outcomes is essential for infant growth and tolerability study success. Crying/fussiness, stool consistencies, and other gastrointestinal characteristics are important parameters regarding tolerability, and inter-caregiver reporting can see a significant amount of subjectivity and vary greatly within a study, compromising data. This study sought to elucidate how caregiver reported questions related to stool frequency are answered before and after a short amount of training and how training impacts caregivers’ understanding, and how they would answer the question. Methods:A digital survey was issued for 90 daysin the US (n=121) and 30 days in Mexico (n=88), targeting respondents with children ≤4 years of age. Respondents were asked a question in two formats, first without a line of training text and second with a line of training text. The question set was as follows, “If your baby had stool in his/her diaper and you changed the diaper and 10 min later there was more stool in the diaper, how many stools would you report this as?” followed by the same question beginning with “If you were given the instruction that IF there are at least 5 minutes in between stools, then it counts as two (2) stools…”.Four response items were provided for both questions, 1) 2 stools, 2) 1stool, 3) it depends on how much stool was in the first versus the second diaper, 4) There is not enough information to be able to answer the question. Response frequencies between questions were compared. Results: Responses to the question without training saw some variability in the US, with 69% selecting “2 stools”,11% selecting “1 stool”, 14% selecting “it depends on how much stool was in the first versus the second diaper”, and 7% selecting “There is not enough information to be able to answer the question” and in Mexico respondents selected 9%, 78%, 13%, and 0% respectively. However, responses to the question after training saw more consolidation in the US, with 85% of respondents selecting“2 stools,” representing an increase in those selecting the correct answer. Additionally in Mexico, with 84% of respondents selecting “1 episode” representing an increase in the those selecting the correct response. Conclusions: Caregiver reported outcomes are critical for infant growth and tolerability studies, however, they can be highly subjective and see a high variability of responses without guidance. Training is critical to standardize all caregivers’ perspective regarding how to answer questions accurately in order to provide an accurate dataset.

Keywords: infant nutrition, clinical trial optimization, stool reporting, decentralized clinical trials

Procedia PDF Downloads 96
795 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network

Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin

Abstract:

The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.

Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake

Procedia PDF Downloads 64
794 Femoropatellar Groove: An Anatomical Study

Authors: Mamatha Hosapatna, Anne D. Souza, Vrinda Hari Ankolekar, Antony Sylvan D. Souza

Abstract:

Introduction: The lower extremity of the femur is characterized by an anterior groove in which patella is held during motion. This groove separates the two lips of the trochlea (medial and lateral), prolongation of the two condyles. In humans, the lateral trochlear lip is more developed than the medial one, creating an asymmetric groove that is also specific to the human body. Because of femoral obliquity, contraction of quadriceps leads to a lateral dislocation stress on the patella, and the more elevated lateral side of the patellar groove helps the patella stays in its correct place, acting as a wall against lateral dislocation. This specific shape fits an oblique femur. It is known that femoral obliquity is not genetically determined but comes with orthostatism and biped walking. Material and Methodology: To measure the various dimensions of the Femoropatellar groove (FPG) and femoral condyle using digital image analyser. 37 dried adult femora (22 right,15 left) were used for the study. End on images of the lower end of the femur was taken. Various dimensions of the Femoropatellar groove and FP angle were measured using image J software. Results were analyzed statistically. Results: Maximum of the altitude of medial condyle of the right femur is 4.98± 0.35 cm and of the left femur is 5.20±.16 cm. Maximum altitude of lateral condyle is 5.44±0.4 and 5.50±0.14 on the right and left side respectively. Medial length of the groove is 1.30±0.38 cm on the right side and on the left side is 1.88±0.16 cm. The lateral length of the groove on the right side is 1.900±.16 cm and left side is 1.88±0.16 cm. Femoropatellar angle is 136.38◦±2.59 on the right side and on the left side it is 142.38◦±7.0 Angle and dimensions of the femoropatellar groove on the medial and lateral sides were measured. Asymmetry in the patellar groove was observed. The lateral lip was found to be wider and bigger which correlated with the previous studies. An asymmetrical patellar groove with a protruding lateral side associated with an oblique femur is a specific mark of bipedal locomotion. Conclusion: Dimensions of FPG are important in maintaining the stability of patella and also in knee replacement surgeries. The implants used in to replace the patellofemoral compartment consist of a metal groove to fit on the femoral end and a plastic disc that attaches to the undersurface of the patella. The location and configuration of the patellofemoral groove of the distal femur are clinically significant in the mechanics and pathomechanics of the patellofemoral articulation.

Keywords: femoral patellar groove, femoro patellar angle, lateral condyle, medial condyle

Procedia PDF Downloads 402
793 Laser - Ultrasonic Method for the Measurement of Residual Stresses in Metals

Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya

Abstract:

The theoretical analysis is carried out to get the relation between the ultrasonic wave velocity and the value of residual stresses. The laser-ultrasonic method is developed to evaluate the residual stresses and subsurface defects in metals. The method is based on the laser thermooptical excitation of longitudinal ultrasonic wave sand their detection by a broadband piezoelectric detector. A laser pulse with the time duration of 8 ns of the full width at half of maximum and with the energy of 300 µJ is absorbed in a thin layer of the special generator that is inclined relative to the object under study. The non-uniform heating of the generator causes the formation of a broadband powerful pulse of longitudinal ultrasonic waves. It is shown that the temporal profile of this pulse is the convolution of the temporal envelope of the laser pulse and the profile of the in-depth distribution of the heat sources. The ultrasonic waves reach the surface of the object through the prism that serves as an acoustic duct. At the interface ‚laser-ultrasonic transducer-object‘ the conversion of the most part of the longitudinal wave energy takes place into the shear, subsurface longitudinal and Rayleigh waves. They spread within the subsurface layer of the studied object and are detected by the piezoelectric detector. The electrical signal that corresponds to the detected acoustic signal is acquired by an analog-to-digital converter and when is mathematically processed and visualized with a personal computer. The distance between the generator and the piezodetector as well as the spread times of acoustic waves in the acoustic ducts are the characteristic parameters of the laser-ultrasonic transducer and are determined using the calibration samples. There lative precision of the measurement of the velocity of longitudinal ultrasonic waves is 0.05% that corresponds to approximately ±3 m/s for the steels of conventional quality. This precision allows one to determine the mechanical stress in the steel samples with the minimal detection threshold of approximately 22.7 MPa. The results are presented for the measured dependencies of the velocity of longitudinal ultrasonic waves in the samples on the values of the applied compression stress in the range of 20-100 MPa.

Keywords: laser-ultrasonic method, longitudinal ultrasonic waves, metals, residual stresses

Procedia PDF Downloads 325
792 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply

Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan

Abstract:

Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.

Keywords: ZigBee, Li-ion battery, solar panel, CC2530

Procedia PDF Downloads 374
791 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 19
790 Lamb Waves Wireless Communication in Healthy Plates Using Coherent Demodulation

Authors: Rudy Bahouth, Farouk Benmeddour, Emmanuel Moulin, Jamal Assaad

Abstract:

Guided ultrasonic waves are used in Non-Destructive Testing (NDT) and Structural Health Monitoring (SHM) for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average Bit Error Rate. Results have shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques.

Keywords: lamb waves communication, wireless communication, coherent demodulation, bit error rate

Procedia PDF Downloads 260
789 HLA-DPB1 Matching on the Outcome of Unrelated Donor Hematopoietic Stem Cell Transplantation

Authors: Shi-xia Xu, Zai-wen Zhang, Ru-xue Chen, Shan Zhou, Xiang-feng Tang

Abstract:

Objective: The clinical influence of HLA-DPB1 mismatches on clinical outcome of HSCT is less clear. This is the first meta-analysis to study the HLA-DPB1 matching statues on clinical outcomes after unrelated donor HSCT. Methods: We searched the CIBMTR, Cochrane Central Register of Controlled Trials (CENTRAL) and related databases (1995.01–2017.06) for all relevant articles. Comparative studies were used to investigate the HLA-DPB1 loci mismatches on clinical outcomes after unrelated donor HSCT, such as the disease-free survival (DFS), overall survival, GVHD, relapse, and transplant-related mortality (TRM). We performed meta-analysis using Review Manager 5.2 software and funnel plot to assess the bias. Results: At first, 1246 articles were retrieved, and 18 studies totaling 26368 patients analyzed. Pooled comparisons of studies found that the HLA-DPB1 mismatched group had a lower rate of DFS than the DPB1-matched group, and lower OS in non-T cell depleted transplantation. The DPB1 mismatched group has a higher incidence of aGVHD and more severe ( ≥ III degree) aGvHD, lower rate of relapse and higher TRM. Moreover, compared with 1-antigen mismatch, 2-antigen mismatched led to a higher risk of TRM and lower relapse rate. Conclusions: This meta-analysis indicated HLA-DPB1 has important influence on survival and transplant-related complications during unrelated donor HSCT and HLA-DPB1 donor selection strategies have been proposed based on a personalized algorithm.

Keywords: human leukocyte antigen, DPB1, transplant, meta-analysis, outcome

Procedia PDF Downloads 298
788 Application of Transportation Models for Analysing Future Intercity and Intracity Travel Patterns in Kuwait

Authors: Srikanth Pandurangi, Basheer Mohammed, Nezar Al Sayegh

Abstract:

In order to meet the increasing demand for housing care for Kuwaiti citizens, the government authorities in Kuwait are undertaking a series of projects in the form of new large cities, outside the current urban area. Al Mutlaa City located to the north-west of the Kuwait Metropolitan Area is one such project out of the 15 planned new cities. The city accommodates a wide variety of residential developments, employment opportunities, commercial, recreational, health care and institutional uses. This paper examines the application of comprehensive transportation demand modeling works undertaken in VISUM platform to understand the future intracity and intercity travel distribution patterns in Kuwait. The scope of models developed varied in levels of detail: strategic model update, sub-area models representing future demand of Al Mutlaa City, sub-area models built to estimate the demand in the residential neighborhoods of the city. This paper aims at offering model update framework that facilitates easy integration between sub-area models and strategic national models for unified traffic forecasts. This paper presents the transportation demand modeling results utilized in informing the planning of multi-modal transportation system for Al Mutlaa City. This paper also presents the household survey data collection efforts undertaken using GPS devices (first time in Kuwait) and notebook computer based digital survey forms for interviewing representative sample of citizens and residents. The survey results formed the basis of estimating trip generation rates and trip distribution coefficients used in the strategic base year model calibration and validation process.

Keywords: innovative methods in transportation data collection, integrated public transportation system, traffic forecasts, transportation modeling, travel behavior

Procedia PDF Downloads 222
787 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modelling and Solving

Authors: Yasin Tadayonrad

Abstract:

Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading /unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is loading/unloading capacity in each source/ destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.

Keywords: supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming

Procedia PDF Downloads 91
786 Quality Assurance in Higher Education: Doha Institute for Graduate Studies as a Case Study

Authors: Ahmed Makhoukh

Abstract:

Quality assurance (QA) has recently become a common practice, which is endorsed by most Higher Education (HE) institutions worldwide, due to the pressure of internal and external forces. One of the aims of this quality movement is to make the contribution of university education to socio-economic development highly significant. This entails that graduates are currently required have a high-quality profile, i.e., to be competent and master the 21st-century skills needed in the labor market. This wave of change, mostly imposed by globalization, has the effect that university education should be learner-centered in order to satisfy the different needs of students and meet the expectations of other stakeholders. Such a shift of focus on the student learning outcomes has led HE institutions to reconsider their strategic planning, their mission, the curriculum, the pedagogical competence of the academic staff, among other elements. To ensure that the overall institutional performance is on the right way, a QA system should be established to assume this task of checking regularly the extent to which the set of standards of evaluation are strictly respected as expected. This operation of QA has the advantage of proving the accountability of the institution, gaining the trust of the public with transparency and enjoying an international recognition. This is the case of Doha Institute (DI) for Graduate Studies, in Qatar, the object of the present study. The significance of this contribution is to show that the conception of quality has changed in this digital age, and the need to integrate a department responsible for QA in every HE institution to ensure educational quality, enhance learners and achieve academic leadership. Thus, to undertake the issue of QA in DI for Graduate Studies, an elite university (in the academic sense) that focuses on a small and selected number of students, a qualitative method will be adopted in the description and analysis of the data (document analysis). In an attempt to investigate the extent to which QA is achieved in Doha Institute for Graduate Studies, three broad indicators will be evaluated (input, process and learning outcomes). This investigation will be carried out in line with the UK Quality Code for Higher Education represented by Quality Assurance Agency (QAA).

Keywords: accreditation, higher education, quality, quality assurance, standards

Procedia PDF Downloads 147
785 A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System

Authors: Mulugeta K. Tefera, Xiaolong Yang, Jian Liu

Abstract:

Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used.

Keywords: background modeling, Gaussian mixture model, inter-frame difference, object detection and tracking, video surveillance

Procedia PDF Downloads 477
784 Ultrasound-Mediated Separation of Ethanol, Methanol, and Butanol from Their Aqueous Solutions

Authors: Ozan Kahraman, Hao Feng

Abstract:

Ultrasonic atomization (UA) is a useful technique for producing a liquid spray for various processes, such as spray drying. Ultrasound generates small droplets (a few microns in diameter) by disintegration of the liquid via cavitation and/or capillary waves, with low range velocity and narrow droplet size distribution. In recent years, UA has been investigated as an alternative for enabling or enhancing ultrasound-mediated unit operations, such as evaporation, separation, and purification. The previous studies on the UA separation of a solvent from a bulk solution were limited to ethanol-water systems. More investigations into ultrasound-mediated separation for other liquid systems are needed to elucidate the separation mechanism. This study was undertaken to investigate the effects of the operational parameters on the ultrasound-mediated separation of three miscible liquid pairs: ethanol-, methanol-, and butanol-water. A 2.4 MHz ultrasonic mister with a diameter of 18 mm and rating power of 24 W was installed on the bottom of a custom-designed cylindrical separation unit. Air was supplied to the unit (3 to 4 L/min.) as a carrier gas to collect the mist. The effects of the initial alcohol concentration, viscosity, and temperature (10, 30 and 50°C) on the atomization rates were evaluated. The alcohol concentration in the collected mist was measured with high performance liquid chromatography and a refractometer. The viscosity of the solutions was determined using a Brookfield digital viscometer. The alcohol concentration of the atomized mist was dependent on the feed concentration, feed rate, viscosity, and temperature. Increasing the temperature of the alcohol-water mixtures from 10 to 50°C increased the vapor pressure of both the alcohols and water, resulting in an increase in the atomization rates but a decrease in the separation efficiency. The alcohol concentration in the mist was higher than that of the alcohol-water equilibrium at all three temperatures. More importantly, for ethanol, the ethanol concentration in the mist went beyond the azeotropic point, which cannot be achieved by conventional distillation. Ultrasound-mediated separation is a promising non-equilibrium method for separating and purifying alcohols, which may result in significant energy reductions and process intensification.

Keywords: azeotropic mixtures, distillation, evaporation, purification, seperation, ultrasonic atomization

Procedia PDF Downloads 180
783 Data Monetisation by E-commerce Companies: A Need for a Regulatory Framework in India

Authors: Anushtha Saxena

Abstract:

This paper examines the process of data monetisation bye-commerce companies operating in India. Data monetisation is collecting, storing, and analysing consumers’ data to use further the data that is generated for profits, revenue, etc. Data monetisation enables e-commerce companies to get better businesses opportunities, innovative products and services, a competitive edge over others to the consumers, and generate millions of revenues. This paper analyses the issues and challenges that are faced due to the process of data monetisation. Some of the issues highlighted in the paper pertain to the right to privacy, protection of data of e-commerce consumers. At the same time, data monetisation cannot be prohibited, but it can be regulated and monitored by stringent laws and regulations. The right to privacy isa fundamental right guaranteed to the citizens of India through Article 21 of The Constitution of India. The Supreme Court of India recognized the Right to Privacy as a fundamental right in the landmark judgment of Justice K.S. Puttaswamy (Retd) and Another v. Union of India . This paper highlights the legal issue of how e-commerce businesses violate individuals’ right to privacy by using the data collected, stored by them for economic gains and monetisation and protection of data. The researcher has mainly focused on e-commerce companies like online shopping websitesto analyse the legal issue of data monetisation. In the Internet of Things and the digital age, people have shifted to online shopping as it is convenient, easy, flexible, comfortable, time-consuming, etc. But at the same time, the e-commerce companies store the data of their consumers and use it by selling to the third party or generating more data from the data stored with them. This violatesindividuals’ right to privacy because the consumers do not know anything while giving their data online. Many times, data is collected without the consent of individuals also. Data can be structured, unstructured, etc., that is used by analytics to monetise. The Indian legislation like The Information Technology Act, 2000, etc., does not effectively protect the e-consumers concerning their data and how it is used by e-commerce businesses to monetise and generate revenues from that data. The paper also examines the draft Data Protection Bill, 2021, pending in the Parliament of India, and how this Bill can make a huge impact on data monetisation. This paper also aims to study the European Union General Data Protection Regulation and how this legislation can be helpful in the Indian scenarioconcerning e-commerce businesses with respect to data monetisation.

Keywords: data monetization, e-commerce companies, regulatory framework, GDPR

Procedia PDF Downloads 120
782 Predicting Emerging Agricultural Investment Opportunities: The Potential of Structural Evolution Index

Authors: Kwaku Damoah

Abstract:

The agricultural sector is characterized by continuous transformation, driven by factors such as demographic shifts, evolving consumer preferences, climate change, and migration trends. This dynamic environment presents complex challenges for key stakeholders including farmers, governments, and investors, who must navigate these changes to achieve optimal investment returns. To effectively predict market trends and uncover promising investment opportunities, a systematic, data-driven approach is essential. This paper introduces the Structural Evolution Index (SEI), a machine learning-based methodology. SEI is specifically designed to analyse long-term trends and forecast the potential of emerging agricultural products for investment. Versatile in application, it evaluates various agricultural metrics such as production, yield, trade, land use, and consumption, providing a comprehensive view of the evolution within agricultural markets. By harnessing data from the UN Food and Agricultural Organisation (FAOSTAT), this study demonstrates the SEI's capabilities through Comparative Exploratory Analysis and evaluation of international trade in agricultural products, focusing on Malaysia and Singapore. The SEI methodology reveals intricate patterns and transitions within the agricultural sector, enabling stakeholders to strategically identify and capitalize on emerging markets. This predictive framework is a powerful tool for decision-makers, offering crucial insights that help anticipate market shifts and align investments with anticipated returns.

Keywords: agricultural investment, algorithm, comparative exploratory analytics, machine learning, market trends, predictive analytics, structural evolution index

Procedia PDF Downloads 63
781 A Hybrid Energy Storage Module for the Emergency Energy System of the Community Shelter in Yucatán, México

Authors: María Reveles-Miranda, Daniella Pacheco-Catalán

Abstract:

Sierra Papacal commissary is located north of Merida, Yucatan, México, where the indigenous Maya population predominates. Due to its location, the region has an elevation of fewer than 4.5 meters above sea level, with a high risk of flooding associated with storms and hurricanes and a high vulnerability of infrastructure and housing in the presence of strong gusts of wind. In environmental contingencies, the challenge is providing an autonomous electrical supply using renewable energy sources that cover vulnerable populations' health, food, and water pumping needs. To address this challenge, a hybrid energy storage module is proposed for the emergency photovoltaic (PV) system of the community shelter in Sierra Papacal, Yucatán, which combines high-energy-density batteries and high-power-density supercapacitors (SC) in a single module, providing a quick response to energy demand, reducing the thermal stress on batteries and extending their useful life. Incorporating SC in energy storage modules can provide fast response times to power variations and balanced energy extraction, ensuring a more extended period of electrical supply to vulnerable populations during contingencies. The implemented control strategy increases the module's overall performance by ensuring the optimal use of devices and balanced energy exploitation. The operation of the module with the control algorithm is validated with MATLAB/Simulink® and experimental tests.

Keywords: batteries, community shelter, environmental contingencies, hybrid energy storage, isolated photovoltaic system, supercapacitors

Procedia PDF Downloads 91
780 The Impact of WhatsApp Groups as Supportive Technology in Teaching

Authors: Pinn Tsin Isabel Yee

Abstract:

With the advent of internet technologies, students are increasingly turning toward social media and cross-platform messaging apps such as WhatsApp, Line, and WeChat to support their teaching and learning processes. Although each messaging app has varying features, WhatsApp remains one of the most popular cross-platform apps that allow for fast, simple, secure messaging and free calls anytime, anywhere. With a plethora of advantages, students could easily assimilate WhatsApp as a supportive technology in their learning process. There could be peer to peer learning, and a teacher will be able to share knowledge digitally via the creation of WhatsApp groups. Content analysis techniques were utilized to analyze data collected by closed-ended question forms. Studies demonstrated that 98.8% of college students (n=80) from the Monash University foundation year agreed that the employment of WhatsApp groups was helpful as a learning tool. Approximately 71.3% disagreed that notifications and alerts from the WhatsApp group were disruptions in their studies. Students commented that they could silence the notifications and hence, it would not disturb their flow of thoughts. In fact, an overwhelming majority of students (95.0%) found it enjoyable to participate in WhatsApp groups for educational purposes. It was a common perception that some students felt pressured to post a reply in such groups, but data analysis showed that 72.5% of students did not feel pressured to comment or reply. It was good that 93.8% of students felt satisfactory if their posts were not responded to speedily, but was eventually attended to. Generally, 97.5% of students found it useful if their teachers provided their handphone numbers to be added to a WhatsApp group. If a teacher posts an explanation or a mathematical working in the group, all students would be able to view the post together, as opposed to individual students asking their teacher a similar question. On whether students preferred using Facebook as a learning tool, there was a 50-50 divide in the replies from the respondents as 51.3% of students liked WhatsApp, while 48.8% preferred Facebook as a supportive technology in teaching and learning. Taken altogether, the utilization of WhatsApp groups as a supportive technology in teaching and learning should be implemented in all classes to continuously engage our generation Y students in the ever-changing digital landscape.-

Keywords: education, learning, messaging app, technology, WhatsApp groups

Procedia PDF Downloads 157
779 Multiscale Process Modeling of Ceramic Matrix Composites

Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya

Abstract:

Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.

Keywords: digital engineering, finite elements, manufacturing, molecular dynamics

Procedia PDF Downloads 98
778 Effect of Soil Resistivity on the Development of a Cathodic Protection System Using Zinc Anode

Authors: Chinedu F. Anochie

Abstract:

The deterioration of materials as a result of their interaction with the environment has been a huge challenge to engineering. Many steps have been taking to tackle corrosion and its effects on harmful effects on engineering materials and structures. Corrosion inhibition, coating, passivation, materials selection, and cathodic protection are some of the methods utilized to curtail the rate at which materials corrode. The use of sacrificial anodes (magnesium, aluminum, or zinc) to protect the metal of interest is a widespread technique used to prevent corrosion in underground structures, ship hauls, and other structures susceptible to corrosion attack. However, certain factors, like resistivity, affect the performance of sacrificial anodes. To establish the effect of soil resistivity on the effectiveness of a cathodic protection system, a mild steel specimen was cathodically protected around Workshop 2 area, Federal University of Technology, Owerri, Nigeria. Design calculations showed that one zinc anode was sufficient to protect the pipe. The specimen (mild steel pipe) was coated with white and black polykene tapes and was subsequently buried in a high resistivity soil. The pipe-to-soil potential measurements were obtained using a digital fluke multimeter. The protection potential obtained on installation was higher than the minimum protection criteria. However, the potential results obtained over a fourteen-day intervals continually decreased to a value significantly lower than the minimum protection criteria. This showed that the sacrificial anode (zinc) was rendered ineffective by the high resistivity of the area of installation. It has been shown that the resistivity of the soil has a marked effect on the feasibility of cathodic protection systems. This work justified that zinc anode cannot be used for cathodic protection around Workshop 2 area, Federal University of Technology, Owerri, Nigeria, because of the high resistivity of the area. An experimental data which explains the effectiveness of galvanic anode cathodic protection system on corrosion control of a small steel structure, exposed to a soil of high resistivity has been established.

Keywords: cathodic protection, corrosion, pipe, sacrificial anode

Procedia PDF Downloads 184
777 Iris Recognition Based on the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric

Procedia PDF Downloads 335